Books and Media Reviews

Last updated 13 May 2019

The following items are currently available (listed by year of publication). There is no fee but the reviewer keeps the book, except when publishers make an ebook available for limited time. Please contact the reviews editor ( to request an item.

  • 2019
    Arnold, Taylor; A Computational Approach to Statistical Learning; Chapman & Hall/CRC; February 2019; 978-1-138-04637-5
    Bailar/Mostelle; Medical Uses of Statistics; Chapman & Hall/CRC; March 2019; 978-1-138-46959-4
    Banks, David L.; Handbook of Forensic Statistics; Chapman & Hall/CRC; March 2019; 978-1-138-29540-7
    Baron, Michael; Probability and Statistics for Computer Scientists, Third Edition; Chapman & Hall/CRC; June 2019; 978-1-138-04448-7
    Bécue-Bertaut, Mónica; Textual Statistics with R; Chapman & Hall/CRC; March 2019; 978-1-138-62691-1
    Blastland, Michael; The Hidden Half: How the World Conceals its Secrets; Allen&Unwin; May 2019; 9781786497772 
    Blitzstein, Joseph K.; Introduction to Probability, Second Edition; Chapman & Hall/CRC; February 2019; 978-1-138-36991-7
    Bouveyron, Charles , Gilles Celeux, T. Brendan Murphy and Adrian E. Raftery; Model-Based Clustering and Classification for Data Science with Applications in R; CUP; Sept 2019; 9781108494205
    Brass, Peter; Advanced Data Structures; CUP; May 2019; 9781108735513
    Broemeling, Lyle D.; Bayesian Analysis of Time Series; Chapman & Hall/CRC; April 2019; 978-1-138-59152-3
    Carini, Claudio; Handbook of Biomarkers and Precision Medicine; Chapman & Hall/CRC; April 2019; 978-1-4987-6258-8
    Chang, Mark; Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials;Chapman & Hall/CRC; March 2019; 978-0-8153-7944-7
    Chatfield, Chris; The Analysis of Time Series: An Introduction with R; Chapman & Hall/CRC; May 2019; 978-1-4987-9563-0
    Corea, Francesco ; An Introduction to Data: Everything You Need to Know About AI, Big Data and Data Science; Springer; 2019; 978-3-030-04468-8
    Crocetta, Corrado (Ed.) ; Theoretical and Applied Statistics: conference proceedings in honour of Corrado Gini; Springer; 2019; 978-3-030-05420-5 
    Cummings, Peter; Analysis of Incidence Rates; Chapman & Hall/CRC; April 2019; 978-0-367-15206-2
    Diggle, Peter J. ; Model-based Geostatistics for Global Public Health: Methods and Applications; Chapman & Hall/CRC; February 2019; 978-1-138-73235-3
    Drobinski, P., Mougeot, M., Picard, D., Plougonven, R., Tankov, P. (Eds.); Renewable Energy: Forecasting and Risk Management; Springer; 2018; 978-3-319-99052-1
    Durrett, Rick; Probability: Theory and Examples (5th ed); CUP; 2019; 9781108473682
    Ekin, Tahir; Statistics and Health Care Fraud: How to Save Billions; Chapman & Hall/CRC; February 2019; 978-1-138-10639-0 / -19742-8
    Emura, Takeshi, Matsui, Shigeyuki, Rondeau, Virginie; Survival Analysis with Correlated Endpoints: Joint Frailty-Copula Models; Springer; 2019; 978-981-13-3516-7
    Evans, Jeff, Sally Ruane and Humphrey Southall; Data in Society: Challenging Statistics in an Age of Globalisation; Bristol University Press; 978-1447348221 
    Finch, W. Holmes; Multilevel Modeling Using R; Chapman & Hall/CRC; May 2019; 978-1-138-48067-4
    Fruhwirth-Schnatter, Sylvia; Handbook of Mixture Analysis; Chapman & Hall/CRC; January 2019; 978-1-4987-6381-3
    Gelfand, Alan E.; Handbook of Environmental and Ecological Statistics; Chapman & Hall/CRC; January 2019; 978-1-4987-5202-2
    González, Juan R.; Omic Association Studies with R and Bioconductor; Chapman & Hall/CRC; June 2019; 978-1-138-34056-5
    Gross, Benedict, Joe Harris and Emily Riehl; Fat Chance; CUP; May 2019; 9781108728188 
    Haining, Robert P.; Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach; Chapman & Hall/CRC; June 2019; 978-1-4822-3742-9
    Halabi, Susan; Textbook of Clinical Trials in Oncology: A Statistical Perspective; Chapman & Hall/CRC; May 2019; 978-1-138-08377-6
    Hay-Jahans, Christopher; R Companion to Elementary Applied Statistics; Chapman & Hall/CRC; January 2019; 978-1-138-32916-4
    Holmes, Susan and Wolfgang Huber; Modern Statistics for Modern Biology; CUP; February 2019; 9781108705295 
    Jurečková, Jana; Robust Statistical Methods with R, Second Edition; Chapman & Hall/CRC; May 2019; 978-1-138-03536-2
    Khan, Iftekhar; Economic Evaluation of Cancer Drugs: Using Clinical Trial and Real-World Data; Chapman & Hall/CRC; June 2019; 978-1-4987-6130-7
    Krainski, Elias T. et al.; Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA; Chapman & Hall/CRC; December 2018; 978-1-138-36985-6
    Le Roux, Brigitte; Combinatorial Inference in Geometric Data Analysis; Chapman & Hall/CRC; February 2019; 978-1-4987-8161-9
    Lesik, Sally A.; Applied Statistical Inference with MINITAB®, Second Edition; Chapman & Hall/CRC; January 2019; 978-1-4987-7998-2
    Li, Ta-Hsin; Time Series with Mixed Spectra; Chapman & Hall/CRC; March 2019; 978-1-138-37495-9
    Liu, Charlie Chunhua; Producing High-Quality Figures Using SAS/GRAPH® and ODS Graphics Procedures; Chapman & Hall/CRC; March 2019; 978-1-138-46930-3
    Liu, Yan, Akashi, Fumiya, Taniguchi, Masanobu ; Empirical Likelihood and Quantile Methods for Time Series: Efficiency, Robustness, Optimality, and Prediction; Springer JSS Research Series in Statistics; 2018; 978-981-10-0152-9
    Lohr, Sharon L.; Measuring Crime: Behind the Statistics; Chapman & Hall/CRC; April 2019; 978-0-367-19231-0
    Lovelace, Robin; Geocomputation with R; Chapman & Hall/CRC; February 2019; 978-1-138-30451-2
    Maharaj, Elizabeth Ann; Time Series Clustering and Classification; Chapman & Hall/CRC; March 2019; 978-1-4987-7321-8
    Matloff, Norman; Probability and Statistics for Data Science: Math + R + Data; Chapman & Hall/CRC; June 2019; 978-1-138-39329-5
    Metcalfe, Andrew; Statistics in Engineering: With Examples in MATLAB® and R, Second Edition; Chapman & Hall/CRC; January 2019; 978-1-4398-9547-4
    Moreno, Elias; Bayesian Cost-Effectiveness Analysis of Medical Treatments; Chapman & Hall/CRC; January 2019; 978-1-138-73173-8
    Nakajima, Shinichi , Kazuho Watanabe and Masashi Sugiyama; Variational Bayesian Learning Theory;CUP; July 2019; 9781107076150 
    Ng, Shu Kay; Mixture Modelling for Medical and Health Sciences; Chapman & Hall/CRC; May 2019; 978-1-4822-3675-0
    Nualart, David and Nualart, Eulalia; Introduction to Malliavin Calculus; CUP; May 2018; 9781107611986
    O’Hare, William P ; Differential Undercounts in the U.S. Census; Springer, SpringerBriefs in Population Studies; 2019; 978-3-030-10973-8 (an open access book
    Palfrey, Thomas R.; Bayesian Implementation; Chapman & Hall/CRC; February 2019; 978-1-138-46949-5
    Pitard, Francis F.; Theory of Sampling and Sampling Practice, Third Edition; Chapman & Hall/CRC; January 2019; 978-1-138-47648-6
    Prentice, Ross L.; The Statistical Analysis of Multivariate Failure Time Data: A Marginal Modeling Approach;Chapman & Hall/CRC; June 2019; 978-1-4822-5657-4
    Prügel-Bennett, Adam; The Probability Companion for Engineering and Computer Science; CUP; Sept 2019; 9781108727709 
    Reich, Brian J.; Bayesian Statistical Methods; Chapman & Hall/CRC; April 2019; 978-0-8153-7864-8
    Rizzo, Maria L.; Statistical Computing with R, Second Edition; Chapman & Hall/CRC; February 2019; 978-1-4665-5332-3
    Särkkä, Simo and Arno Solin; Applied Stochastic Differential Equations; CUP; May 2019; 9781316649466 
    Shumway, Robert; Time Series: A Data Analysis Approach Using R; Chapman & Hall/CRC; May 2019; 978-0-367-22109-6
    Stroup, Walter, George Milliken, Elizabeth Claassen, and Russell Wolfinger; SAS® for Mixed Models: Introduction and Basic Applications; SAS Press; December 2018; 9781635261356 
    Sundberg, Rolf; Statistical Modelling by Exponential Families; CUP; July 2019; 9781108701112 
    Twisk , Jos W. R.; Applied Mixed Model Analysis: A Practical Guide; CUP; April 2019; 9781108727761
    van Lieshout, M.N.M.; Theory of Spatial Statistics: A Concise Introduction; Chapman & Hall/CRC; March 2019; 978-0-367-14639-9
    Vehkalahti, Kimmo; Multivariate Analysis for the Behavioral Sciences, Second Edition; Chapman & Hall/CRC; January 2019; 978-0-8153-8515-8
    Wickham, Hadley; Advanced R, Second Edition; Chapman & Hall/CRC; June 2019; 978-0-8153-8457-1
    Wikle, Christopher K.; Spatio-Temporal Statistics with R; Chapman & Hall/CRC; February 2019; 978-1-138-71113-6
    Yang, Harry; Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies ;Chapman & Hall/CRC; June 2019; 978-1-138-29587-2
    Zhang, Li-Chun; Analysis of Integrated Data; Chapman & Hall/CRC; May 2019; 978-1-4987-2798-3
    Zhao, Yichuan, Chen, Ding-Geng (Eds.); New Frontiers of Biostatistics and Bioinformatics; Springer; 2018; 978-3-319-99389-8
    Zuur A.F., Ieno E.N. and Saveliev A.A.; Beginner's Guide to Spatial, Temporal and Spatial-Temporal Ecological Data Analysis with R-INLA: Vol 1 Using GLM and GLMM; Highland Statistics; Feb 2017; 9780957174191
    Zuur A.F. and Ieno E.N.; Beginner's Guide to Spatial, Temporal and Spatial-Temporal Ecological Data Analysis with R-INLA: Vol 2 GAM and Zero-inflated Models; Highland Statistics; 2017;
  • 2018
    Bhatt, Chintan; Ashour, Amira S.; Dey, Nilanjan (eds) Big Data for Remote Sensing: Visualization, Analysis and Interpretation. Springer; June 2018
    Borcard, Daniel; Legendre, Pierre & Gillet, François. Numerical Ecology with R. Springer Use R! Series; 2018
    Borgan, Ørnulf; Handbook of Statistical Methods for Case-Control Studies; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-4987-6858-0
    Bose, Arup. Random Circulant Matrices. Chapman & Hall/CRC; Oct 2018; ISBN 978-1-1383-5109-7
    Bowden, Roger; The Information Theory of Comparisons; Springer
    Brinkmann, Svend and Steinar Kvale; Doing Interviews; Sage Publications (10/2018) # (Several other books on qualitative research also available – see Sage website)
    Broemeling, Lyle D. Bayesian Methods for Repeated Measures. Chapman & Hall (04/2018) ISBN 978-1-138-89404-4
    Cate F.H. and Dempsey J.X. (eds) Bulk Collection: Systematic Government Access to Private-Sector Data. OUP (2018) hbk
    [A survey of surveillance practices around the world]
    Chacón, José E. Multivariate Kernel Smoothing and Its Applications. Chapman & Hall (06/2018) ISBN 978-1-4987-6301-1
    Chambers, Erin ; Tari, Sibel ; Morin, Geraldine ; El-Zehiry, Noha ; Genctav, Asli ; Hubert, Evelyne ; leonard, kathryn (eds).Research in Shape Analysis. Springer Association for in Mathematics Series, Vol. 12 (06/2018) 
    [Also invite offers to review any other Women in Mathematics volumes]
    Chen, Jie; Medical Product Safety Evaluation: Biological Models and Statistical Methods; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-4665-0808-8
    Choudhary, Pankaj K. and Haikady N. Nagaraja; Measuring Agreement: Models, Methods and Applications; Wiley Series in Probability and Statistics; 2017; ISBN 978-1-1170-7858-7
    Chow, Shein-Chung; Analytical Similarity Assessment in Biosimilar Product Development; Chapman & Hall/CRC Press; Aug 2018; IBSN 978-1-138-30733-9
    Chow, Shein-Chung; Encyclopedia of Biopharmaceutical Statistics, Fourth Edition - Four Volume Set; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-4987-3395-3
    Clarke, S. Bernard & Clarke, Jennifer L. Predictive Statistics: Analysis and Inference beyond Models. Cambridge Series in Statistical and Probabilistic Mathematics. CUP (2018) ISBN 978-1-107-02828-9.Hbk
    Coffey, Todd Statistics for Biotechnology Process Development. Chapman & Hall (06/2018) ISBN 978-1-4987-2140-0
    Crane, Harry Probabilistic Foundations of Statistical Network Analysis. Chapman & Hall (04/2018) ISBN 978-1-138-63015-4
    Das, Dipayan ; Selvamuthu, Dharmaraja ; Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control; Springer (10/2018)
    Dasgupta, Ratan; Advances in Growth Curve and Structural Equation Modeling; Springer (10/2018)
    Desjardins, Christopher D. Handbook of Educational Measurement and Psychometrics Using R. Chapman & Hall (05/2018) ISBN 978-1-4987-7013-2
    Dobson, Annette J. An Introduction to Generalized Linear Models, Fourth Edition. Chapman & Hall (04/2018) ISBN 978-1-138-74151-5
    Doukhan, Paul. Stochastic Models for Time Series. Springer Mathématiques et Applications, Vol. 80 (06/2018)
    Efromovich, S. Missing and Modified Data in Nonparametric Estimation: With R Examples. CRC Press (2018) hbk
    Emura, Takeshi ; Chen, Yi-Hau. Analysis of Survival Data with Dependent Censoring. Springer JSS Research Series in Statistics. (06/2018)
    Farrington, Paddy Self-Controlled Case Series Studies: A Modelling Guide with R. Chapman & Hall (05/2018) ISBN 978-1-4987-8159-6
    Feng, Runhuan An Introduction to Computational Risk Management of Equity-Linked Insurance. Chapman & Hall (06/2018) ISBN 978-1-4987-4216-0
    Fenton, Norman; Risk Assessment and Decision Analysis with Bayesian Networks, Second Edition; Chapman & Hall/CRC Press; Aug 2018; IBSN 978-1-138-03511-9
    Flick, Uwe; Doing Triangulation and Mixed Methods; Sage Publications (10/2018)
    Gelfand, Alan E; Handbook of Environmental and Ecological Statistics; Chapman & Hall/CRC Press; Aug 2018; IBSN 978-1-4987-5202-2
    Gelfand, Alan E. Handbook of Environmental and Ecological Statistics. Chapman & Hall/CRC; Nov 2018; ISBN 978-1-4987-5202-2
    Gil, Eduardo; Gil, Juan; Gil, María Ángeles & Gil, Eva. The Mathematics of the Uncertain. Studies in Systems, Decision and Control, Vol. 142. Springer (2018).
    Gonstalla, Esther. The Ocean Book: how endangered are our seas. oekom, Munich; 2018. ISBN 978-3-96238-034-2 (a book of infographics)
    Greenacre, Michael; Compositional Data Analysis in Practice; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-138-31643-0
    Hay-Jahans, Christopher. R Companion to Elementary Applied Statistics. Chapman & Hall/CRC; Oct 2018; ISBN 978-1-138-32925-6
    Hofer, Eduard. The Uncertainty Analysis of Model Results. Springer (06/2018)
    Hofmann, Bernd; Leitao, Antonio & Zubelli, Jorge Passamani. New Trends in Parameter Identification for Mathematical Models. Trends in Mathematics series. Springer (2018).
    Izbicki, Rafael; Hatsuo Takada, Hellinton ; Polpo, Adriano ; Stern, Julio ; Louzada, Francisco (Eds);Bayesian Inference and Maximum Entropy Methods in Science and Engineering; Springer Proceedings in Mathematics & Statistics, Vol. 239
    Kaushik, Aman Chandra; Chaudhary, Ravi; Kumar, Ajay; Sahi, Shakti; Bharadwaj, Shiv. Bioinformatics Techniques for Drug Discovery. Springer (05/2018)
    Lakshminarayanan, Mani; Bayesian Applications in Pharmaceutical Development; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-138-29676-3
    Landsittel, Douglas; Fundamentals of Biomarker Research; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-4822-5549-2
    Lawson, Andrew B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Third Edition. Chapman & Hall (05/2018) ISBN 978-1-138-57542-4
    Lesik, Sally A. Applied Statistical Inference with MINITAB®, Second Edition. Chapman & Hall/CRC; Dec 2018; ISBN 978-1-4987-7998-2
    Ley, Christophe; Applied Directional Statistics: Modern Methods and Case Studies; Chapman & Hall/CRC Press; Aug 2018; IBSN 978-1-138-62643-0
    Li, Bing Sufficient Dimension Reduction: Methods and Applications with R. Chapman & Hall (05/2018) ISBN 978-1-4987-0447-2 
    Link, Daniel. Data Analytics in Professional Soccer. Springer (2018)
    Lo, Ambrose Derivative Pricing: A Problem-Based Primer. Chapman & Hall (05/2018) ISBN 978-1-138-03335-1
    Maathuis, Marloes. Handbook of Graphical Models. Chapman & Hall/CRC; Oct 2018; ISBN 978-1-4987-8862-5
    Mair, Patrick; Borg, Ingwer; Groenen, Patrick J.F. Applied Multidimensional Scaling and Unfolding. Springer Briefs in Statistics (06/2018)
    Mair, Patrick; Modern Psychometrics with R; Springer Use-R series (10/2018)
    Martino, Luca; Míguez Arenas, Joaquín; Luengo García, David. Independent Random Sampling Methods. Springer Statistics and Computing (05/2018)
    Martinson, Douglas G.; Quantitative Methods of Data Analysis for the Physical Sciences and Engineering; Cambridge University Press; 2018; ISBN 978-1-1070-2976-7
    Meletiou-Mavrotheris, Maria; Leavy, Aisling; Paparistodemou, Efi (Eds); Statistics in Early Childhood and Primary Education; Springer Early Mathematics Learning and Development
    Metcalfe, Andrew; Statistics in Engineering, Second Edition; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-4398-9547-4
    Mias, George. Mathematica for Bioinformatics. Springer (2018)
    Micheas, Athanasios C. Theory of Stochastic Objects: Probability, Stochastic Processes and Inference.CRC Press (2018) hbk/ebook
    Murtagh, F. Data Science Foundations: Geometry and Topology of Complex Hierarchical Systems and Big Data Analysis. CRC Press. (2018) hbk
    Nualart, David & Nualart Eulalia; Introduction to Malliavin Calculus. CUP; Dec 2018; ISBN 9781107611986 pbk
    Panke, Diana; Research Design & Method Selection: Making Good Choices in the Social Sciences; Sage Publications (10/2018)
    Pardo, S. & Pardo M. Statistical Methods for Field and Laboratory Studies in Behavioral Ecology. Chapman & Hall/CRC Applied Environmental Statistics (2018) hbk
    Perpinan Lamigueiro, Oscar; Displaying Time Series, Spatial, and Space-Time Data with R, Second Edition; Chapman & Hall/CRC Press; Aug 2018; IBSN 978-1-138-08998-3
    Raghunathan, Trivellore Multiple Imputation in Practice: With Examples Using IVEware. Chapman & Hall (06/2018) ISBN 978-1-4987-7016-3
    Raghunathan, Trivellore; Multiple Imputation in Practice: With Examples Using IVEware; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-4987-7016-3
    Rasch, Dieter; Pilz, Jürgen; Moder, Karl; Melas, Viatcheslav B. Statistics and Simulation. Springer Proceedings in Mathematics & Statistics, Vol. 231 (06/2018)
    Regenstein, Jr., Jonathan K. Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis. Chapman & Hall/CRC; Oct 2018; ISBN 978-1-138-48403-0
    Regenstein, Jr., Jonathan K.; Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis; Chapman & Hall/CRC Press; Sept 2018; IBSN 978-1-138-48422-1
    Resendis-Antonio, Osbaldo & Olivares-Quiroz, Luis (Eds) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Springer (2018)
    Rose, Sherri; van der Laan, Mark J. Targeted Learning in Data Science. Springer Series in Statistics. Springer (2018)
    Roychoudhury, Satrajiit; Statistical Approaches in Oncology Clinical Development: Current Paradigm and Methodological Advancement; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-4987-7269-3
    Roychoudhury, Satrajit. Statistical Approaches in Oncology Clinical Development: Current Paradigm and Methodological Advancement. Chapman & Hall/CRC; Nov 2018; ISBN 978-1-4987-7269-3
    Russell, J.A. Statistics in Music Education Research. OUP (2018) ppb
    [A range of statistical methods described with specific examples from this domain]
    Saichev, Alexander I.; Woyczynski, Wojbor A; Distributions in the Physical and Engineering Sciences;Springer (10/2018)
    Selch, Daniela Anna; Scherer, Matthias; A Multivariate Claim Count Model for Applications in Insurance;Springer Actuarial(10/2018)
    Shadbolt, Nigel and Hampson, Roger. The Digital Ape: how to live (in peace) with smart machines. Scribe (05/2018) hbk
    Shen, Xiaotong; Härdle, Wolfgang Karl; Lu, Henry Horng-Shing (Eds); Handbook of Big Data Analytics; Springer Handbooks of Computational Statistics 
    Shoukri, Mohamed M. Analysis of Correlated Data with SAS and R, Fourth Edition. Chapman & Hall (04/2018) ISBN 978-1-138-19745-9
    Sisson, Scott A.; Handbook of Approximate Bayesian Computation; Chapman & Hall/CRC Press; Aug 2018; IBSN 978-1-4398-8150-7
    Skansi, SandroIntroduction to Deep Learning. Undergraduate Topics in Computer Science. Springer (2018)
    Skiadas, Christos H.; Skiadas, Charilaos (eds) Demography and Health Issues. Springer Series on Demographic Methods and Population Analysis, Vol. 46 (06/2018)
    Stone, J.V. Principles of Neural Information Theory: Computational Neuroscience and Metabolic Efficiency.Sebtel Press (2018)
    [Contains much mathematical analysis, relating information theory to neural computation]
    Thomopoulos, Nick T. Probability Distributions. Springer (05/2018)
    Twisk, Jos. Applied Mixed Model Analysis: A Practical Guide (Practical Guides to Biostatistics and Epidemiology). CUP (due Mar 2019)
    Valliant, Richard, Dever, Jill A., Kreuter, Frauke. Practical Tools for Designing and Weighting Survey Samples. Springer 2018. ISBN 978-3-319-93631-4
    van Buuren, Stef; Flexible Imputation of Missing Data, Second Edition; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-138-58831-8
    Various authorsQuick Little Fix series ; Sage Publications (10/2018)
    [Various topics, including Understand Probability & Know your numbers – see Sage website if interested]
    Vaz, A. Ismael F.; Pinto, Alberto Adrego; Oliveira, José Fernando & Almeida, JoaoOperational Research. Springer Proceedings in Mathematics & Statistics, Vol. 223. Springer (2018)
    Vehkalahti, KimmoMultivariate Analysis for the Behavioral Sciences, Second Edition. Chapman & Hall/CRC; Dec 2018; ISBN 978-0-8153-8515-8
    Vershynin, RomanHigh-Dimensional Probability. CUP; Nov 2018; ISBN 9781108415194 hbk
    Vexler, A. & Hutson, A. Statistics in the Health Sciences: Theory, Applications, and Computing. CRC Press (2018) hbk/ebook
    Vexler, Albert; Empirical Likelihood Methods in Biomedicine and Health;Chapman & Hall/CRC Press; Aug 2018; IBSN 978-1-4665-5503-7
    Vitali, Ettore; Motta, Mario; Galli, Davide Emilio; Theory and Simulation of Random Phenomena; Springer UNITEXT for Physics
    von Rosen, Dietrich & Tez, MüjganTrends and Perspectives in Linear Statistical Inference. Springer (2018)
    Wilkinson, Darren J. Stochastic Modelling for Systems Biology, Third Edition. Chapman & Hall/CRC; Dec 2018; ISBN 978-1-138-54928-9 
    Winther, Rasmus Grønfeldt. Phylogenetic Inference, Selection Theory, and History of Science: Selected Papers of A. W. F. Edwards with Commentaries. CUP; 2018; ISBN 9781316276259
    Wu, Jianrong Statistical Methods for Survival Trial Design: With Applications to Cancer Clinical Trials Using R. Chapman & Hall (06/2018) ISBN 978-1-138-03322-1
    Wu, JunThe Beauty of Mathematics in Computer Science. Chapman & Hall/CRC; Nov 2018; ISBN 978-1-138-04960-4
    Xie, Yihui; R Markdown: The Definitive Guide; Chapman & Hall/CRC Press; July 2018; IBSN 978-1-138-35933-8
    Xiong, Momiao Big Data in Omics and Imaging: Integrated Analysis and Causal Inference. Chapman & Hall (06/2018) ISBN 978-0-8153-8710-7
Review guidelines

Reviews should be informative and express a view. While most reviews are of books, we welcome suggestions for review of any material (eg video or audio, online courses) relevant to statisticians. Please contact the reviews editor with any suggestions.

Readers want to know whether this book (or other material) could be of interest to them, or to a colleague or student. Space for reviews is limited, so every word used must earn its place. A minority of books merit a very full review, about 600–800 words; most reviews are expected to be about 300–400 words; for some books, including those little changed from a previous edition, 150 words will suffice. For Significance magazine, reviews must be no more than 250 words. Please try not to include formulae or complex mathematical expressions.

Do not hold back from offering fair and defensible (but not offensive) criticism where it is deserved. If your review exposes a book as outdated, inaccurate or unsatisfactory in other ways, you will earn the gratitude of many. Similarly, when the book has a refreshing perspective, or is particularly useful (even in a few chapters), your enthusiasm will be appreciated. Of course, you must not review material in which you have a pecuniary or similar interest.

Avoid simply quoting from the publisher’s blurb, without comment, or merely listing chapter titles, unless this is the best way to succinctly describe the content. Your review should offer more than can be found by a reader stumbling across the book in a bookshop, or advertised on a website. If the authors have offered to make publicly available a list of misprints and corrections, it will be more useful to send minor slips directly to them than to take up space in your review. But, when you find errors that are likely to mislead, then point them out!

Sometimes, two or more books on the same topic can be reviewed together; in general, comparisons of new books with the existing literature can be most helpful. We want reviews published in our journals to read well, to be authoritative, and to be useful to the statistical community. If you refer to other published work, give precise details in the conventional manner, listing such references at the end of your review.

The division between publication in Significance and Series A of the journal is now established: reviews of books aimed at the general public, undergraduate texts and historical surveys now appear in Significance, whereas more technical books, research monographs and postgraduate texts will be reviewed in Series A.

Head your review with the standard information in this order: title, author(s), publication year, edition or format, publisher, length, price and ISBN. End with your own name and your affiliation (or simply town or city where you live), and your e-mail address if you are happy for it to appear in print. Send as plain text or Word document; LaTeX markup may also be helpful if typographic features or non-English characters are relied on.

The book reviews editor and/or the copy editor might edit your review mildly, mainly to put it into in ‘house style’, but also to correct typographical errors etc.; if an editor wishes to make any alteration of substance, he or she will run it past you first. You will, of course, also receive proofs of the text to check before publication, but the review cannot be published until you also return a signed copy of the copyright transfer agreement (CTA) that will accompany the proofs.