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Summary. The most widely used concept of statistical inference — the p-value —
is too complicated for effective communication to a wide audience. This paper in-
troduces a simpler way of reporting statistical evidence: report the outcome of a bet
against the null hypothesis. This leads to a new role for likelihood, to alternatives
to power and confidence, and to a framework for meta-analysis that accommodates
both planned and opportunistic testing of statistical hypotheses and probabilistic fore-
casts. This framework builds on the foundation for mathematical probability devel-
oped in previous work by Vladimir Vovk and myself.
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1. Introduction

The most widely used concept of statistical inference — the p-value — is too com-
plicated for effective communication to a wide audience (McShane and Gal, 2017;
Gigerenzer, 2018). This paper introduces a simpler way of reporting statistical ev-
idence: report the outcome of a bet against the null hypothesis. This leads to a
new role for likelihood, to alternatives to power and confidence, and to a frame-
work for meta-analysis that accommodates both planned and opportunistic testing
of statistical hypotheses and probabilistic forecasts.

Testing a hypothesized probability distribution by betting is straightforward.
We select a nonnegative payoff and buy it for its hypothesized expected value. If
this bet multiplies the money it risks by a large factor, we have evidence against
the hypothesis, and the factor measures the strength of this evidence. Multiplying
our money by 5 might merit attention; multiplying it by 100 or by 1000 might be
considered conclusive.

The factor by which we multiply the money we risk — we may call it the betting
score — is conceptually simpler than a p-value, because it reports the result of a
single bet, whereas a p-value is based on a family of tests. As explained in Section 2,
betting scores also have a number of other advantages:
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(a) Whereas the certainty provided by a p-value is sometimes exaggerated, the
uncertainty remaining when a large betting score is obtained is less easily
minimized. Whether or not you have been schooled in mathematical statistics,
you will not forget that a long shot can succeed by sheer luck.

(b) A bet (a payoff selected and bought) determines an implied alternative hy-
pothesis, and the betting score is the likelihood ratio with respect to this
alternative. So the evidential meaning of betting scores is aligned with our
intuitions about likelihood ratios.

(c) Along with its implied alternative hypothesis, a bet determines an implied
target: a value for the betting score that can be hoped for under the alterna-
tive hypothesis. Implied targets can be more useful than power calculations,
because an implied target along with an actual betting score tells a coherent
story. The notion of power, because it requires a fixed significance level, does
not similarly cohere with the notion of a p-value.

(d) Testing by betting permits opportunistic searches for significance, because the
persuasiveness of having multiplied one’s money by successive bets does not
depend on having followed a complete betting strategy laid out in advance.

A shift from reporting p-values to reporting outcomes of bets cannot happen
overnight, and the notion of calculating a p-value will always be on the table when
statisticians look at the standard or probable error of the estimate of a difference;
this was already true in the 1830s (Shafer, 2019). We will want, therefore, to
relate the scale for measuring evidence provided by a p-value to the scale provided
by a betting score. Any rule for translating from the one scale to the other will
be arbitrary, but it may nevertheless be useful to establish some such rule as a
standard. This issue is discussed in Section 3.

Section 4 considers statistical modeling and estimation. A statistical model en-
codes partial knowledge of a probability distribution. In the corresponding betting
story, the statistician has partial information about what is happening in a bet-
ting game. We see outcomes, but we do not see what bets have been offered on
them and which of these bets have been taken up. We can nevertheless equate the
model’s validity with the futility of betting against it. A strategy for a hypothetical
bettor inside the game, together with the outcomes we see, then translates into
warranties about the validity of the bets that were offered. The strategy tells the
bettor what bets to make as a function of those offered, and if the game involves
the bettor’s being offered any payoff at the price given by a probability distribution
— the distribution remaining unknown to us, because we are not inside the game
— then assertions about the validity of this unknown probability distribution are
warrantied. Instead of (1−α)-confidence in an assertion about the distribution, we
obtain a (1/α)-warranty. Either the warrantied assertion holds or the hypothetical
bettor has multiplied the money he risked by 1/α.

A statement of (1−α)-confidence can be interpreted as a (1/α)-warranty, one re-
sulting from all-or-nothing bets. But the more general concept of warranty obtained
by allowing bets that are not all-or-nothing has several advantages:

(a) Like individual betting scores, it gives colour to residual uncertainty by evoking
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our knowledge of gambling and its dangers.
(b) Observations together with a strategy for the bettor produce more than one

warranty set. They produce a (1/α)-warranty set for every α, and these war-
ranty sets are nested.

(c) Because it is always legitimate to continue betting with whatever capital re-
mains, the hypothetical bettor can continue betting on additional outcomes,
and we can update our warranty sets accordingly without being accused of
“sampling to a foregone conclusion”. The same principles authorize us to
combine warranty sets based on successive studies.

The conclusion of the paper (Section 5) summarizes the advantages of testing
by betting. An appendix (Section 6) situates the idea in the broader landscape
of theoretical statistics and other proposed remedies for the misunderstanding and
misuse of p-values and significance testing.

For further discussion of betting as a foundation for mathematical probability,
statistics, and finance, see Shafer and Vovk (2019) and related working papers at
www.probabilityandfinance.com. This paper draws on some of the mathematical
results reported in Chapter 10 of Shafer and Vovk (2019), but the crucial concepts
of implied alternative, implied target, and warranty are newly introduced here.

2. Testing by betting

You claim that a probability distribution P describes a certain phenomenon Y . How
can you give content to your claim, and how can I challenge it?

Assuming that we will later see Y ’s actual value y, a natural way to proceed is to
interpret your claim as a collection of betting offers. You offer to sell me any payoff
S(Y ) for its expected value, EP (S). I choose a nonnegative payoff S, so that EP (S)
is all I risk. Let us call S my bet, and let us call the factor by which I multiply the
money I risk,

S(y)

EP (S)
,

my betting score. This score does not change when S is multiplied by a positive
constant. I will usually assume, for simplicity, that EP (S) = 1 and hence that the
score is simply S(y).

A large betting score can count as evidence against P . What better evidence
can I have? I have bet against P and won. On the other hand, the possibility that
I was merely lucky remains stubbornly in everyone’s view. By using the language
of betting, I have accepted the uncertainty involved in my test and made sure that
everyone else is aware of it as well.

I need not risk a lot of money. I can risk as little as I like — so little that I am
indifferent to losing it and to winning any amount the bet might yield. So this use
of the language of betting is not a chapter in decision theory. It involves neither the
evaluation of utilities nor any Bayesian reasoning. I am betting merely to make a
point. But whether I use real money or play money, I must declare my bet before
the outcome y is revealed, in the situation in which you asserted P .

www.probabilityandfinance.com
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This section explains how testing by betting can bring greater flexibility and
clarity into statistical testing. Section 2.1 explains how betting can be more op-
portunistic than conventional significance testing. Section 2.2 explains that a bet
implies an alternative hypothesis, and that the betting score is the likelihood ratio
with respect to this alternative. Section 2.3 explains how the alternative hypothesis
in turn implies a target for the bet. Finally, Section 2.4 uses three simple but rep-
resentative examples to show how the concepts of betting score and implied target
provide a clear and consistent message about the result of a test, in contrast to the
confusion that can arise when we use the concepts of p-value and power.

2.1. Basic advantages
The standard way of testing a probability distribution P is to select a significance
level α ∈ (0, 1), usually small, and a set E of possible values of Y such that P (Y ∈
E) = α. The event E is the rejection region. The probability distribution P is
discredited (or rejected) if the actual value y is in E.

Although textbooks seldom make the idea explicit, a standard test is often
thought of as a bet: I pay $1 for the payoff $SE defined by

SE(y) :=

{
1
α if y ∈ E
0 if y 6∈ E.

(1)

If E happens, I have multiplied the $1 I risked by 1/α. This makes standard testing
a special case of testing by betting, the special case where the bet is all-or-nothing.
In return for $1, I get either $(1/α) or $0.

Although statisticians are accustomed to all-or-nothing bets, there are two good
reasons for generalizing beyond them. First, the betting score S(y) from a more
general bet is a graduated appraisal of the strength of the evidence against P .
Second, when we allow more general bets, testing can be opportunistic.

A betting outcome is a graduated appraisal of evidence. A betting score S(y)
appraises the evidence against P . The larger S(y), the stronger the evidence.

A p-value also appraises the evidence against P ; the smaller the p-value, the
stronger the evidence. But p-values are more complicated than betting scores; they
involve a large class, ideally a continuum, of all-or-nothing tests. To obtain a p-
value, we usually begin with function T of Y , called a test statistic. In the ideal
case, there exists for each significance level α ∈ (0, 1) a number tα such that

P (T ≥ tα) = α. (2)

So we have an all-or-nothing test for each α: reject P if T (y) ≥ tα. The p-value,
say p(y), is the smallest α for which the test rejects:

p(y) := inf{α | T (y) ≥ tα} = P (T ≥ T (y)). (3)

The larger T (y), the smaller p(y).
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Large values of T (y) are supposed to discredit P . The p-value p(y) locates the
degree of discredit on a scale from zero to one. But what does the scale mean?
For a mathematical statistician, this question is answered by (2) and (3). For less
sophisticated users of statistics, the import of these equations can be elusive. The
difficulty can be explained using the language of betting. Had I known y in advance,
I could have multiplied my money by 1/p(y) by making an all-or-nothing bet with
significance level p(y). But I did not know y in advance, and pretending that I did
would be cheating.

Betting can be opportunistic. The probabilistic predictions that can be associated
with a scientific hypothesis usually go beyond a single comprehensive probability
distribution. In some cases, a scientist may begin with a joint probability distri-
bution P for a sequence of variables Y1, . . . , YN and formulate a plan for successive
experiments that will allow her to observe them. But the scientific enterprise is
usually more opportunistic. A scientist might perform an experiment that produces
Y1’s value y1 and then decide whether it is worthwhile to perform the further exper-
iment that would produce Y2’s value y2. Perhaps no one even thought about Y2 at
the outset. One scientist or team tests the hypothesis using Y1, and then, perhaps
because the result is promising but not conclusive, some other scientist or team
comes up with the idea of further testing the hypothesis with a second variable Y2

from a hitherto uncontemplated new experiment or database.
Testing by betting can accommodate this opportunistic nature of scientific re-

search. Imagine, for example, that I doubt the validity of the probability forecasts
made by a particular weather forecaster. Imagine further that the forecaster decides
each day, on a whim, what to forecast that day; perhaps he will give a probability
distribution for the amount of rain, perhaps a probability distribution for the tem-
perature at 10:00 a.m., etc. In spite of his unpredictability, I can try to show that
he is a poor forecaster by betting against him. I start with $1, and each day I buy
a random variable for the expected value he attributes to it. I take care never to
risk more than I have accumulated so far, so that my overall risk never exceeds the
$1 with which I began. If I have accumulated $1000 after a year or two, this will
be convincing evidence against the forecaster.

Such opportunistic betting boils down to multiplying betting scores. My initial
capital is 1. My first bet S1 is nonnegative and has expected value 1 according to
the forecaster. After it is settled, my capital is S1(y1). Now I select a nonnegative
bet S2 to which the forecaster now gives expected value 1, and I use my current
capital to buy a multiple of S2. In other words, I pay S1(y1) for S1(y1)S2. After this
second bet is settled, I have S1(y1)S2(y2). (This argument assumes that the price
of my second bet is exactly equal to my current capital after the first bet is settled.
Since the only constraint is that I not risk my capital becoming negative, we might
imagine other options. I could reserve some of my capital and buy a payoff that
costs less, or perhaps I might be allowed to buy a payoff that costs more than my
current capital if this payoff is bounded away from zero. But these ideas do not
really increase my betting opportunities. When I am not allowed to risk my capital
becoming negative, any bet I make can be understood as buying a nonnegative
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payoff that has expected value equal to my current capital.)
Multiplying betting scores may sometimes give a more reasonable evaluation of

scientific exploration than other methods of combination. Consider the scientist
who uses a significance level of 5% in a search for factors that might influence a
phenomenon. Her initial explorations are promising, but only after 20 tries (20
slightly different chemicals in a medical study or 20 slightly different stimuli in a
psychological study) does she find an effect that is significant at 5%. How seriously
should we take this apparent discovery? One standard answer is that the significance
level of 5% should be multiplied by 20; this is the Bonferroni adjustment. It has a
betting rationale; we may suppose that the scientist has put up $1 each time she
tests a factor, thereby investing a total of $20. She loses her $1 on each of the first 19
tries, but she wins $20 on her 20th try. When we recognize that she actually invested
$20, not merely $1, we might conclude that her final betting score is 20/20, or 1.
But this will be unfair if the first 19 experiments were promising, as the product of
20 betting scores that are only a little larger than 1 may be reasonably large.

In many fields, the increasing resources being devoted to the search for significant
effects has led to widespread and justified skepticism about published statistical
studies purporting to have discovered such effects. This is true for both experi-
mental studies and studies based on databases. A recent replication of published
experimental studies in social and cognitive psychology has shown that many of
their results are not reliable (Collaboration, 2015). A recent massive study using
databases from medical practice has shown that null hypotheses known to be true
are rejected at a purported 5% level about 50% of the time (Madigan et al., 2014;
Schuemie et al., 2018). A recent review of database studies in finance has noted
that although a large number of factors affecting stock prices have been identified,
few of these results seem to be believed, inasmuch as each study ignores the pre-
vious studies (Harvey, 2017). These developments confirm that we need to report
individual statistical results in ways that embed them into broader research pro-
grams. Betting scores provide one tool for this undertaking, both for the individual
scientist reporting on her own research and for the meta-analyst reporting on the
research of a scientific community (ter Schure and Grünwald, 2019).

2.2. Score for a single bet = likelihood ratio
For simplicity, suppose P is discrete. Then the assumption EP (S) = 1 can be
written ∑

y

S(y)P (y) = 1.

Because S(y) and P (y) are nonnegative for all y, this tells us that the product SP
is a probability distribution. Write Q for SP , and call Q the alternative implied by
the bet S. If we suppose further that P (y) > 0 for all y, then S = Q/P , and

S(y) =
Q(y)

P (y)
. (4)

A betting score is a likelihood ratio.
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Conversely, a likelihood ratio is a betting score. Indeed, if Q is a probability
distribution for Y , then Q/P is a bet by our definition, because Q/P ≥ 0 and∑

y

Q(y)

P (y)
P (y) =

∑
y

Q(y) = 1.

According to the probability distribution Q, the expected gain from the bet S
is nonnegative. In other words, EQ(S) is greater than 1, S’s price. In fact, as a
referee has pointed out, EQ(S) = EP (S2) and hence

EQ(S)− 1 = EP (S2)− (EP (S))2 = VarP (S).

When I have a hunch that Q is better. . . We began with your claiming that P
describes the phenomenon Y and my making a bet S satisfying S ≥ 0 and, for
simplicity, EP (S) = 1. There are no other constraints on my choice of S. The
choice may be guided by some hunch about what might work, or I may act on a
whim. I may not have any alternative distribution Q in mind. Perhaps I do not
even believe that there is an alternative distribution that is valid as a description
of Y .

Suppose, however, that I do have an alternative Q in mind. I have a hunch
that Q is a valid description of Y . In this case, should I use Q/P as my bet? The
thought that I should is supported by Gibbs’s inequality, which says that

EQ

(
ln
Q

P

)
≥ EQ

(
ln
R

P

)
(5)

for any probability distribution R for Y . Because any bet S is of the form R/P
for some such R, (5) tells us that EQ(lnS) is maximized over S by setting S :=
Q/P . Many readers will recognize EQ (ln(Q/P )) as the Kullback-Leibler divergence
betweenQ and P . In the terminology of Kullback’s 1959 book (Kullback, 1959, p. 5),
it is the mean information for discrimination in favor of Q against P per observation
from Q.

Why should I choose S to maximize EQ(lnS)? Why not maximize EQ(S)? Or
perhaps Q(S ≥ 20) or Q(S ≥ 1/α) for some other significance level α?

Maximizing E(lnS) makes sense in a scientific context where we combine suc-
cessive betting scores by multiplication. When S is the product of many successive
factors, maximizing E(lnS) maximizes S’s rate of growth. This point was made
famously and succinctly by John L. Kelly, Jr. (Kelly Jr., 1956, p. 926): “it is the
logarithm which is additive in repeated bets and to which the law of large numbers
applies.” The idea has been used extensively in gambling theory (Breiman, 1961),
information theory (Cover and Thomas, 1991), finance theory Luenberger (2014),
and machine learning (Cesa-Bianchi and Lugosi, 2006). I am proposing that we
put it to greater use in statistical testing. It provides a crucial link in this paper’s
argument.

We can use Kelly’s insight even when betting is opportunistic and hence does
not define alternative joint probabilities for successive outcomes. Even if the null
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hypothesis P does provide joint probabilities for a phenomenon (Y1, Y2, . . .), succes-
sive opportunistic bets S1, S2, . . . against P will not determine a joint alternative
Q. Each bet Si will determine only an alternative Qi for Yi in light of the actual
outcomes y1, . . . , yn−1. A game-theoretic law of large numbers nevertheless holds
with respect to the sequence Q1, Q2, . . .: if they are valid in the betting sense (an
opponent will not multiply their capital by a large factor betting against them),
then the average of the lnSi will approximate the average of the expected values
assigned them by the Qi (Shafer and Vovk, 2019, Chapter 2).

Should we ever choose S to maximize EQ(S)? Kelly devises a rather artificial
story about gambling where maximizing EQ(S) makes sense:

. . . suppose the gambler’s wife allowed him to bet one dollar each week
but not to reinvest his winnings. He should then maximize his expec-
tation (expected value of capital) on each bet. He would bet all his
available capital (one dollar) on the event yielding the highest expecta-
tion. With probability one he would get ahead of anyone dividing his
money differently.

But when our purpose is to test P against Q, it seldom makes sense to choose the S
by maximizing EQ(S). As Kelly tells us, the event yielding the highest expectation
under Q is the value of y0 for which Q/P is greatest. Is a bet that risks everything on
this single possible outcome a sensible test? If Q(y0)/P (y0) is huge, much greater
than we would need to refute Q, and yet Q(y0) is very small, then we would be
buying a tiny chance of an unnecessarily huge betting score at the price of very
likely getting a zero betting score even when the evidence against P in favor of Q
is substantial.

Choosing S to maximize Q(S ≥ 1/α) is appropriate when the hypothesis being
tested will not be tested again. It leads us to the Neyman-Pearson theory, to which
we now turn.

The Neyman-Pearson lemma. In 1928, Jerzy Neyman and E. S. Pearson sug-
gested that for a given significance level α, we choose a rejection region E such that
Q(y)/P (y) is at least as large for all y ∈ E as for any y /∈ E, where Q is an alter-
native hypothesis (Neyman and Pearson, 1928). (Asking the reader’s indulgence, I
leave aside the difficulty that it may be impossible, especially if P and Q are dis-
crete, to do this precisely or uniquely.) Let us call the bet SE with this choice of E
the level-α Neyman-Pearson bet against P with respect to Q. The Neyman-Pearson
lemma says that this choice of E maximizes

Q(test rejects P ) = Q(Y ∈ E) = Q(SE(Y ) ≥ 1/α),

which we call the power of the test with respect to Q. In fact, SE with this choice
of E maximizes Q(S(Y ) ≥ 1/α) over all bets S, not merely over all-or-nothing bets.

Proof. If S ≥ 0, EP (S) = 1, 0 < α < 1, and Q(S ≥ 1/α) > 0, define an
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all-or-nothing bet S′ by

S′(y) :=

{
1
α if S(y) ≥ 1

α

0 if S(y) < 1
α .

Then EP (S′) < 1 and Q(S′ ≥ 1/α) = Q(S ≥ 1/α). Dividing S′ by
EP (S′), we obtain an all-nothing bet with expected value 1 under P and
a greater probability of exceeding 1/α under Q than S.

It does not maximize EQ(lnS) unless Q = SEP , and this is usually an unreasonable
choice for Q, because it gives probability one to E.

It follows from Markov’s inequality that when the level-α Neyman-Pearson bet
against P with respect to Q just barely succeeds, the bet Q/P succeeds less: it
multiplies the money risked by a smaller factor.

Proof. Again leaving aside complications that arise from the discrete-
ness of the probability distributions, suppose that the rejection region E
for the level-α Neyman-Pearson test consists of all y such thatQ(y)/P (y) ≥
Q(y0)/P (y0), where y0 is the value for which the test just barely rejects.
Then, using Markov’s inequality, we obtain

α = P (E) = P

(
Q

P
≥ Q(y0)

P (y0)

)
= P

(
Q

P
≥ Q(y0)

P (y0)
EP

(
Q

P

))
≤ P (y0)

Q(y0
.

But the success of the Neyman-Pearson bet may be unconvincing in such cases; see
Examples 1 and 2 in Section 2.4.

R. A. Fisher famously criticized Neyman and Pearson for confusing the scien-
tific enterprise with the problem of “making decisions in an acceptance procedure”
(Fisher, 1956, Chapter 4). Going beyond all-or-nothing tests to general testing by
betting is a way of taking this criticism seriously. The choice to “reject” or “accept”
is imposed when we are testing a widget that is to be put on sale or returned to
the factory for rework, never in either case to be tested again. But in many cases
scientists are testing a hypothesis that may be tested again many times in many
ways.

When the bet loses money. . . In the second paragraph of the introduction, I
suggested that a betting score of 5 casts enough doubt on the hypothesis being
tested to merit attention. We can elaborate on this by noting that a value of 5 or
more for S(y) means, according to (4), that the outcome y was at least 5 times as
likely under the alternative hypothesis Q than under the null hypothesis P .

Suppose we obtain an equally extreme result in the opposite direction: S(y)
comes out less than 1/5. Does this provide enough evidence in favor of P to merit
attention? Maybe and maybe not. A low value of S(y) does suggest that P describes
the phenomenon better than Q. But Q may or may not be the only plausible
alternative. It is the alternative for which the bet S is optimal in a certain sense.
But as I have emphasized, we may have chosen S blindly or on a whim, without
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Table 1. Elements of a study that tests a probability distribution by bet-
ting. The proposed study may be considered meritorious and perhaps even
publishable regardless of its outcome when the implied target is reasonably
large and both the null hypothesis P and the implied alternative Q are ini-
tially plausible. A large betting score then discredits the null hypothesis.

name notation
Proposed study

initially unknown outcome phenomenon Y
probability distribution for Y null hypothesis P
nonnegative function of Y with

expected value 1 under P
bet S

SP implied alternative Q
exp (EQ(lnS)) implied target S∗

Results
actual value of Y outcome y
factor by which money risked

has been multiplied
betting score S(y)

any real opinion or clue as to what alternative we should consider. In this case, the
message of a low betting score is not that P is supported by the evidence but that
we should try a rather different bet the next time we test P . This understanding
of the matter accords with Fisher’s contention that testing usually precedes the
formulation of alternative hypotheses in science (Bennett, 1990, p. 246),(Senn, 2011,
p. 57).

2.3. Implied targets
How impressive a betting score can a scientist hope to obtain with a particular bet
S against P? As we have seen, the choice of S defines an alternative probability
distribution, Q = SP , and S is the bet against P that maximizes EQ(lnS). If the
scientist who has chosen S takes Q seriously, then she might hope for a betting
score whose logarithm is in the ballpark of EQ(lnS) — i.e., a betting score in the
ballpark of

S∗ := exp (EQ(lnS)) .

Let us call S∗ the implied target of the bet S. By (5), S∗ cannot be less than 1. The
implied target of the all-or-nothing bet (1) is always 1/α, but as we have already
noticed, that bet’s implied Q is not usually a reasonable hypothesis.

The notion of an implied target is analogous to Neyman and Pearson’s notion
of power with respect to a particular alternative. But it has the advantage that the
scientist cannot avoid discussing it by refusing to specify a particular alternative.
The implied alternative Q and the implied target S∗ are determined as soon as the
distribution P and the bet S are specified. The implied target can be computed
without even mentioning Q, because

EQ(lnS) =
∑
y

Q(y) lnS(y) =
∑
y

P (y)S(y) lnS(y) = EP (S lnS).



Testing by Betting 11

If bets become a standard way of testing probability distributions, the implied
target will inevitably be provided by the software that implements such tests, and
referees and editors will inevitably demand that it be included in any publication of
results. Even if the scientist has chosen her bet S on a hunch and is not committed
in any way to Q, it is the hypothesis under which S is optimal, and a proposed test
will not be interesting to others if it cannot be expected to achieve much even when
it is optimal.

On the other hand, if the implied alternative is seen as reasonable and interesting
in its own right, and if the implied target is high, then a proposed study may merit
publication regardless of how the betting score comes out (see Table 1). In these
circumstances, even a low betting score will be informative, as it suggests that the
implied alternative is no better than the null. This feature of testing by betting
may help mitigate the problem of publication bias.

2.4. Elementary examples
Aside from the search for significance — now often called “p-hacking” – these three
misuses of p-values merit particular attention:

(a) An estimate is statistically and practically significant but hopelessly contami-
nated with noise. Andrew Gelman and John Carlin contend that this case “is
central to the recent replication crisis in science” (Gelman and Carlin, 2017,
p. 900).

(b) A test with a conventional significance level and high power against a very
distinct alternative rejects the null hypothesis with a borderline outcome even
though the likelihood ratio favours the null (Dempster, 1997, pp. 249–250).

(c) A high p-value is interpreted as evidence for the null hypothesis. Although
such an interpretation is never countenanced by theoretical statisticians, it
is distressingly common in some areas of application (Amrhein et al., 2019;
Cready, 2019; Cready et al., 2019).

To see how betting scores can help forestall these misuses, it suffices to consider
elementary examples. Here I will consider examples where the null and alternative
distributions of the test statistic are normal with the same variance.

Example 1. Suppose P says that Y is normal with mean 0 and standard deviation
10, Q says that Y is normal with mean 1 and standard deviation 10, and we observe
y = 30.

(a) Statistician A simply calculates a p-value: P (Y ≥ 30) ≈ 0.00135. She con-
cludes that P is strongly discredited.

(b) Statistician B uses the Neyman-Pearson test with significance level α = 0.05,
which rejects P when y > 16.5. Its power is only about 6%. Seeing y = 30, it
does reject P . Had she formulated her test as a bet, she would have multiplied
the money she risked by 20.
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(c) Statistician C uses the bet S given by

S(y) :=
q(y)

p(y)
=

(10
√

2π)(−1) exp(−(y − 1)2/200)

(10
√

2π)(−1) exp(−y2/200)
= exp

(
2y − 1

200

)
,

for which

EQ(ln(S)) = EQ

(
2y − 1

200

)
=

1

200
,

so that the implied target is exp(1/200) ≈ 1.005. She does a little better than
this very low target; she multiplies the money she risked by exp(59/200) ≈
1.34.

The power and the implied target both told us in advance that the study was a
waste of time. The betting score of 1.34 confirms that little was accomplished,
while the low p-value and the Neyman-Pearson rejection of P give a misleading
verdict in favor of Q.

Example 2. Now the case of high power and a borderline outcome: P says that
Y is normal with mean 0 and standard deviation 10, Q says that Y is normal with
mean 37 and standard deviation 10, and we observe y = 16.5.

(a) Statistician A again calculates a p-value: P (Y ≥ 16.5) ≈ 0.0495. She concludes
that P is discredited.

(b) Statistician B uses the Neyman-Pearson test that rejects when y > 16.445.
This test has significance level α = 0.05, and its power under Q is almost 98%.
It rejects; Statistician B multiplies the money she risked by 20.

(c) Statistician C uses the bet S given by S(y) := q(y)/p(y). Calculating as in the
previous example, we see that S’s implied target is 939 and yet the betting
score is only S(16.5) = 0.477. Rather than multiply her money, Statistician
C has lost more than half of it. She concludes that the evidence from her bet
very mildly favors P relative to Q.

Assuming that Q is indeed a plausible alternative, the high power and high im-
plied target suggest that the study is meritorious. But the low p-value and the
Neyman-Pearson rejection of P are misleading. The betting score points in the
other direction, albeit not enough to merit attention.

Example 3. Now the case of a non-significant outcome: P says that Y is normal
with mean 0 and standard deviation 10, Q says that Y is normal with mean 20 and
standard deviation 10, and we observe y = 5.

(a) Statistician A calculates the p-value P (Y ≥ 5) ≈ 0.3085. As this is not very
small, she concludes that the study provides no evidence about P .

(b) Statistician B uses the Neyman-Pearson test that rejects when y > 16.445.
This test has significance level α = 0.05, and its power under Q is about 64%.
It does not reject; Statistician B loses all the money she risked.
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(c) Statistician C uses the bet S given by S(y) := q(y)/p(y). This time S’s
implied target is approximately 7.39 and yet the actual betting score is only
S(5) ≈ 0.368. Statistician C again loses more than half her money. She again
concludes that the evidence from her bet favors P relative to Q but not enough
to merit attention.

In this case, the power and the implied target both suggested that the study was
marginal. The Neyman-Pearson conclusion was “no evidence”. The bet S provides
the same conclusion; the score S(y) favors P relative to Q but too weakly to merit
attention.

The underlying problem in the first two examples is the mismatch between the
concept of a p-value on the one hand and the concepts of a fixed significance level
and power on the other. This mismatch and the confusion it engenders disappears
when we replace p-values with betting scores and power with implied target. The
bet, implied target, and betting score always tell a coherent story. In Example 1,
the implied target close to 1 told us that the bet would not accomplish much, and
the betting score close to 1 only confirmed this. In Example 2, the high implied
target told us that we had a good test of P relative to Q, and P ’s passing this test
strongly suggests that Q is not better than P .

The problem in Example 3 is the meagerness of the interpretation available for a
middling to high p-value. The theoretical statistician correctly tells us that such a
p-value should be taken as “no evidence”. But a scientist who has put great effort
into a study will want to believe that its result signifies something. In this case,
the merit of the betting score is that it blocks any erroneous claim with a concrete
message: it tells us the direction the result points and how strongly.

As the three examples illustrate, the betting language does not change substan-
tively the conclusions that an expert mathematical statistician would draw from
given evidence. But it can sometimes provide a simpler and clearer way to explain
these conclusions to a wider audience.

3. Comparing scales

The notion of a p-value retains a whiff of betting. In a passage I will quote shortly,
Fisher used the word “odds” when comparing two p-values. But obtaining a p-
value p(y) cannot be interpreted as multiplying money risked by 1/p(y). The logic
of betting requires that a bet be laid before its outcome is observed, and we cannot
make the bet (1) with α = 1/p(y) unless we already know y. Pretending that we
had made the bet would be cheating, and some penalty for this cheating — some
sort of shrinking — is needed to make 1/p(y) comparable to a betting score.

The inadmissibility of 1/p(y) as a betting score is confirmed by its infinite ex-
pected value under P . Shrinking it to make it comparable to a betting score means
shrinking it to a payoff with expected value 1. In the ideal case, p(y) is uniformly
distributed between 0 and 1 under P , and there are infinitely many ways of shrinking
1/p(y) to a payoff with expected value 1. (In the general case, p(y) is stochastically
dominated under P by the uniform distribution; so the payoff will have expected
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Table 2. Making a p-value into a betting
score

p-value
1

p-value

1√
p-value

− 1

0.10 10 2.2
0.05 20 3.5
0.01 100 9.0
0.005 200 13.1
0.001 1,000 30.6

0.000001 1,000,000 999

value 1 or less.) No one has made a convincing case for any particular choice
from this infinitude; the choice is fundamentally arbitrary (Shafer and Vovk, 2019,
Section 11.5). But it would useful to make some such choice, because the use of
p-values will never completely disappear, and if we also use betting scores, we will
find ourselves wanting to compare the two scales.

It seems reasonable to shrink p-values in a way that is monotonic, smooth, and
unbounded, and the exact way of doing this will sometimes be unimportant. My
favorite, only because it is easy to remember and calculate, is

S(y) :=
1√
p(y)

− 1. (6)

Table 2 applies this rule to some commonly used significance levels. If we retain
the conventional 5% threshold for saying that a p-value merits attention, then this
table accords with the suggestion, made in the introduction to this paper, that
multiplying our money by 5 merits attention. Multiplying our money by 2 or 3, or
by 1/2 or 1/3 as in Examples 2 and 3 of Section 2.4, does not meet this threshold.

If we adopt a standard rule for shrinking p-values, we will have a fuller picture
of what we are doing when we use a conventional test that is proposed without
any alternative hypothesis being specified. Since it determines a bet, the rule for
shrinking implies an alternative hypothesis.

Example 4. Consider Fisher’s analysis of Weldon’s dice data in the first edition
of his Statistical Methods for Research Workers (Fisher, 1925, pp. 66–69). Weldon
threw 12 dice together 26,306 times and recorded, for each throw, how many dice
came up 5 or 6. Using this data, Fisher tested the bias of the dice in two different
ways.

(a) First, he performed a χ2 goodness-of-fit test. On none of the 26,306 throws did
all 12 dice come up 5 or 6, so he pooled the outcomes 11 and 12 and performed
the test with 12 categories and 11 degrees of freedom. The χ2 statistic came
out 40.748, and he noted that “the actual chance in this case of χ2 exceeding
40·75 if the dice had been true is ·00003.”

(b) Then he noted that in the 12 × 26,306 = 315,672 throws of a die there were
altogether 106,602 5s and 6s. The expected number is 315,672/3 = 105,224
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with standard error 264.9, so that the observed number exceeded expectation
by 5.20 times its standard error, and “a normal deviation only exceeds 5·2
times its standard error once in 5 million times.”

Why is the one p-value so much less than the other? Fisher explained:

The reason why this last test gives so much higher odds than the test
for goodness of fit, is that the latter is testing for discrepancies of any
kind, such, for example, as copying errors would introduce. The actual
discrepancy is almost wholly due to a single item, namely, the value of p,
and when that point is tested separately its significance is more clearly
brought out.

Here p is the probability of a 5 or 6, hypothesized to be 1/3.
The transformation (6) turns the p-values 0.00003 and 1 in 5 million into betting

scores (to one significant figure) 200 and 2,000, respectively. This does not add
much by itself, but it brings a question to the surface. The statistician has chosen
particular tests and could have chosen differently. What alternative hypotheses are
implied when the tests chosen are considered as bets?

For simplicity, consider Fisher’s second test and the normal approximation he
used. With this approximation, the frequency

Y :=
total number of 5s and 6s

315,672

is normally distributed under the null hypothesis P , with mean 1/3 and standard
deviation 0.00084. The observed value y is 106,602/315,672 ≈ 0.3377. As Fisher
noted, the deviation from 1/3, 0.0044, is 5.2 times the standard deviation. The
function p(y) for Fisher’s test is

p(y) = 2

(
1− Φ

(
|y − 1

3 |
0.00084

))
,

where Φ is the cumulative distribution function for the standard normal distribution.
The density q for the alternative Q, obtained by multiplying P ’s normal density p
by (6) is symmetric around 1/3, just as p is. It has the same value at 1/3 as p does,
but much heavier tails. The probability of a deviation of 0.0044 or more under Q
is still very small, but only about 1 in a thousand instead of 1 in 5 million.

A different rule for shrinking the p-value to a betting score will of course produce
a different alternative hypothesis Q. But a wide range of rules will give roughly the
same picture.

We can obtain an alternative hypothesis in the same way for the χ2 test. Whereas
the distribution of the χ2 statistic is approximately normal under the null hypoth-
esis, the alternative will again have much heavier tails. Even if we consider this
alternative vaguely defined, its existence supports Joseph Berkson’s classic argu-
ment for discretion when using the test (Berkson, 1938).
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4. Betting games as statistical models

In the preceding section, we learned how a single probability distribution can be
tested by betting. In this section, we look at how this mode of testing extends to
testing composite hypotheses and estimating parameters.

The extension will be obvious to anyone familiar with how standard tests are
extended from point to composite hypotheses and used to form confidence sets. A
composite hypothesis is rejected if each of its elements is rejected, and a (1 − α)-
confidence set consists of all hypotheses not rejected at level α. But when we test
by betting, it is easy to get confused about who is doing the betting, and so a
greater degree of formality is helpful. This formality can be provided by the notion
of a testing protocol, which is studied in great detail and used as a foundation
for mathematical probability by Shafer and Vovk (2019). A testing protocol may
prescribe betting offers or simply tell who makes them. It also tells who decides
what offers to accept and who decides the outcomes. It is then the protocol, not
a probability distribution or a parametric class of probability distributions, that
represents the phenomenon.

According to Fisher (1922), the theory of statistical estimation begins with the
assumption that the statistician has only partial knowledge of a probability distri-
bution describing a phenomenon. She knows only that this probability distribution
is in a known class (Pθ)θ∈Θ. The corresponding assumption in the betting picture
is that the statistician stands outside a testing protocol, seeing only some of the
moves. The parameter θ is one of the moves she does not see. The player who bets,
whom we call Sceptic, does see θ. A strategy for Sceptic tells him how to move
depending on the value of θ. The statistician can specify a strategy for Sceptic and
tell him to play it. If she believes that the protocol is a valid description of the phe-
nomenon and has no reason to think the strategy has been exceptionally lucky, she
can rely on the presumption that it will not multiply the capital it risks by a large
factor to claim warranties that resemble the direct probability statements made
by 19th-century statisticians (Shafer, 2019) and confidence intervals as defined by
Jerzy Neyman in the 1930s (Neyman, 1937).

When the testing protocol prescribes that Skeptic be offered bets priced by a
given probability distribution P or Pθ, Sceptic has only one opponent — the player
who decides the outcome y or outcomes y1, y2, . . . that the statistician sees. We
call that player Reality. But we can generalize the picture by introducing a player
called Forecaster, who announces probabilities or more limited betting offers as
play proceeds. This generalization, studied at length by Shafer and Vovk (2019),
allows us to test forecasters who behave opportunistically, forecasting new events
(hurricanes, sporting events, political outcomes, etc.) as they come along, without
comprehensive well-defined models at the outset. Here, however, I will emphasize
testing protocols that represent statistical models.

Section 4.1 introduces protocols for testing a single probability distribution. Sec-
tion 4.2 introduces protocols for testing statistical models and fleshes out the notion
of a (1/α)-warranty. Section 4.3 discusses how these ideas apply to non-parametric
estimation by least squares.



Testing by Betting 17

4.1. Testing protocols
We first formalize Section 2’s method of testing a probability distribution P for
a phenomenon Y that takes values in a set Y. Here, because we have only one
probability distribution rather than a statistical model consisting of many candidate
probability distributions, we can identify the statistician with the player Sceptic.
Sceptic plays against Reality as follows.

Protocol 1. Testing a probability distribution
Sceptic announces S : Y → [0,∞) such that EP (S) = 1.
Reality announces y ∈ Y.
K := S(y).

Like all testing protocols considered in this paper, this is a perfect information
protocol; the players move sequentially and each sees the other’s move as it is
made.

Because y can be multi-dimensional, Protocol 1 can be used to test a probabil-
ity distribution P for a stochastic process Y = (Y1, . . . , YN ). See Shafer and Vovk
(2019) for expositions that emphasize processes that continue indefinitely instead of
stopping at a non-random time N . Often, however, the probability distribution for
a stochastic process represents the hypothesis that no additional information we ob-
tain as the process unfolds can provide further help predicting it — more precisely,
that no information available at the point when we have observed y1, . . . , yn−1 can
enable us to improve on P ’s conditional probabilities given y1, . . . , yn−1 for predict-
ing yn, . . . , yN . To test this hypothesis, we may use a perfect-information protocol
in which Sceptic observes the yn step by step:

Protocol 2. Testing a stochastic process
K0 := 1.
FOR n = 1, 2, . . . , N :

Sceptic announces Sn : Y → [0,∞) such that
EP (Sn(Yn)|y1, . . . , yn−1) = Kn−1.

Reality announces yn ∈ Y.
Kn := Sn(yn).

The condition of perfect information requires only that each player sees the oth-
ers’ moves as they are made. Some or all of the players may receive additional
information as play proceeds.

Sceptic can make any bet against P in Protocol 2 that he can make in Protocol 1.
Indeed, for any payoff S : YN → [0,∞) such that EP (S) = 1, Sceptic can play
so that KN = S(y1, . . . , yN ); on the nth round, he makes the bet Sn given by
Sn(y) := EP (S(y1, . . . , yn−1, y, Yn+1, . . . , YN )|y1, . . . , yn−1, y). He can also make
bets taking additional information into account.

Many or most statistical models also use additional information (a.k.a., inde-
pendent variables) to make the probability predictions about a sequence y1, . . . , yN .
We can bring this option into the sequential betting picture by having Reality an-
nounce a signal xn at the beginning of each round and by supplying the protocol
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with a probability distribution Px1,y1...,xn−1,yn−1,xn for each round n and each pos-
sible sequence of signals and outcomes x1, y1 . . . , xn−1, yn−1, xn that might precede
Sceptic’s move on that round:

Protocol 3. Testing a model with an independent variable
K0 := 1.
FOR n = 1, 2, . . . , N :

Reality announces xn ∈ X .
Sceptic announces Sn : Y → [0,∞) such that

EPx1,y1...,xn−1,yn−1,xn
(Sn) = Kn−1.

Reality announces yn ∈ Y.
Kn := Sn(yn).

A simpler protocol is obtained when we drop the assumption that probability dis-
tributions are specified at the outset and introduce instead a player, say Forecaster,
who decides on them as play proceeds:

Protocol 4. Testing a forecaster
K0 := 1.
FOR n = 1, 2, . . . , N :

Reality announces xn ∈ X .
Forecaster announces a probability distribution P on Y.
Sceptic announces Sn : Y → [0,∞) such that EP (Sn) = Kn−1.
Reality announces yn ∈ Y.
Kn := Sn(yn).

This protocol allows us to test forecasters who give probabilities for sequences of
events without using probability distributions or statistical models fixed at the out-
set. This includes both weather forecasters who use physical models and forecasters
of sporting and electoral outcomes who invent and tinker with models as they go
along. Although there is no comprehensive probability distribution or statistical
model to test in these cases, we can still rely on the intuition that the forecaster is
discredited if Sceptic manages to multiply the capital he risks by a large factor. This
intuition is supported by the theory developed by Shafer and Vovk (2019), where it
is shown that Sceptic can multiply the capital he risks by a large factor if the prob-
ability forecasts actually made do not agree with outcomes in ways that standard
probability theory predicts. The reliance on forecasts actually made, without any
attention to other aspects of any purported comprehensive probability distribution,
makes this approach prequential in the sense developed by Dawid (1984).

4.2. Statistical models as testing protocols
Now let us turn to testing protocols that represent parametric statistical models.
Here the statistician is distinct from Sceptic. Sceptic is a player in the perfect-
information game, but the statistician sees only the outcomes.
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Setting stochastic processes and signals aside for the sake of simplicity, consider
this protocol for N independent and successive observations from a parametric
model (Pθ)θ∈Θ.

Protocol 5. Independent observations from (Pθ)θ∈Θ

K0 := 1.
Reality announces θ ∈ Θ.
FOR n = 1, 2, . . . , N :

Sceptic announces Sn : Y → [0,∞) such that EPθ(Sn) = Kn−1.
Reality announces yn ∈ Y.
Kn := Sn(yn).

The statistician sees neither Reality’s move θ nor Sceptic’s moves S1, . . . , SN . She
sees only the outcomes y1, . . . , yN .

Because θ is announced to Sceptic at the outset, a strategy S for Sceptic that uses
only the information provided by Reality’s moves can be thought of as a collection
of strategies, one for each θ ∈ Θ. The strategy for θ, say Sθ, specifies Sceptic’s move
Sn as a function of y1, . . . , yn−1. This makes Sceptic’s final capital a function of θ
and the observations y1, . . . , yN . Let us write KS(θ) for this final capital, leaving
the dependence on y1, . . . , yN implicit.

Sceptic is a creation of the statistician’s imagination and therefore subject to
the statistician’s direction. Suppose the statistician directs Sceptic to play a par-
ticular strategy that uses only Reality’s moves. Then, after observing y1, . . . , yN ,
the statistician can calculate Sceptic’s final capital is a function of θ, say K(θ). Let
us call K(θ) the statistician’s betting score against the hypothesis θ. We interpret
it just as we interpreted betting scores in Section 2. The statistician doubts that
Sceptic has multiplied his initial unit capital by a large factor, and so he thinks that
the hypothesis θ has been discredited if K(θ) is large. This way of thinking also
leads us to betting scores against composite hypotheses and to a notion of warranty
analogous to the established notion of confidence.

(a) For each composite hypothesis Θ0 ⊆ Θ, K(Θ0) := inf{K(θ)|θ ∈ Θ0} is a betting
score against Θ0. When K(Θ0) is large, all the elements of Θ0 are discredited
and hence Θ0 itself is discredited.

(b) For each α > 0,

W1/α :=

{
θ ∈ Θ | K(θ) <

1

α

}
is a (1/α)-warranty set. This is the set of possible values of θ that have not
been discredited at level 1/α. We say that the statistician’s choice of S has
given her a (1/α) warranty for this set.

The notion of a warranty was already developed in (Vovk, 1993, Section 7). The
intuition can be traced back at least to Schnorr (1971) and Levin (1976).

For small α, the statistician will tend to believe that the true θ is in W1/α.
For example, she will not expect Sceptic to have multiplied his capital by 1000
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and hence will believe that θ is in W1000. But this belief is not irrefutable. If
she obtains strong enough evidence that θ is not in W1000, she may conclude that
Sceptic actually did multiply his capital by 1000 using S. See Fraser et al. (2018)
for examples of outcomes that cast doubt on confidence statements and would also
cast doubt on warranties.

Every (1 − α)-confidence set has a (1/α)-warranty. This is because a (1 − α)-
confidence set is specified by testing each θ at level α; the (1 − α)-confidence set
consists of the θ not rejected. When S makes the all-or-nothing bet against θ
corresponding to the test used to form the confidence set, K(θ) < 1/α if and only
if θ was not rejected, and hence W1/α is equal to the confidence set.

Warranty sets are nested: W1/α ⊆ W1/α′ when α ≤ α′. Standard statistical
theory also allows nesting; sets with different levels of confidence can be nested.
But the different confidence sets will be based on different tests (Cox, 1958; Xie
and Singh, 2013). The (1/α)-warranty sets for different α all come from the same
strategy for Sceptic.

Instead of stopping the protocol after some fixed number of rounds, the statis-
tician may stop it when she pleases and adopt the (1/α)-warranty sets obtained at
that point. As we learned in Section 2, the intuition underlying betting scores sup-
ports such optional continuation; multiplying the money you risk by a large factor
discredits a probabilistic hypothesis or a probability forecaster no matter how you
decide to bet and no matter how long you persist in betting. The only caveat is
that we cannot pretend to have stopped before we actually did (Shafer and Vovk,
2019, Ch. 11). This contrasts with confidence intervals; if we continually calculate
test results and the corresponding confidence intervals as we make more and more
observations, the multiple testing vitiates the confidence coefficients and so may
be called “sampling to a foregone conclusion” (Cornfield, 1966; Shafer et al., 2011).
The most important exceptions are the “confidence sequences” that can be obtained
from the sequential probability ratio test (Lai, 2009). Because they are derived from
products of successive likelihood ratios that can be interpreted as betting scores,
these confidence sequences can be understood as sequences of warranty sets.

How should the statistician choose the strategy for Sceptic? An obvious goal is
to obtain small warranty sets. But a strategy that produces the smallest warranty
set for one N and one warranty level 1/α will not generally do so for other values
of these parameters. So any choice will be a balancing act. How to perform this
balancing act is an important topic for further research (Grünwald et al., 2019).

4.3. Non-parametric least squares
Consider the statistical hypothesis that observations e1, e2, . . . are drawn indepen-
dently from an unknown probability distribution P on [−1, 1] that has mean zero.
How can we test this hypothesis by betting?

If P were fully specified, then we could use a version of Protocol 2; on the nth
round Sceptic would be allowed to buy any nonnegative payoff Sn(en) such that
EP (Sn(en)) = Kn−1. But the hypothesis we want to test specifies expected values
only for linear functions of en: EP (aen + b) = b. So we can only authorize Sceptic
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to buy payoffs of the form aen +Kn−1 that are nonnegative whenever en ∈ [−1, 1].
This leads us to the following testing protocol.

Protocol 6. Betting on successive bounded outcomes
K0 := 1.
FOR n = 1, 2, . . .:

Sceptic announces an ∈ [−Kn−1,Kn−1].
Reality announces en ∈ [−1, 1].
Kn := Kn−1 + anen.

In (Shafer and Vovk, 2019, Section 3.3), it is shown that Sceptic has a strategy
in Protocol 6, based on Hoeffding’s inequality, that guarantees Kn ≥ 20 for every
n such that |en| > 2.72/

√
n, where en is the average of e1, . . . , en. If Sceptic plays

this strategy and eventually reaches an n for which |en| > 2.72/
√
n, then he can

claim a betting score of 20 against the hypothesis. Had we specified a probability
distribution P on [−1, 1] with mean zero and allowed Sceptic to choose on each
round any nonnegative payoff with expected value under P equal to his current
capital, then he could have chosen a particular value N large enough for the central
limit theorem to be effective and claimed a betting score of 20 if |eN | > 2.0/

√
N .

But this would work only for the particular value N .
Now suppose that the en are errors for successive measurements of a quantity µ.

As in Section 4.2, assume that the statistician stands outside the game and sees only
y1, y2 . . .. She does not see µ or the errors e1, e2, . . .. Then we have this protocol.

Protocol 7. Estimating µ
K0 := 1.
Reality announces µ ∈ R.
FOR n = 1, 2, . . .:

Sceptic announces an ∈ [−Kn−1,Kn−1].
Reality announces en ∈ [−1, 1] and sets yn := µ+ en.
Kn := Kn−1 + anen.

Now the strategy for Sceptic that guarantees Kn ≥ 20 for every n such that
|en| > 2.72

√
n can be used to obtain warranties for µ. After 100 measurements, for

example, it gives a 20-warranty that µ is in y100 ± 0.272, where y100 is the average
of y1, . . . , y100.

The statistician will know the betting score that Sceptic has achieved only as a
function of µ. But a meta-analyst, imagining that Sceptic has used his winnings
from each study in the next study, can multiply the functions of µ obtained from
multiple stuides to obtain warranties about µ that may be more informative and
authoritative than those from the individual studies.

Averaging measurements of a single quantity to estimate the quantity measured
is the most elementary instance of estimation by least squares. The ideas developed
here extend to the general theory of estimation by least squares, in which µ is
multi-dimensional and multi-dimensional signals x1, x2, . . . are used. An asymptotic
theory with this generality, inspired by Lai and Wei (1982), is developed in (Shafer
and Vovk, 2019, Section 10.4).
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5. Conclusion

The probability calculus began as a theory about betting, and its logic remains the
logic of betting, even when it serves to describe phenomena. But in their quest for
the appearance of objectivity, mathematicians have created a language (likelihood,
significance, power, p-value, confidence) that pushes betting into the background.

This deceptively objective statistical language can encourage overconfidence in
the results of statistical testing and neglect of relevant information about how the
results are obtained. In recent decades this problem has become increasingly salient,
especially in medicine and the social sciences, as numerous influential statistical
studies in these fields have turned out to be misleading.

In 2016, the American Statistical Association issued a statement listing common
misunderstandings of p-values and urging full reporting of searches that produce
p-values (Wasserstein and Lazar, 2016). Many statisticians fear, however, that
the situation will not improve. Most dispiriting are studies showing that both
teachers of statistics and scientists who use statistics are apt to answer questions
about the meaning of p-values incorrectly (McShane and Gal, 2017; Gigerenzer,
2018). Andrew Gelman and John Carlin argue persuasively that the most frequently
proposed solutions (better exposition, confidence intervals instead of tests, practical
instead of statistical significance, Bayesian interpretation of one-sided p-values, and
Bayes factors) will not work (Gelman and Carlin, 2017). The only solution, they
contend, is “to move toward a greater acceptance of uncertainty and embracing of
variation” (p. 901).

In this context, the language of betting emerges as an important tool of com-
munication. When statistical tests and conclusions are framed as bets, everyone
understands their limitations. Great success in betting against probabilities may be
the best evidence we can have that the probabilities are wrong, but everyone un-
derstands that such success may be mere luck. Moreover, candor about the betting
aspects of scientific exploration can communicate truths about the games scien-
tists must and do play — honest games that are essential to the advancement of
knowledge.

This paper has developed new ways of expressing statistical results with betting
language. The basic concepts are bet (not necessarily all-or-nothing), betting score
(equivalent to likelihood ratio when the bets offered define a probability distribu-
tion), implied target (an alternative to power), and (1/α)-warranty (a generalization
of (1 − α)-confidence). Substantial research is needed to apply these concepts to
complex models, but their greatest utility may be in communicating the uncertainty
of simple tests and estimates.

6. Appendix: Situating testing by betting

Disclaimers. My theme has been that we can communicate statistical conclusions
and their uncertainty more effectively with betting scores than with p-values. This
is not to say that well trained statisticians are unable to use p-values effectively.
We have been using them effectively for two centuries.
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I have emphasized that testing by betting is not a chapter in decision theory,
because tests can use amounts of money so small that no one cares about them.
The betting is merely to make a point, and play money would do. This is not
to say that decision theory is an unimportant chapter in statistical methodology.
Many statistical problems do involve decisions for which the utilities and probabil-
ities required by various decision theories are available. These theories include the
Neyman-Pearson theory and Bayesian theory. These theories do not use p-values,
and so replacing p-values by betting scores would not affect them.

Are the probabilities tested subjective or objective? The probabilities may represent
someone’s opinion, but the hypothesis that they say something true about the world
is inherent in the project of testing them.

Are the probabilities being tested frequencies? Sometimes. In Protocol 5, Scep-
tic can select any particular event to which P assigns a probability and adopt a
strategy that will produce a large betting score unless Reality makes the frequency
of the event approximate that probability. But only the most salient probabilities
will be tested, and as Abraham Wald pointed out in the 1930s, only a countable
number of them could be tested (Bienvenu et al., 2009). So the identification of P ’s
probabilities with frequencies is always approximate and usually hypothetical. The
connection with frequencies is even more tenuous when the theory tested involves
limited betting offers, as in non-parametric and other imprecise-probability models.

Does testing by betting extend from probabilities to imprecise probabilities? Yes.
As explained by Augustin et al. (2014), imprecise probabilities can be expressed in
terms of upper and lower prices for payoffs. If the payoffs depend on events that
will be decided, so that bets can be settled, then we can test the concordance of
the prices with actual outcomes by interpreting the prices as betting offers. The
only difference from the case of a complete probability distribution is that there are
fewer betting offers. If we say that probabilities are imprecise whenever there are
fewer betting offers than would be provided by a complete probability distribution,
then Protocols 3, 4, 6, and 7 are all examples of testing imprecise probabilities. For
an abstract discussion of testing imprecise probabilities by betting, see (Shafer and
Vovk, 2019, Ch. 6).

How is testing by betting related to Bruno de Finetti’s theory of probability? In
de Finetti’s picture, an individual who has evidence about a hypothesis or a ques-
tion of fact expresses the strength of that evidence by betting odds and prices for
payoffs that depend on the truth of the hypothesis or the answer to the question
(de Finetti, 1970). In the case of statistical hypotheses, this becomes, curiously, a
theory about bets that are never settled. The odds for the statistical hypothesis
change as evidence accumulates, but we usually never decide for certain whether
the hypothesis is true, and so there is no settling up.
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Testing by betting, in contrast, is concerned with bets that are settled. It uses
how a bet came out as a measure of evidence about probabilities. This is a very
different undertaking than de Finetti’s, and it would not be productive to try to
explain the one undertaking in terms of the other.

Another contrast emerges in protocols in which Forecaster chooses and announces
betting offers. De Finetti’s viewpoint was that of Forecaster. Most authors on
imprecise probabilities, including Peter Walley (Walley, 1991), have followed de
Finetti in this respect. Testing by betting emphasizes the viewpoint of Sceptic, who
decides how to bet.

Some readers have asked how the expectation that Sceptic not obtain a large
betting score is related to de Finetti’s condition of coherence. The two are not closely
related. Coherence is about Forecaster’s behavior: he should not make offers that
allow Sceptic to make money no matter what Reality does. This condition is met
by all the protocols in this paper. The expectation that Sceptic not obtain a large
betting score is about Reality’s behavior. When Reality violates this expectation,
we doubt whether the betting offers are a valid description of Reality.

Why is the proposal to test by betting better than other proposals for remedying
the misuse of p-values? Many authors have proposed remedying the misuse of p-
values by supplementing them with additional information (Wasserstein et al., 2019;
Mayo, 2018). Sometimes the additional information involves Bayesian calculations
(Bayarri et al., 2016; Matthews, 2018). Sometimes it involves likelihood ratios
(Colquhoun, 2019). Sometimes it involves attained power (Mayo and Spanos, 2006).

I find nearly all these proposals persuasive as ways of correcting the misunder-
standings and misinterpretations to which p-values are susceptible. Each of them
might be used by a highly trained mathematical statistician to explain what has
gone wrong to another highly trained mathematical statistician. But adding more
complexity to the already overly complex idea of a p-value may not help those who
are not specialists in mathematical statistics. We need strategies for communicating
with millions of people. Worldwide, we teach p-values to millions every year, and
hundreds of thousands of them may eventually use statistical tests in one way or
another.

The strongest argument for betting scores as a replacement for p-values is its
simplicity. I do not know any other proposal that is equally simple.

Is testing by betting a novel idea? The idea of testing purported probabilities
by betting is part of our culture. But it is almost always below the surface in the
mathematics of probability and statistics. Some authors allude to betting from time
to time, but they usually mention only all-or-nothing bets. Betting never takes
center stage, even though it is central to everyone’s intuitions about probability.
Ever since Jacob Bernoulli, we have downplayed the betting intuition in order to
make probabilities look more objective — more scientific.

Betting did come to the surface in the work of Jean Ville (Ville, 1939, pp. 87–
89). Richard von Mises’s principle of the impossibility of a gambling system (von
Mises, 1928, p. 25) said that a strategy for selecting throws on which to bet should
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not improve a gambler’s chances. Ville replaced this with a stronger and more
precise condition: the winnings from a strategy that risks only a fixed amount of
money should not increase indefinitely, even if the strategy is allowed to vary the
amount bet and the side on which to bet. As this wording suggests, Ville was
concerned with what betting strategies accomplish in an infinite sequence of play.
He did not consider statistical testing, and his work has had little or no influence
on mathematical statistics.

Many statisticians, including Fisher, have advocated using likelihood as a direct
measure of evidence. In his Statistical Methods and Scientific Inference (Fisher,
1956), Fisher suggested that in most cases the plausible values of a parameter
indexing a class of probability distributions are those for which the likelihood is at
least (1/15)th of its maximum value. On pp. 71–73 of the first edition, he used
diagrams to show “outside what limits the likelihood falls to levels at which the
corresponding values of the parameter become implausible.” In these diagrams,

. . . zones are indicated showing the limits within which the likelihood
exceeds 1/2, 1/5, and 1/15 of the maximum. Values of the parameter
outside the last limit are obviously open to grave suspicion.

Later authors, including Edwards (1972) and Royall (1997), published book-length
arguments for using likelihood ratios to measure the strength of evidence, and arti-
cles supporting this viewpoint continue to appear. I have not found in this literature
any allusion to the idea that a likelihood ratio measures the success of a bet against
a null hypothesis.

Because Ville introduced martingales into probability theory, we might expect
that statisticians who use martingales would recognize the possibility of interpreting
nonnegative martingales directly as tests. They know that when P and Q are
probability distributions for a sequence Y1, Y2, . . ., the sequence of likelihood ratios

1,
Q(Y1)

P (Y1)
,
Q(Y1, Y2)

P (Y1, Y2)
, . . . (7)

is a nonnegative martingale, and they would see no novelty in the following obser-
vations:

(a) If I am allowed to bet on Y1, . . . , Yn at rates given by P , then I can buy the
payoff Q(Y1, . . . , Yn)/P (Y1, . . . , Yn) for one monetary unit.

(b) If I bet sequentially, on each Yk at rates given by P (Yk|y1, . . . , yk−1) when
y1, . . . , yk−1 are known, and I always use my winnings so far to buy that many
units of Q(Yk|y1, . . . , yk−1)/P (Yk|y1, . . . , yk−1), then (7) will be the capital
process resulting from my strategy.

But they also know that Joseph L. Doob purified the notion of a martingale of its
betting heritage when he made it a technical term in modern probability theory.
Martingales are now widely used in sequential analysis, time series, and survival
analysis (Aalen et al., 2009; Lai, 2009), but I have not found in the statistical liter-
ature any use of the idea that the successive realized values of a martingale already
represent, without being translated into the language of p-values and significance
levels, the cumulative evidential value of the outcomes of a betting strategy.
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