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Introduction

Goal of this talk is ...

to present the paradigm of reservoir computing and connect it to
rNNs and signature representations.
to apply random projection techniques to construct true reservoirs
and prove related generalization results.
to highlight on the role of randomness in learning procedures and to
provide some explainations via signature techniques, random
projections and time series techniques.

(joint works with Christa Cuchiero, Lukas Gonon, Lyudmila Grigoryeva,
Martin Larsson, and Juan-Pablo Ortega)
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CODE

We consider differential equations of the form

dYt =
∑
i

Vi (Yt)du
i
t , Y0 = y ∈ E

to construction evolutions in state space E (could be a manifold of finite
or infinite dimension) depending on local characteristics, initial value
y ∈ E and the control u.

If the map y → YT is considered CODEs are an exciting model for
feedforward neural networks, residual networks, etc (see joint work with
Christa Cuchiero and Martin Larsson).
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CODEs: control as input

For this talk we fix y ∈ E and consider

u 7→W Evols,t(y)

and train the readout and/or the vector fields.

Does this also correspond to classes of networks? Yes: these are
continuous time versions of rNNs, LSTMs, etc.

It can be used for time series, predictions, etc.
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Reservoir Computing (RC)

... We aim to learn an input-output map on a high- or infinite dimensional
input state space. Consider the input as well as the output dynamic, e.g. a
time series. An example: learn a given evolution on state space E :

Paradigm of Reservoir computing (Herbert Jäger, Lyudmila,
Grigoryeva, Wolfgang Maas, Juan-Pablo Ortega, et al.)

Split the input-output map into a generic part of generalized rNN-type
(the reservoir), which is not trained and a readout part, which is trained.

Often the readout is chosen linear and the reservoir has random features.
The reservoir is usually a numerically very tractable dynamical system.
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Applications of RC

Often reservoirs can be realized physically, whence ultrafast
evaluations are possible. Only the readout map W has to be trained.

One can learn dynamic phenomena without knowing the specific
characteristics.

It works unreasonably well with generalization tasks.
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An instance of RC are CODEs/RDEs

Consider a controlled differential equation

dYt =
d∑

i=1

Vi (Yt)du
i
t , Y0 = y ∈ E

for some smooth vector fields Vi : E → TE , i = 1, . . . , d and d
independent (Stratonovich) Brownian motions ui , or finite variation
continuous controls, or a rough path. This describes a controlled dynamics
on E .

We want to learn the dynamics, i.e. the map

(input control u) 7→ (solution Y ).

Obviously a complicated, non-linear map, ...
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We introduce some notation for this purpose:

Definition

Let V : E → E be a smooth vector field, and let f : E → R be a smooth
function, then we call

Vf (x) = df (x) • V (x)

the transport operator associated to V , which maps smooth functions to
smooth functions and determines V uniquely.
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Theorem

Let Evol be a smooth evolution operator on a convenient manifold E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t)

then for any smooth function f : E → R, and every x ∈ E

f
(

Evols,t(x)
)

=

=
M∑
k=0

d∑
i1,...,uk=1

Vi1 · · ·Vik f (x)

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk)+

+ RM(s, t, f )
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with remainder term

RM(s, t, f ) =

=
d∑

i0,...,uM=1

∫
s≤t1≤···≤tM+1≤t

Vi0 · · ·Vik f
(

Evols,t0(x)
)
dui0(t0) · · · duik (tM)

holds true for all times s ≤ t and every natural number M ≥ 0.

A lot of work has been done to understand the analysis, algebra and
geometry of this expansion (Kua-Tsai Chen, Gerard Ben-Arous, Terry
Lyons). It is a starting point of rough path analysis (Terry Lyons, Peter
Friz, etc).
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Definition

Consider the free algebra Ad of formal series generated by d
non-commutative indeterminates e1, . . . , ed (actually a Hopf Alebra). A
typical element a ∈ Ad is written as

a =
∞∑
k=0

d∑
i1,...,ik=1

ai1...ik ei1 · · · eik ,

sums and products are defined in the natural way. We consider the
complete locally convex topology making all projections a 7→ ai1...ik
continuous on Ad , hence a convenient vector space.
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Definition

We define on Ad smooth vector fields

a 7→ aei

for i = 1, . . . , d .
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Theorem

Let u be a smooth control, then the controlled differential equation

d Sigs,t(a) =
d∑

i=1

Sigs,t(a)eidu
i (t) , Sigs,s(a) = a (1)

has a unique smooth evolution operator, called signature of u and denoted
by Sig, given by

Sigs,t(a) = a
∞∑
k=0

d∑
i1,...,uk=1

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk) ei1 · · · eik . (2)

Actually Sig(e) takes values in a Lie group G and any element of G can be
reached up to arbitrary order of accuracy by such evolutions starting at e.
Additionally the restriction of linear maps on G is an algebra.
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Theorem (Signature is a reservoir)

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t) .

Then for any smooth (test) function f : E → R and for every M ≥ 0 there
is a time-homogenous linear W = W (V1, . . . ,Vd , f ,M, x) from AM

d to the
real numbers R such that

f
(

Evols,t(x)
)

= W
(
πM(Sigs,t(1))

)
+O

(
(t − s)M+1

)
for s ≤ t.
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Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by a universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?
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It is the assertion of the Johnson-Lindenstrauss (JL) Lemma that for every
0 < ε < 1 an N point set Q in some arbitrary (scalar product) space H,
can be embedded into a space Rk , where k = 24 logN

3ε2−2ε3 in an almost

isometric manner, i.e. there is a linear map f : H → Rk such that

(1− ε)‖v1 − v2‖2 ≤ ‖f (v1)− f (v2)‖2 ≤ (1 + ε)‖v1 − v2‖2

for all v1, v2 ∈ Q. It is remarkable that f can be chosen randomly from a
set of linear projection maps and the choice satisfies the desired
requirements with high probability.

The result is due to concentration of measure results in high dimensional
spaces and has been discovered in the eighties, for some details see below.
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In order to make this program work, we need a definition:

Definition

Let Q be any (finite or infinite) set of elements of norm one in AM
d . For

v ∈ AM
d we define the function

‖v‖Q := inf
{∑

j

|λj |
∣∣ ∑

j

λjvj = v and vj ∈ Q
}
.

We use the convention inf ∅ = +∞ since the function is only finite on
span(Q). Actually the function ‖.‖Q behaves precisely like a norm on the
span. Additionally ‖v‖Q1

≥ ‖v‖Q2
for Q1 ⊂ Q2 and ‖v‖Q ≥ ‖v‖ for all

sets Q of elements of norm one.
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Proposition

Fix M ≥ 1, ε > 0 and consider the free nilpotent algebra AM
d . Let

Q = −Q be any N point set of vectors with norm one, then there is linear
map f : AM

d → Rk (k being the above JL constant with N), such that∣∣〈v1, v2 − (f ∗ ◦ f )(v2)〉
∣∣ ≤ ε ,

for all v1, v2 ∈ Q. In particular∣∣〈v1, v2 − (f ∗ ◦ f )(v2))〉
∣∣ ≤ ε‖v1‖Q‖v2‖Q ,

for v1, v2 ∈ AM
d .
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Theorem (Cuchiero, Gonon, Grigoryeva, Ortega, Teichmann (2019))

Let u be a smooth control and f the previously constructed JL map
associated to an N point set Q of norm one. We denote by r-Sig the
smooth evolution of

dZt =
d∑

i=1

f (f ∗(Zt)ei )du
i (t) , Z0 = f ∗(1)

a controlled differential equation on Rk . Then

〈u,Sigs,t(1)− f ∗(r-Sigs,t(1))〉

≤
(∣∣〈ΓSigs,t(1)

(u), 1− f ∗(f (1))〉
∣∣+

+ Cε
d∑

i=1

∫ t

s
‖ΓSigr,t(1)

(u)‖
Q
‖f ∗(Yr )ei‖Q dr

)
,

with constant C = sups≤r≤t, i

∣∣∣dui (r)dr

∣∣∣, and for each u ∈ Q.
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Corollary

Let u be a smooth control and f the previously constructed JL map
associated to a spanning N point set Q of norm one. Assume additionally
1 = f ∗(f (1)), then∥∥∥Sigs,t(1)− f ∗(r-Sigs,t(1))

∥∥∥ ≤(
εC

d∑
i=1

∫ t

s
sup
‖u‖=1

∥∥ΓSigr,t(1)
(u)
∥∥
Q
‖f ∗(Yr )ei‖Q dr

)
.

Hence f ∗(r-Sig) approximates Sig up to order ε and can be used as a proxy
for signature.
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r-Sig is a random dynamical system

It is fascinating that we can actually calculate approximately the vector
fields which determine the dynamics of r-Sig, i.e.

y 7→ f (f ∗(y)ei )

for each i = 1, . . . , d for y ∈ Rk .

Theorem

For M →∞ the linear vector fields

y 7→ f (f ∗(y)ei )

for i = 1, . . . , d , are built from matrices on Rk with asymptotically
normally distributed, (almost) independent entries.
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Randomness matters

Consider

dYt =
d∑

i=1

Vi (Yt)du
i (t) , Y0 ∈ E

where we observe one trajectory on [0,T ] and do not know the
characteristics.
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Randomized Signature

A random localized signature

there is a set of hyper-parameters θ ∈ Θ, and a dimension M.
depending on θ choose randomly matrices A1, . . . ,Ad on RM as well
as shifts β1, . . . , βd such that maximal non-integrability holds on a
starting point x ∈ RM .
one can tune the hyper-parameters θ ∈ Θ and dimension M such that

dXt =
d∑

i=1

σ(AiXt + βi )du
i (t) , X0 = x

locally (in time, as well as space) approximates CODE Y via a linear
readout W up to arbitrary precision. σ is a sigmoid function whose
only role is to localize the meaning of signature: outside a certain ball
the system is not expressive anymore.
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An alternative perspective

Instead of applying the JL Lemma directly on Ad we could construct
faithful representations and evaluate them. Consider a manifold M and
V1, . . . ,Vd vector fields on M such that the map

ei 7→ Vi

from the Lie algebra g ⊂ Ad to the Lie algebra of vector fields does not
have a kernel, in other words there are no non-trivial relations among Lie
brackets of the vector fields V1, . . . ,Vd . Then the algebra of (formal)
differential operators generated by V1, . . . ,Vd and Ad are isomorphic.
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An alternative perspective

Furthermore the solution of the transport equation

dft(x) =
d∑

i=1

Vi ft(x)dui (t)

and signature have the same expressive power. Notice that ft(x) = f (Xt)
where

dXt =
d∑

i=1

Vi (Xt)du
i (t),X0 = x

for x ∈ M, f ∈ C∞(M).
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An alternative perspective

This yields an alternative perspective to understanding reservoirs
constructed by generic vector fields: consider random vector fields, such
that they are generic, i.e. without non-trivial relations, consider random
smooth functions on M and randomly chosen points x ∈ M, then the
vector (ft(x))0≤t≤T of paths approximates signature up to arbitrary
precision. This construction can be fully parallelized and does only depend
on a low dimensional evaluation of the above CODE

dXt =
d∑

i=1

Vi (Xt)du
i (t),X0 = x

for x ∈ M and f ∈ C∞(M).
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An example from Finance: learn the dynamics of SP500

We assume that a traded quantify (we neglect interest rates here) follows
an unknown high-dimensional Ito diffusion

dYt = V (Yt)dt +
d∑

i=1

Vi (Yt)dB
i
t .

No arbitrage theory suggests that there is actually an equivalent measure
change on Wiener space such that Y is a local martingale, i.e. there exists
a market price of risk (which is of course not observable path wise).
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An example from Finance: learn the dynamics of SP500

Still we are able to write

dYt =
d∑

i=1

Vi (Yt)dM
i
t ,

where M is a Brownian motion with drift. Under mild assumptions on the
vector fields we are able to reconstruct M up to orthogonal
transformations from Y in a pathwise manner, i.e. we have M and Y at
hand. Then we can learn the still unknown dynamics of Y via RC via
regression. With an estimator for the market price of risk, the calibrated
model can be used for predictions and pricing.
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