Adaptive Methods for Short-Term Electricity Load Forecasting During COVID-19 Lockdown in France

Yannig Goude, joint work with Joseph de Vilmarest and David Obst see https://arxiv.org/pdf/2009.06527.pdf

EDF R&D, OSIRIS department, EDF Lab 7 bd Gaspard Monge, Palaiseau, France. Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay

Data Science at Electricity Providers by Avalon local group of the Royal Statistical Society, 29th September 2020

Load forecasting is crucial for electrical power system operations

- Generation: optimising production planning
- Trading: buy and sell electricity on the markets
- Grid management: transmission, distribution

COVID-19 pandemic impacted our social and economical life

Electricity production and consumption were of course affected

We will present and discuss:

- Problems: How does it impact electricity load in the world, in France in particular
- Model design: How the forecasting model could be adapted to maintain good forecasting performances during (and after...) that period, what we did at EDF and other related works
- Data: what kind of data could be used to improve forecasts

Problems, Electricity Data

How does it impact electricity load in the world?

Electricity demand dropped quickly with confinement measures.

It steadily recovered as measures were gradually softened; it was still 10% below 2019 levels in EU countries in June.

In the last week of July, electricity demand was 5% below 2019 levels in EU countries except Italy. In India, recovery seems faster.

IEA, Year-on-year change in weekly electricity demand, weather corrected, in selected countries, 2020, IEA, Paris https://www.iea.org/data-and-statistics/charts/year-on-year-change-in-weekly-electricity-demand-weather-corrected-in-selected-countries-2020

Government responses of different intensities

	First lockdown measures (day 0)	Lockdown strengthened	Lockdown softened
France	March 14	March 17 (day 3)	May 11 (day 55)
Germany	March 15	March 22 (day 7)	April 20 (day 36) and May 4 (day 50)
Italy	March 4	March 13 (day 9)	April 14 (day 41) and May 4 (day 61)
Spain	March 9	March 15 (day 6)	May 11 (day 55)
UK	March 19	March 23 (day 4)	May 11 in England (day 55)
India	March 18	March 25 (day 7)	May 4 (day 47)

Oxford COVID-19 Government Response Tracker

https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker

How does it impact electricity load in the France?

Half-Hourly french electricity load consumption (top) and temperature.

French electricity Tuesday and Saturday load profilesbefore and during the lockdown (Dashed lines).

Comparison with Italy

French and Italian electricity load (in MW) at resp. half-hourly and hourly resolution in 2020. Dashed lines are the starting and ending date of the lockdown

French and Italian electricity Tuesday and Saturday load profiles before and during the lockdown (Dashed lines)

Algorithms and models

Our forecasting model

We model the electricity consumption with GAM, a sum of linear and smooth additive effects (see Hastie & Tibshirani (1990) and Wood (2017))

$$y_{t} = \sum_{i=1}^{7} \sum_{j=0}^{1} \alpha_{i,j} \mathbb{1}_{\text{DayType}_{t}=i} \mathbb{1}_{\text{DLS}_{t}=j}$$

$$+ \sum_{i=1}^{7} \beta_{i} \text{Load1D}_{t} \mathbb{1}_{\text{DayType}_{t}=i} + \gamma \text{Load1W}_{t} \qquad (1)$$

$$+ f_{1}(t) + f_{2}(\text{ToY}_{t}) + f_{3}(t, \text{Temp}_{t}) + f_{4}(\text{Temp95}_{t})$$

$$+ f_{5}(\text{Temp99}_{t}) + f_{6}(\text{TempMin99}_{t}, \text{TempMax99}_{t}) + \varepsilon_{t},$$

Each effect is obtained by penalised spline regression, minimising a GCV criteria to calibrate the amount of smoothness:

$$\sum_{i=1}^{n} (y_i - \beta_0 \mathbf{X}_i^0 - \sum_{q=1}^{p} f_q(x_i))^2 + \sum_{q=1}^{p} \lambda_q \int |||f_q''(x)|||^2 dx$$

$$f_j(x_j) = \sum_{i=1}^k \beta_{ji} b_{ji}(x_j).$$

Of course achieve bad performances after the lockdown

MAPE increases from 1.4% to 3.8%

Online update

• We model the electricity consumption as a sum of time varying additive effects:

$$\mathbb{E}[y_t] = f_t(\boldsymbol{x}_t)$$

• For stability reasons and a good reactivity to changes we restricted to this special case:

$$\mathbb{E}[y_t] = \boldsymbol{\theta}_t^\top f(\boldsymbol{x}_t)$$

 And the time varying coefficients are estimated solving an iterative least square problem with a forgetting factor

$$\hat{\boldsymbol{\theta}}_t = \arg\min_{\boldsymbol{\theta}\in\mathbb{R}^d} \sum_{s=1}^{t-1} e^{-\mu(t-s)} \Big(y_s - \boldsymbol{\theta}^\top f(\boldsymbol{x}_s) \Big)^2$$

▶ Ba, A., Sinn, M., Goude, Y., & Pompey, P. (2012).

Online update

$$y_t = \boldsymbol{\theta}_t^\top f(\boldsymbol{x}_t) + \varepsilon_t ,$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \boldsymbol{\eta}_t ,$$

 (ε_t) and (η_t) are gaussian white noises variance / covariance σ^2 and Q

Algorithm 1: Kalman Filter

Initialization: the prior $\theta_1 \sim \mathcal{N}(\hat{\theta}_1, P_1)$ where $P_1 \in \mathbb{R}^{d \times d}$ is positive definite and $\hat{\theta}_1 \in \mathbb{R}^d$.

Recursion: at each time step t = 1, 2, ...1) Prediction:

$$\mathbb{E} \left[y_t \mid (\boldsymbol{x}_s, y_s)_{s < t}, \boldsymbol{x}_t \right] = \hat{\boldsymbol{\theta}}_t^\top f(\boldsymbol{x}_t) ,$$

$$Var \left[y_t \mid (\boldsymbol{x}_s, y_s)_{s < t}, \boldsymbol{x}_t \right] = \sigma^2 + f(\boldsymbol{x}_t)^\top P_t f(\boldsymbol{x}_t) .$$

2) Estimation:

$$\hat{\boldsymbol{\theta}}_{t+1} = \hat{\boldsymbol{\theta}}_t + \frac{P_t f(\boldsymbol{x}_t)}{f(\boldsymbol{x}_t)^\top P_t f(\boldsymbol{x}_t) + \sigma^2} (y_t - \hat{\boldsymbol{\theta}}_t^\top f(\boldsymbol{x}_t)),$$

$$P_{t+1} = P_t - \frac{P_t f(\boldsymbol{x}_t) f(\boldsymbol{x}_t)^\top P_t}{f(\boldsymbol{x}_t)^\top P_t f(\boldsymbol{x}_t) + \sigma^2} + Q.$$

Q diagonal

- set to 0: Kalman Static
- estimated using a greedy algorithm: Kalman Dynamic
- reinitialised at the beginning of the lockdown Break

▶ De Vilmarest, J., & Wintenberger, O. (2020)

See also the today's talk of Joseph de Vilmarest

De Vilmarest, J., , Obst, D. & Goude, Y. (2020)

Transfer Learning

Transfer learning (or learning-to-learn, knowledge transfer, multi-task learning) is a branch of machine learning that aims at reusing knowledge from one source task (usually with a lot of data) on another target one (with few data).

- Bird, J. J., Kobylarz, J., Faria, D. R., Ekárt, A., & Ribeiro, E. P. (2020)
- Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018)
- Raghu, M., Zhang, C., Kleinberg, J., & Bengio, S. (2019).

Fine-tuning of GAM

$$y_t = \beta_0 + \sum_{j=1}^d f_j(x_{t,j}) + \varepsilon_t$$

$$f_j(x) = \sum_{k=1}^{m_j} \beta_{j,k} B_{j,k}(x)$$

$$\mathcal{L}_{t}(\boldsymbol{\beta}) = \sum_{s=1}^{t-1} \left(y_{s} - \sum_{j=1}^{d} \sum_{k=1}^{m_{j}} \beta_{j,k} B_{j,k}(x_{s,j}) \right)^{2}$$

Algorithm 2: Transfer learning at time step t: GAM fine-tuned

Inputs: Step size α , number of iterations K, French source parameters $\hat{\beta}_{S}^{FR}$

- Initialize $\hat{\beta}_t \leftarrow \hat{\beta}_S^{FR}$.
- Repeat K times: $\hat{\beta}_t \leftarrow \hat{\beta}_t - \alpha \nabla \mathcal{L}_{t-1}^{FR}(\hat{\beta}_t).$
- Predict $\hat{y}_t = \hat{\beta}_t^\top B(x_t)$.

Transfer Learning from Italian data

Italy was the first country to be massively affected by the COVID 19 in Europe.

The Italian government decreed a total lockdown 7 days before the French one.

The idea is to use this one week head-start to adjust our GAM model for France accordingly to the changes observed in Italy.

We fit a similar GAM on Italian Data, we suppose the variation before/during the lockdown is similar in Italy and France:

Let δ_t be the adjustment done on the Italian GAM coefficients when fine-tuned version on the beginning of march (before the 15th) and ρ a scaling factor between France and Italian data.

$$\hat{\boldsymbol{\beta}}_t = \hat{\boldsymbol{\beta}}_S^{FR} + \rho \, \hat{\boldsymbol{\delta}}_t \qquad \qquad \hat{\rho} = \sum_t y_t^{FR} / \sum_t y_t^{IT}$$

Algorithm 3: Transfer learning at time step t : GAM- δ				
• Initialize $\hat{\beta}_t^{IT} \leftarrow \hat{\beta}_S^{IT}$.				
• Repeat K times: $\hat{\beta}_t^{IT} \leftarrow \hat{\beta}_t^{IT} - \alpha \nabla \mathcal{L}_{t-1}^{IT} (\hat{\beta}_t^{IT}).$				
• Set $\hat{\delta}_t = \hat{\beta}_t^{IT} - \hat{\beta}_S^{IT}, \ \tilde{\beta}_t = \hat{\beta}_S^{FR} + \rho \hat{\delta}_t.$				
~				

• Predict
$$\hat{y}_t = \tilde{\beta}_t^\top B(x_t)$$
.

Transfer Learning from Italian data+fine-tuning

The advantage of GAM-δ is that it can be applied to reduce the prediction error starting at the very first day of lockdown.

One can afterwards combine this procedure with fine-tuning on the eventually available French data.

Algorithm 4: Transfer learning at time step t: GAM- δ fine-tuned

- Do fine-tuning on Italian data: $\tilde{\beta}_t = \hat{\beta}_S^{FR} + \rho \, \hat{\delta}_t.$
- Repeat K times: $\tilde{\beta}_t \leftarrow \tilde{\beta}_t - \alpha \nabla \mathcal{L}_{t-1}^{FR}(\tilde{\beta}_t).$

• Predict
$$\hat{y}_t = \tilde{\beta}_t^\top B(x_t)$$
.

Method	2019/09/01 - 2020/03/15	2020/03/16 - 2020/04/15	2020/04/16 - 2020/06/07
ARIMA	4.10 %, 3341 MW	5.44 %, 3248 MW	5.59 %, 3135 MW
GAM	1.39 %, 1085 MW	4.83 %, 2961 MW	3.12 %, 1753 MW
GAM + ARIMA	1.34 %, 1050 MW	4.28 %, 2654 MW	2.65 %, 1464 MW
exp-LS	1.26 %, 982 MW	3.94 %, 2521 MW	1.97 %, 1029 MW
Kalman Static	1.38 %, 1077 MW	4.81 %, 2923 MW	2.85 %, 1588 MW
Kalman StaticBreak	-	2.79 %, 1954 MW	1.59 %, 855 MW
Kalman Dynamic	1.26 %, 979 MW	3.66 %, 2351 MW	1.89 %, 1002 MW
Kalman DynamicBreak	-	2.73 %, 1902 MW	1.62 %, 854 MW
Fine-tuned	-	2.78 %, 1917 MW	1.80 %, 938 MW
GAM δ	-	4.11 %, 2364 MW	6.09 %, 2713 MW
GAM δ - Fine-tuned	-	2.81%, 1912 MW	1.72 %, 905 MW

Online expert aggregation

- · We sequentially observe a bounded sequence of observations $\ y_1,...,y_T \in [0,B]$
- We forecast it step by step and have access at each time *t* to a set of *experts*, $x_{1,t}, ..., x_{K,t} \in [0, B]^K$ this experts could be any ML/physical model, human forecasts...
- We then build an aggregation forecast :

$$\widehat{y}_t = \sum_{j=1}^K p_{j,t} x_{j,t}$$

- Evaluation of the performances of the individual forecasts and the aggregation is measured with any convex loss e.g. $l_t(x) = (y_t x)^2$
- The experts and the aggregation are then updated

Cesa-Bianchi, N., & Lugosi, G. (2006)

Online expert aggregation

- To fix the mind let's consider the simplest algorithm EWA (Exponentially Weighted Aggregation)
- · It depends on a single parameter (learning rate) η and the weights are updated this way:

$$p_{k,t} = \frac{\exp(-\eta \sum_{s=1}^{t-1} (y_s - x_{k,s})^2)}{\sum_{k=1}^{K} \exp(-\eta \sum_{s=1}^{t-1} (y_s - x_{k,s})^2)} \qquad \clubsuit \text{ Vovk, V. G. (1990)} \\ \And \text{ Warmuth \& Littlestone (1994)}$$

Oracle bounds of this form can then be obtained

$$\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_t)^2 - \min_k \frac{1}{T} \sum_{t=1}^{T} (y_t - x_{k,t})^2 \le \frac{\log(K)}{\eta T} + \eta \frac{B^2}{8} \le B \sqrt{\frac{\log(K)}{T}}$$
$$\eta = \frac{1}{B} \sqrt{\frac{8\log(K)}{T}}$$

- A priori information can be added by using sleeping experts: activation or not of an expert at time t
 - ▶ Wintenberger(2017)
 - ▶ Gaillard, Stoltz & Van Erven (2014)
 - Devaine, M., Gaillard, P., Goude, Y., & Stoltz, G. (2013)

Method	2019/09/01 - 2020/03/15	2020/03/16 - 2020/04/15	2020/04/16 - 2020/06/07
ARIMA	4.10 %, 3341 MW	5.44 %, 3248 MW	5.59 %, 3135 MW
GAM	1.39 %, 1085 MW	4.83 %, 2961 MW	3.12 %, 1753 MW
GAM + ARIMA	1.34 %, 1050 MW	4.28 %, 2654 MW	2.65 %, 1464 MW
exp-LS	1.26 %, 982 MW	3.94 %, 2521 MW	1.97 %, 1029 MW
Kalman Static	1.38 %, 1077 MW	4.81 %, 2923 MW	2.85 %, 1588 MW
Kalman StaticBreak	-	2.79 %, 1954 MW	1.59 %, 855 MW
Kalman Dynamic	1.26 %, 979 MW	3.66 %, 2351 MW	1.89 %, 1002 MW
Kalman DynamicBreak	-	2.73 %, 1902 MW	1.62 %, 854 MW
Fine-tuned	-	2.78 %, 1917 MW	1.80 %, 938 MW
GAM δ	-	4.11 %, 2364 MW	6.09 %, 2713 MW
GAM δ - Fine-tuned	-	2.81%, 1912 MW	1.72 %, 905 MW
GAM Saturday	8.33 %, 6425 MW	6.09 %, 3970 MW	8.40 %, 4616 MW
Aggregation without GAM Saturday	1.28 %, 1005 MW	3.01 %, 2014 MW	1.44 %, 745 MW
Aggregation with GAM Saturday	1.28 %, 1005 MW	2.54 %, 1636 MW	1.49 %, 766 MW

significant improvement (Diebold-Mariano test) between exp-LS and kalman/fine-tuning approaches also for aggregation over kalman/fine-tuning approaches

Complementary Data

Mobility Data

Traffic Data: https://opendata.paris.fr/

- Occupancy rate
- Traffic flow

GAM with smoothed traffic data improves by 1% (online update) error during lockdown after lockdown the effect of traffic is not consistent.

See also the work of Chen, Y., Yang, W., & Zhang, B. (2020) using mobility data from location app:

https://www.google.com/covid19/mobility/

https://www.apple.com/covid19/mobility

They achieve a 4.1% day-ahead forecasting performance during lockdown in France.

- ▶ Charansonney, L. (2018)
- Chen, Y., Yang, W., & Zhang, B. (2020)

Dynamic Panel from Smart Meters

Data published by Enedis (French DSO) since June 2018 https://www.enedis.fr/coefficients-des-profils

Date

Work in progress...

Conclusions/Perspectives

We exhibit the consequences of the lockdown on electricity time series forecasting in France

- Sudden change in level and shape of electricity load.
- Similarities in Italy/France, time shifted

Related statistical methodes/pbs:

- Online update: Kalman, aggregation of experts
- Transfer learning

Open problems/perspectives

- Enrich with new data from mobility, local/panel data
- Spatio-temporal models to reflect local impact of the pandemic
- Transfer learning with more black box models: RF, deep learning, potentially in high dimension
- Bayesian approach for small historical data (as in Launay, T., Philippe, A., & Lamarche, S. (2015))

- Adjakossa, E, Goude, Y. & Wintenberger, O. (2020) Kalman Recursions Aggregated Online (KAO) <u>https://arxiv.org/abs/</u> 2002.12173, submitted to annals of applied statistics.
- Amato, U., Antoniadis, A., De Feis, I., & Goude, Y. (2017). Estimation and group variable selection for additive partial linear models with wavelets and splines. *South African Statistical Journal*, *51*(2), 235-272.
- Amato, U., Antoniadis, A., De Feis, I., Goude, Y. & Pichavant, A. (2020) Forecasting high resolution electricity demand data with additive models including smooth and jagged components, to appear in *International Journal of Forecasting*, 2020.
- Ba, A., Sinn, M., Goude, Y., & Pompey, P. (2012). Adaptive learning of smoothing functions: Application to electricity load forecasting. In Advances in neural information processing systems (pp. 2510-2518).
- Brown, G., Wyatt, J. L., & Tiňo, P. (2005). Managing diversity in regression ensembles. *Journal of machine learning research*, 6(Sep), 1621-1650.
- Cesa-Bianchi, N., & Lugosi, G. (2006). *Prediction, learning, and games*. Cambridge university press.
- De Vilmarest, J., & Wintenberger, O. (2020). Stochastic online optimization using kalman recursion. arXiv preprint arXiv: 2002.03636.
- De Vilmarest, J., , Obst, D. & Goude, Y. (2020). Adaptive forecasting methods for short-termelectricity load forecasting during COVID-19I ockdown in France
- Devaine, M., Gaillard, P., Goude, Y., & Stoltz, G. (2013). Forecasting electricity consumption by aggregating specialized experts. Machine Learning, 90(2), 231-260.
- Fasiolo, M., Wood, S.N., Zaffran; M., Nédellec, R. & Goude, Y. (2020). Fast calibrated additive quantile regression, to appear in Journal of American Statistical Association.
- Gaillard, P., Stoltz, G., & Van Erven, T. (2014, May). A second-order bound with excess losses. In *Conference on Learning Theory* (pp. 176-196).
- Gaillard, P., & Goude, Y. (2015). Forecasting electricity consumption by aggregating experts; how to design a good set of experts. In Modeling and stochastic learning for forecasting in high dimensions (pp. 95-115). Springer, Cham.
- Goehry, B., Goude, Y., Massart, P., & Poggi, J. M. (2019). Aggregation of Multi-scale Experts for Bottom-up Load Forecasting. *IEEE Transactions on Smart Grid*.

- Goude, Y., Nedellec, R., & Kong, N. (2013). Local short and middle term electricity load forecasting with semi-parametric additive models. *IEEE transactions on smart grid*, 5(1), 440-446.
- Bastie, T. J., & Tibshirani, R. J. (1990). Generalized Additive Models, volume 43 CRC Press.
- Launay, T., Philippe, A., & Lamarche, S. (2015). Construction of an informative hierarchical prior for a small sample with the help of historical data and application to electricity load forecasting. Test, 24(2), 361-385.
- Pierrot, A., & Goude, Y. (2011). Short-term electricity load forecasting with generalized additive models. Proceedings of ISAP power, 2011.
- Thouvenot, V., Pichavant, A., Goude, Y., Antoniadis, A., & Poggi, J. M. (2015). Electricity forecasting using multi-stage estimators of nonlinear additive models. *IEEE Transactions on Power Systems*, 31(5), 3665-3673.
- Vovk, V. G. (1990). Aggregating strategies. Proc. of Computational Learning Theory, 1990.
- Warmuth, M., & Littlestone, N. (1994). The weighted majority algorithm. Information and Computation, 108(2), 212-261.
- Wintenberger, O. (2017). Optimal learning with Bernstein online aggregation. *Machine Learning*, 106(1), 119-141.
- Wood, S. N. (2017). Generalized additive models: an introduction with R. Chapman and Hall/CRC.
- Bird, J. J., Kobylarz, J., Faria, D. R., Ekárt, A., & Ribeiro, E. P. (2020). Cross-Domain MLP and CNN Transfer Learning for Biological Signal Processing: EEG and EMG. IEEE Access, 8, 54789-54801.
- Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359.
- Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
- Raghu, M., Zhang, C., Kleinberg, J., & Bengio, S. (2019). Transfusion: Understanding transfer learning for medical imaging. In Advances in neural information processing systems (pp. 3347-3357).
- Charansonney, L. (2018). "Nouvelles données de trafic": quels usages pour les gestionnaires de voirie dans l'évaluation des politiques de circulation? L'exemple parisien de la Voie Express Rive Droite..
- Chen, Y., Yang, W., & Zhang, B. (2020). Using Mobility for Electrical Load Forecasting During the COVID-19 Pandemic. arXiv preprint arXiv:2006.08826.

Annexes

A naïve trick: GAM Saturday

