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Load forecasting is crucial for electrical power system
operations

- Generation: optimising production planning
- Trading: buy and sell electricity on the markets

- Grid management: transmission, distribution

Consommation
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Electricity production and consumption were of

course affected

We will present and discuss:

- Problems: How does it impact electricity load in the world, in France in particular

- Model design: How the forecasting model could be adapted to maintain good
forecasting performances during (and after...) that period, what we did at EDF

and other related works

- Data: what kind of data could be used to improve forecasts



Problems, Electricity Data



How does it impact electricity load in the world?

Electricity demand dropped quickly with confinement measures.

It steadily recovered as measures were gradually softened; it was still 109% below 2019 levels in EU
countries in June.

In the last week of July, electricity demand was 5% below 2019 levels in EU countries except Italy. In India,
recovery seems faster.

Dashed line represents periods of full lockdown
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Government responses of different intensities

France
Germany
Italy
Spain

UK

India

First lockdown measures (day 0) Lockdown strengthened Lockdown softened
March 14 March 17 (day 3) May 11 (day 55)
March 15 March 22 (day 7) April 20 (day 36) and May 4 (day 50)
March 4 March 13 (day 9) April 14 (day 41) and May 4 (day 61)
March 9 March 15 (day 6) May 11 (day 55)
March 19 March 23 (day 4) May 11 in England (day 55)
March 18 March 25 (day 7) May 4 (day 47)
Oxford COVID-19 Government Response Tracker
2 I
Jl \
I

= “—VUL \_/—/—/_

3

o

<

&

——  France
— India
” / — ltaly
E ———  Germany
o ——  Spain
| | I | |
Jan Mar May Jul Sep

https:/ / www.bsg.ox.ac.uk/research / research-projects / coronavirus-government-response-tracker



How does it impact electricity load in the France?
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Half-Hourly french electricity load consumption (top) and temperature.
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French electricity Tuesday and Saturday load profilesbefore and during the
lockdown (Dashed lines).



Comparison with ltaly
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French and Italian electricity load (in MW) at resp. half-hourly and hourly resolution in 2020. Dashed
lines are the starting and ending date ofthe lockdown
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and during the lockdown (Dashed lines)



Algorithms and models



Our forecasting model

We model the electricity consumption with GAM, a sum of linear and smooth additive effects (see Hastie &
Tibshirani (1990) and Wood (2017))
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Each effect is obtained by penalised spline regression, minimising a GCV criteria to calibrate the amount of
smoothness:
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Of course achieve bad performances after the lockdown
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Online update

- We model the electricity consumption as a sum of time varying additive effects:
iy = fi(xy)

- For stability reasons and a good reactivity to changes we restricted to this special case:

Ely: = H;Ff(wt)

- And the time varying coefficients are estimated solving an iterative least square problem with a
forgetting factor
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# observations 2 Ba, A., Sinn, M., Goude, Y., & Pompey, P. (2012).



Online update

ytZOtTf(wt)_l_gt?
Oir1 =0+ 1,

(¢¢) and (m;) are gaussian white noises

variance / covariance o2 and Q)

Q diagonal
- set to 0: Kalman Static

Algorithm 1: Kalman Filter

Initialization: the prior 8, ~ N (911 Py ) where
P, € R?*4 is positive definite and 8; € RY,

Recursion: at each time stept =1,2,...
1) Prediction:

E [yt | (wsvys)s<t7wt] — étTf(fUt),
Var |y | (s, Ys)s<t, Tt] = o? + f(th)TPtf(wt) :

2) Estimation:

A _ A P f(ax) T

P = O T R e o2 O )
-

Pt+1 —p Ptf(iBt)f(th) P 1+ 0.

f(xe) " P f(xt) + 02

- estimated using a greedy algorithm: Kalman Dynamic
* reinitialised at the beginning of the lockdown Break

2 De Vilmarest, J., & Wintenberger, O. (2020)
2 See also the today’s talk of Joseph de Vilmarest
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Method 2019/09/01 - 2020/03/15 | 2020/03/16 - 2020/04/15 | 2020/04/16 - 2020/06/07
ARIMA 4.10 %, 3341 MW 5.44 %, 3248 MW 5.59 %, 3135 MW
GAM 1.39 %, 1085 MW 4.83 %, 2961 MW 3.12 %, 1753 MW
GAM + ARIMA 1.34 %, 1050 MW 4.28 %, 2654 MW 2.65 %, 1464 MW
exp-LS 1.26 %, 982 MW 3.94 %, 2521 MW 1.97 %, 1029 MW

Kalman Static

1.38 %, 1077 MW

4.81 %, 2923 MW

2.85 %, 1588 MW

Kalman Static break

2.79 %, 1954 MW

1.59 %, 855 MW

Kalman Dynamic

1.26 %, 979 MW

3.66 %, 2351 MW

1.89 %, 1002 MW

Kalman Dynamic break

2.73 %, 1902 MW

1.62 %, 854 MW

» De Vilmarest, J., , Obst, D. & Goude, Y. (2020)




Transfer Learning

Transfer learning (or learning-to-learn, knowledge transfer, multi-task learning) is a branch of machine

learning that aims at reusing knowledge from one source task (usually with a lot of data) on another target
one (with few data).
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Label Sentence Source
* The more books I ask to whom he will give, the more he reads. Culicover and Jackendoff (1999)
4 1 said that my father, he was tight as a hoot-owl. Ross (1967)
v The jeweller inscribed the ring with the name. Levin (1993)
> * many evidence was provided. Kim and Sells (2008)
4 They can sing. Kim and Sells (2008)
4 The men would have been all working. Baltin (1982)
* ‘Who do you think that will question Seamus first? Carnie (2013)
* Usually, any lion is majestic. Dayal (1998)
v The gardener planted roses in the garden. Miller (2002)
v I wrote Blair a letter, but I tore it up before I sent it. Rappaport Hovav and Levin (2008)

Book corpus data
Labeled data

» Pan, S. J., & Yang, Q. (2009)
2 Bird, J. J., Kobylarz, J., Faria, D. R., EKkart, A., & Ribeiro, E. P. (2020)
 Radford, A., Narasimhan, K., Salimans, T., & Sutskever, |. (2018)

» Raghu, M., Zhang, C., Kleinberg, J., & Bengio, S. (2019).



Fine-tuning of GAM

Algorithm 2: Transfer learning at time step t: GAM fine-tuned

2FR

- Inputs: Step size a, number of iterations K, French source parameters
Bo + E Jilxe ;) + €t :

e Initialize Bt — BFR.

J
— - B.o(x ) Repeat K times:
> BikBjx(a) s FR G

e Predict ; = ﬁtTB(fUt)

t—1 d mj
Et(ﬁ Z( Z BJ kBjk: xsg )2
s=1 1=1k=1
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Transfer Learning from ltalian data

ltaly was the first country to be massively affected by the COVID 19 in Europe.
The ltalian government decreed a total lockdown 7 days before the French one.

The idea is to use this one week head-start to adjust our GAM model for France accordingly to the changes
observed in ltaly.

We fit a similar GAM on ltalian Data, we suppose the variation before/during the lockdown is similar
in ltaly and France:

Let St be the adjustment done on the ltalian GAM coefficients when fine-tuned version on the
beginning of march (before the 15th) and p a scaling factor between France and Italian data.

Bt? A§R+P5t ﬁzztyfR/Ztyﬁ

Algorithm 3: Transfer learning at time step ¢: GAM-¢

e Initialize ;’3{ T . ,Bé.T.

e Repeat K times:
,;f[)){T — JBLIT — GV;C{Zl (dl]T)

e Set (51, = 3{T — ‘Krj)éT, ,[/J){, = )’51? —+ [)(S[

e Predict 7 = S’,T B(xy).




Transfer Learning from ltalian data+fine-tuning

The advantage of GAM-0 is that it can be applied to reduce the prediction error starting at the very first day
of lockdown.

One can afterwards combine this procedure with fine-tuning on the eventually available French data.

Algorithm 4: Transfer learning at time step ¢: GAM-¢ fine-tuned

e Do fine-tuning on Italian data: By = B LR 4 p(?t.

e Repeat K times: i
,af/J)t — ,,Bt — QVEiF_Rl (3{)

e Predict §, = B, B(zy).
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Date

Method 2019/09/01 - 2020/03/15 | 2020/03/16 - 2020/04/15 | 2020/04/16 - 2020/06/07
ARIMA 4.10 %, 3341 MW 5.44 %, 3248 MW 5.59 %, 3135 MW
GAM 1.39 %, 1085 MW 4.83 %, 2961 MW 3.12 %, 1753 MW
GAM + ARIMA 1.34 %, 1050 MW 4.28 %, 2654 MW 2.65 %, 1464 MW
exp-LS 1.26 %, 982 MW 3.94 %, 2521 MW 1.97 %, 1029 MW
Kalman Static 1.38 %, 1077 MW 481 %, 2923 MW 2.85 %, 1588 MW

Kalman StaticBreak

2.79 %, 1954 MW

1.59 %, 855 MW

Kalman Dynamic

1.26 %, 979 MW

3.66 %, 2351 MW

1.89 %, 1002 MW

Kalman DynamicBreak

2.73 %, 1902 MW

1.62 %, 854 MW

Fine-tuned

2.78 %, 1917 MW

1.80 %, 938 MW

GAM 9

4.11 %, 2364 MW

6.09 %, 2713 MW

GAM ¢ - Fine-tuned

2.81%, 1912 MW

1.72 %, 905 MW




Online expert aggregation

- We sequentially observe a bounded sequence of observations Y1, ..., YT € [07 B]

- We forecast it step by step and have access at each time tto a set of experts, T1 ¢, ..., T+ € [0, B]K
this experts could be any ML/physical model, human forecasts...

- We then build an aggregation forecast :

I
K
Yp = ;pg‘,t%,t ; N

- Evaluation of the performances of the individual forecasts and the aggregation is measured with
any convex loss e.g. I;(x) = (y; — x)*

- The experts and the aggregation are then updated

» Cesa-Bianchi, N., & Lugosi, G. (2006)



Online expert aggregation

- To fix the mind let’s consider the simplest algorithm EWA (Exponentially Weighted Aggregation)

- It depends on a single parameter (learning rate) 7] and the weights are updated this way:

e exp(—n S0 (ys — Trs)?) > Vovk, V. G. (1990)
st — K t—1 » Warmuth & Littlestone (1994
Zk:l eXP(—U 2521(93 — C’%,8)2) ( )

- QOracle bounds of this form can then be obtained

T T
1 1 , log(K) B2 \/ log(K)
- —3)? — min — _ < —_<B
T ;Zlﬁ(yt ye)” — min ;Zlﬁ(yt Thyt)” < T TS n
n:% 8105;(1{)

- A priori information can be added by using sleeping experts: activation or not of an expert at time t

& Wintenberger(2017)
2 Gaillard, Stoltz & Van Erven (2014)
» Devaine, M., Gaillard, P., Goude, Y., & Stoltz, G. (2013)
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Date
Method 2019/09/01 - 2020/03/15 | 2020/03/16 - 2020/04/15 | 2020/04/16 - 2020/06/07
ARIMA 4.10 %, 3341 MW 5.44 %, 3248 MW 5.59 %, 3135 MW
GAM 1.39 %, 1085 MW 4.83 %, 2961 MW 3.12 %, 1753 MW
GAM + ARIMA 1.34 %, 1050 MW 4.28 %, 2654 MW 2.65 %, 1464 MW
exp-LS 1.26 %, 982 MW 3.94 %, 2521 MW 1.97 %, 1029 MW
Kalman Static 1.38 %, 1077 MW 4.81 %, 2923 MW 2.85 %, 1588 MW

Kalman StaticBreak

2.79 %, 1954 MW

1.59 %, 855 MW

Kalman Dynamic

1.26 %, 979 MW

3.66 %, 2351 MW

1.89 %, 1002 MW

Kalman DynamicBreak

2.73 %, 1902 MW

1.62 %, 854 MW

Fine-tuned

2.78 %, 1917 MW

1.80 %, 938 MW

GAM ¢

4.11 %, 2364 MW

6.09 %, 2713 MW

GAM ¢ - Fine-tuned

2.81%, 1912 MW

1.72 %, 905 MW

GAM Saturday

8.33 %, 6425 MW

6.09 %, 3970 MW

8.40 %, 4616 MW

Aggregation without GAM Saturday

1.28 %, 1005 MW

3.01 %, 2014 MW

1.44 %, 745 MW

Aggregation with GAM Saturday

1.28 %, 1005 MW

2.54 %, 1636 MW

1.49 %, 766 MW

significant improvement (Diebold-Mariano test) between exp-LS and kalman/ fine-tuning approaches
also for aggregation over kalman/ fine-tuning approaches




Complementary Data



Mobility Data

Traffic Data: https:/ / opendata.paris.fr/
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GAM with smoothed traffic data improves by 1% (online update) error during lockdown
after lockdown the effect of traffic is not consistent.

See also the work of Chen, Y., Yang, W., & Zhang, B. (2020) using mobility data from location
app:

https: / / www.google.com / covid19 / mobility /

https:/ /www.apple.com /covid19 /mobility

They achieve a 4.1% day-ahead forecasting performance during lockdown in France.
» Charansonney, L. (2018)
» Chen, Y., Yang, W., & Zhang, B. (2020)


https://www.google.com/covid19/mobility/
https://www.apple.com/covid19/mobility
https://www.google.com/covid19/mobility/
https://www.apple.com/covid19/mobility

Dynamic Panel from Smart Meters

Data published by Enedis (French DSO) since June 2018  https:/ /www.enedis.fr/coefficients-des-profils
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Work in progress...


https://www.enedis.fr/coefficients-des-profils
https://www.enedis.fr/coefficients-des-profils

Conclusions/Perspectives

We exhibit the consequences of the lockdown on electricity time series forecasting in France

- Sudden change in level and shape of electricity load.
- Similarities in Italy/France, time shifted
Related statistical methodes/pbs:
-+ Online update: Kalman, aggregation of experts
- Transfer learning
Open problems/perspectives
- Enrich with new data from mobility, local/panel data
- Spatio-temporal models to reflect local impact of the pandemic
- Transfer learning with more black box models: RF, deep learning, potentially in high dimension

- Bayesian approach for small historical data (as in Launay, T., Philippe, A., & Lamarche, S. (2015))
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Annexes



A naive trick: GAM Saturday
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