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Abstract

Despite an increasing reliance on fully-automated algorithmic decision-making in our day-to-
day lives, human beings still make highly consequential decisions. As frequently seen in business,
healthcare, and public policy, recommendations produced by algorithms are provided to human
decision-makers to guide their decisions. While there exists a fast-growing literature evaluating
the bias and fairness of such algorithmic recommendations, an overlooked question is whether
they help humans make better decisions. We develop a general statistical methodology for exper-
imentally evaluating the causal impacts of algorithmic recommendations on human decisions. We
also show how to examine whether algorithmic recommendations improve the fairness of human
decisions and derive the optimal decision rules under various settings. We apply the proposed
methodology to preliminary data from the first-ever randomized controlled trial that evaluates
the pretrial Public Safety Assessment (PSA) in the criminal justice system. A goal of the PSA is
to help judges decide which arrested individuals should be released. On the basis of the prelimi-
nary data available, we find that providing the PSA to the judge has little overall impact on the
judge’s decisions and subsequent arrestee behavior. Our analysis, however, yields some poten-
tially suggestive evidence that the PSA may help avoid unnecessarily harsh decisions for female
arrestees regardless of their risk levels while it encourages the judge to make stricter decisions for
male arrestees who are deemed to be risky. In terms of fairness, the PSA appears to increase an
existing gender difference while having little effect on any racial differences in judges’ decision.
Finally, we find that the PSA’s recommendations might be unnecessarily severe unless the cost
of a new crime is sufficiently high.
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1 Introduction

A growing body of literature has suggested the potential superiority of algorithmic decision-making

over purely human choices across a variety of tasks (e.g., Hansen and Hasan, 2015; He et al., 2015).

Although some of this evidence is decades old (e.g., Dawes, Faust and Meehl, 1989), it has recently

gained significant public attention by the spectacular defeats of humanity’s best in cerebral games

(e.g., Silver et al., 2018). Yet, even in contexts where research has warned of human frailties, we

humans still make many consequential decisions for a variety of reasons including the preservation

of human agency and accountability.

The desire for a human decision-maker as well as the precision and efficiency of algorithms

have led to the adoption of hybrid systems involving both. By far the most popular system uses

algorithmic recommendations to inform human decision-making. Such algorithm-assisted human

decision-making has been deployed in many aspects of our daily lives, including medicine, hiring,

credit lending, investment decisions, and online shopping. And of particular interest, algorithmic

recommendations are increasingly of use in the realm of evidence-based public policy making. A

prominent example, studied in this paper, is the use of risk assessment instruments in the criminal

justice system that are designed to improve incarceration rulings and other decisions made by judges.

While there exists a fast-growing literature in computer science that studies the bias and fairness

of algorithms (see Chouldechova and Roth, 2020, for a review and many references therein), an over-

looked question is whether such algorithms help humans make better decisions (see e.g., Green and

Chen, 2019, for an exception). In this paper, we develop a general methodological framework for

experimentally evaluating the impacts of algorithmic recommendations on human decision-making.

We conducted the first-ever real-world field experiment by providing, for a randomly selected cases,

information from a system consisting of Public Safety Assessment (PSA) risk scores and a recommen-

dation from a Decision Making Framework (DMF) to a judge who makes an initial release decision.

We evaluate whether the PSA-DMF system (which for brevity we refer to as the PSA hereafter)

helps judges achieve their goal of preventing arrestees from committing a new crime or failing to

appear in court while avoiding an unnecessarily harsh decision.

Using the concept of principal stratification from the causal inference literature (e.g., Frangakis

and Rubin, 2002; Ding and Lu, 2017), we propose the evaluation quantities of interest, identification

assumptions, and estimation strategies. We also develop sensitivity analyses to assess the robustness

of empirical findings to the potential violation of a key identification assumption (see also Hirano

et al., 2000; Schwartz, Li and Mealli, 2011; Mattei et al., 2013; Jiang, Ding and Geng, 2016). In
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addition, we examine whether algorithmic recommendations improve the fairness of human decisions,

using the concept of principal fairness that, unlike other fairness criteria, accounts for how the

decision in question affects individuals (Imai and Jiang, 2020). Finally, we consider how the data

from an experimental evaluation can be used to inform an optimal decision rule and assess the

optimality of algorithmic recommendations and human decisions (see Ben-Michael et al., 2021, for

a methodological framework for learning an optimal algorithmic recommendation). Although we

describe and apply the proposed methodology in the context of evaluating the PSA, it is directly

applicable or extendable to many other settings of algorithm-assisted human decision-making.

The use of risk assessment scores, which serves as the main application of the current paper,

has played a prominent role in the literature on algorithmic fairness since the controversy over the

potential racial bias of COMPAS risk assessment score used in the United States (US) criminal

justice system (see e.g., Angwin et al., 2016; Dieterich, Mendoza and Brennan, 2016; Flores, Bechtel

and Lowenkamp, 2016; Dressel and Farid, 2018). With few exceptions, however, much of this debate

focused upon the accuracy and fairness properties of risk assessment scores itself rather than how they

affect judges’ decisions (see e.g., Berk et al., 2018; Kleinberg et al., 2018; Rudin, Wang and Coker,

2020, and references therein). Even studies that directly estimate the impacts of risk assessment

scores on judges’ decisions are based on either observational data or hypothetical vignettes in surveys

(e.g., Miller and Maloney, 2013; Berk, 2017; Stevenson, 2018; Albright, 2019; Green and Chen, 2019;

Garrett and Monahan, 2020; Skeem, Scurich and Monahan, 2020; Stevenson and Doleac, 2021).

We contribute to this literature by demonstrating how to evaluate the use of risk assessment scores

experimentally when humans are ultimate decision makers. To the best of our knowledge, this is

the first real-world randomized controlled trial (RCT) that evaluates the impacts of algorithmic risk

assessment scores on judges’ decisions in the criminal justice system (see also the Manhattan Bail

Project and Philadelphia Bail Experiment that evaluated the effects of bail guidelines on judges’

decisions several decades ago (Ares, Rankin and Sturz, 1963; Goldkamp and Gottfredson, 1984,

1985)). Using the concept of principal stratification from causal inference literature, the proposed

methodology allows us to evaluate the effects of the PSA on judges’ decisions separately for the

subgroups of arrestees with different levels of risks.

Based on the preliminary data from our experiment (complete data will not be available for

some time), we find that the provision of the PSA has little overall impact on the judge’s decisions

across three outcomes we examine: failure to appear (FTA), new criminal activity (NCA), and new

violent criminal activity (NVCA). Our analysis, however, provides some suggestive evidence that the
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PSA may make the judge’s decisions more lenient for female arrestees regardless of their risk levels,

while it encourages the judge to make stricter decisions for male arrestees who are deemed to be

risky. In terms of fairness, the PSA appears to increase an existing gender difference while having

no substantial impact on any racial differences in judges’ decisions. Finally, we use the experimental

data to learn about the optimal decision rule that minimizes the prevalence of negative outcomes

(FTA, NCA, and NVCA) while avoiding unnecessarily harsh decisions. Our analysis suggests that

the PSA’s recommendations may be unnecessarily severe unless a jurisdiction considers the costs

of FTA, NCA, and NVCA to be sufficiently high. This might suggest that incarceration decisions

themselves, whether PSA-informed or otherwise, are also unnecessarily severe.

2 Experimental Evaluation of Pretrial Public Safety Assessment

In this section, we briefly describe our field experiment after providing some background about the

use of the PSA in the US criminal justice system. Additional details about our experiment are given

in (Greiner et al., 2020).

2.1 Background

The US criminal justice apparatus consists of thousands of diverse systems. Some are similar in

the decision points they feature as an individual suspected of a crime travels from investigation to

sentencing. Common decision points include whether to stop and frisk an individual in a public

place, whether to arrest or issue a citation to an individual suspect of committing a crime, whether

to release the arrestee while they await the disposition of any charges against them (the subject of

this paper), what charge(s) to be filed against the individual, whether to find the defendant guilty

of those charges, and what sentence to impose on a defendant found guilty.

At present, human judges make all of these decisions. In theory, algorithms could inform any of

them, and could even make some of these decisions without human involvement. To date, algorithmic

outputs have appeared most frequently in two settings: (i) at the “first appearance” hearing, during

which a judge decides whether to release an arrestee pending disposition of any criminal charges, and

(ii) at sentencing, in which the judge imposes a punishment on a defendant found guilty. The first

of these two motivates the present paper, but the proposed methodology is applicable or extendable

to other settings.

We describe a typical first appearance hearing. The key decision the judge must make at a first

appearance hearing is whether to release the arrestee pending disposition of any criminal charges

and, if the arrestee is to be released, what conditions to impose. Almost all jurisdictions allow the
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judge to release the arrestee with only a promise to reappear at subsequent court dates. In addition,

because arrestees have not yet been adjudicated guilty of any charge at the time of a pretrial hearing,

there exists a consensus that pretrial incarceration is to be avoided unless the risks associated with

release are sufficiently high.

Judges deciding whether to release arrestees ordinarily consider two risk factors among a variety

of other concerns; the risk that the arrestee will fail to appear at subsequent court dates, and the

risk that the arrestee will engage in new criminal activity (NCA) before the case is resolved (e.g.,

18 U.S.C. § 3142(e)(1)). Jurisdiction laws vary regarding how these two risks are to be weighed.

Some jurisdictions direct judges to consider both simultaneously along with other factors (e.g., Ariz.

Const. art. II, § 22, Iowa Code § 811.2(1)(a)), while others focus on only FTA risk (e.g., N.Y. Crim.

Proc. Law § 510.30(2)(a)). Despite these variations, NCA and FTA are constant and prominent in

the debate over the first appearance decisions.

Concerns about the consequential nature of the first appearance decision have led to the develop-

ment of the PSA, which is ordinarily offered as an input to first appearance judges. Predisposition

risk assessment instruments take various forms, but most focus on classifying arrestees according

to FTA and NCA risks. They are generally constructed by fitting a statistical model to a training

dataset based on past first appearance hearings and the subsequent incidences (or lack thereof) of

FTA and NCA. The hope is that providing such instruments will improve the assessment of FTA

and NCA risks and thereby lead to better decisions. The goal of this paper is to develop a gen-

eral methodological framework for evaluating the impact of providing the PSA to judges at first

appearance hearings using an RCT, to which we now turn.

2.2 The Experiment

We conducted a field RCT in Dane county, Wisconsin, to evaluate the impacts of PSA provision

on judges’ decisions. The PSA consists of three scores — two six-point scores separately summa-

rizing FTA and NCA risks as well as a binary score for the risk of NVCA. These scores are based

on the weighted indices of nine factors drawn from criminal history information, primarily prior

convictions and FTA, and a single demographic factor, age. Notably, gender and race are not used

to compute the PSA. The weights are calculated using past data. A Decision Making Framework

(DMF) combines information from the three PSA scores with other considerations to produce an

overall recommendation to the judge, which the judge may accept or modify or ignore as they see

fit. The details about the construction of the PSA and other relevant information are available at

https://advancingpretrial.org/psa/factors/
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The field operation was straightforward. In this county, a court employee assigned each matter

a case number sequentially as it entered the system. No one but this clerk was aware of the pending

matter numbers, so manipulation of the number by charging assistant district attorneys was not

possible. Employees of the Clerk’s office scanned online record systems to calculate the PSA for all

cases. If the last digit of the case number was even, these employees made the PSA (specifically, a

printout of the PSA scores, the DMF recommendation, and the supporting criminal history and age

information) available to the judge. Otherwise, no PSA was made available. Thus, the provision of

the PSA to judges was essentially randomized. Indeed, the comparison of the observed covariate dis-

tributions suggests that this scheme produced groups comparable on background variables (Greiner

et al., 2020).

The judge presiding over the first appearance hearing by law was to consider the risk of FTA

and NCA, along with other factors including ties to the community as prescribed by statute. The

judge could order the arrestee released with or without bail of varying amount. The judge could

also condition release on compliance with certain conditions such as monitoring, but for the sake of

simplicity, we focus on bail decisions and ignore other conditions in this paper.

When making decisions, the judge also had information other than the PSA and its inputs. In

all cases, the judge had a copy of an affidavit sworn to by a police officer recounting the circum-

stances of the incident that led to the arrest. The defense attorney sometimes informed the judge

of the following regarding the arrestee’s connections to the community: length of time lived there,

employment there, and family living there. When available, this information ordinarily stemmed

from an arrestee interview conducted earlier by a paralegal. The assistant district attorney some-

times provided additional information regarding the circumstances of the arrest or criminal history.

Given the lack of access to this additional information, we develop a sensitivity analysis to address

a potential unobserved confounding bias.

2.3 The Data

The field operation design called for approximately a 30-month treatment assignment period (from

the middle of 2017 until the end of 2019) followed by the collection of data on FTA, NCA, NVCA,

and other outcomes for a period of two years after randomization. At the time of this writing,

we have outcome data from a 12-month follow-up of each first appearance event that occurred in

the first 12 months of randomization. The 30-month randomization period has expired, and we

will report the results of our comprehensive analysis of a full data set in the future. Furthermore,

although some arrestees had multiple cases during the study period, this paper focuses only on the

5



no PSA (Control Group) PSA (Treatment Group)

Signature Cash bond Signature Cash bond
bond ≤$1000 >$1000 bond ≤$1000 >$1000 Total (%)

Non-white Female 64 11 6 67 6 0 154
(3.4) (0.6) (0.3) (3.5) (0.3) (0.0) (8.1)

White Female 91 17 7 104 17 10 246
(4.8) (0.9) (0.4) (5.5) (0.9) (0.5) (13.0)

Non-white Male 261 56 49 258 53 57 734
(13.8) (3.0) (2.6) (13.6) (2.8) (3.0) (38.8)

White Male 289 48 44 276 54 46 757
(15.3) (2.5) (2.3) (14.6) (2.9) (2.4) (40.0)

FTA committed 218 42 16 221 45 16 558
(11.5) (2.2) (0.8) (11.7) (2.4) (0.8) (29.4)

not committed 487 90 90 484 85 97 1333
(25.8) (4.8) (4.8) (25.6) (4.5) (5.1) (70.6)

NCA committed 211 39 14 202 40 17 523
(11.2) (2.1) (0.7) (10.7) (2.1) (0.9) (27.7)

not committed 494 93 92 503 90 96 1368
(26.1) (4.9) (4.9) (26.6) (4.8) (5.1) (72.4)

NVCA committed 36 10 3 44 10 6 109
(1.9) (0.5) (0.2) (2.3) (0.5) (0.3) (5.7)

not committed 669 122 103 661 120 107 1782
(35.4) (6.5) (5.4) (35.0) (6.3) (5.7) (94.3)

Total 705 132 106 705 130 113 1891
(37.3) (7.0) (5.6) (37.3) (6.9) (6.0) (100)

Table 1: The Joint Distribution of Treatment Assignment, Judge’s Decisions, and Outcomes. The
table shows the number of cases in each category with the corresponding percentage in parentheses.
Only about 20% of all arrestees are female. Few cases result in NVCA (new violent criminal activity),
while FTA (failure to appear in court) and NCA (new criminal activity) occur in slightly above 25%
each. A majority of decisions are signature bonds rather than cash bonds.

first of the first appearance hearings for any individual arrestee. This leads to a total of 1891 cases

for our analysis, of which 40.0% (38.8%) are white male arrestees and 13.0 are white female arrestees

(non-white male and female arrestees account for 38.8% and 8.1%, respectively).

Based on the empirical distribution of bail amounts and expert’s opinion, we categorize the

judge’s decisions into three ordinal categories: signature bond, small cash bond (less than $1,000),

and large cash bond (greater than or equal to $1,000). A signature bond requires an arrestee to sign

a promise to return to the court for trial, but does not require any payment to be released. Cash

bonds require an arrestee to deposit money with the court to obtain release. Table 1 summarizes

the joint distribution of treatment assignment (PSA provision), the judge’s decisions (three ordinal
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Figure 1: The Distribution of the Judge’s Decisions given the Pretrial Public Safety Assessment
(PSA) among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups. There
are three PSA scores, two of which are ordinal — FTA and NCA — while the other is dichotomous
— NVCA. The judge’s decision is coded as a three-category ordinal variable based on the type and
amount of bail: a signature bond, a small cash bond (less than $1,000), and a large cash bond
(greater than or equal to $1,000). The DMF recommendation is presented as a binary variable:
signature or cash bond. The width of each bar is proportional to the number of cases for each value
of the corresponding PSA score. There exists a positive correlation between PSA scores and the
severity of the judge’s decisions in both treatment and control groups.

categories), and three binary outcomes. We observe that in about three quarters of cases the judge

imposed signature bonds, while in the remaining cases the judge imposed bail. For the outcome

variables, slightly less than 30% of arrestees commit FTA or NCA whereas the proportion of those

who commit NVCA is only about 6%.

2.4 The Overall Impact of PSA Provision on Judge’s Decisions

Figure 1 presents the distribution of the judge’s decisions given each of the PSA scores among the

cases in the treatment (top panel) and control (bottom panel) groups. The overall difference in the

conditional distribution between the two groups is small though there are some differences in some

subgroups (see Appendix S1). The PSA scores for FTA and NCA are ordinal, ranging from 1 (safest)

to 6 (riskiest), whereas the PSA score for NVCA is binary, 0 (safe) and 1 (risky). We also plot the
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Figure 2: Estimated Average Causal Effects of PSA Provision on the Judge’s Decisions and Outcome
Variables. The results are based on the difference-in-means estimator. The vertical bars represent
the 95% confidence intervals. In the left plot, we report the estimated effects of PSA provision on
the judge’s decision to charge a signature bond (solid circles), a small cash bail ($1,000 dollars or
less; solid triangles), and a large cash bail (greater than $1,000; solid squares). In the right plot,
we report the estimated effects of PSA provision on the three different outcome variables: FTA
(open circles), NCA (open triangles), and NVCA (open squares). PSA provision appears to have
little overall effect on the judge’s decision and arrestee’s behavior, on average, though it may slightly
increase NVCA among female arrestees.

DMF recommendation, which aggregates these three PSA scores as well as other information such

as types of charges. The DMF recommendation has four categories (signature bond, modest cash

bond, moderate cash bond, and cash bond with maximum conditions), but we dichotomize it into

signature or cash bond given its skewed empirical distribution.

In general, we observe a positive association between the PSA scores and judge’s decisions,

implying that a higher PSA score is associated with a harsher decision. We also find that for FTA

and NCA, the most likely scores are in the medium range, while the vast majority of NVCA cases

were classified as no elevated risk. For NCA and FTA, the judge’s decisions varied little when the

PSA score took a value in the lower range. For the DMF recommendation, the judge is far more

likely to give a signature bond for the cases that are actually recommended for a signature bond.

Figure 2 presents the estimated average causal effect of PSA provision on the judge’s decisions

(left plot) and three outcomes of interest (right plot). We use the difference-in-means estimator and

display the 95% confidence intervals as well as the point estimates. We do not compute separate

estimates for white females and non-white females because we have too few female arrestees (see

Table 1). The results imply that PSA provision, on average, has little effect on the judge’s decisions.

In addition, the average effects of PSA provision on the three outcomes are also largely ambiguous

although there is suggestive evidence that it may slightly increase NVCA among female arrestees.

In Appendix S2.1, we also explore the average causal effects of PSA provision across different age
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groups. We find some suggestive causal effects for the group of 29 – 35 year old arrestees.

Although these results show whether PSA provision leads to a harsher or more lenient decision

(and whether it increases or decreases the proportions of negative outcomes), they are not informative

about whether it helps judges make better decisions. In the current context, a primary goal of the

judge is to make lenient decisions in low-risk cases and less lenient decisions in high-risk cases. If

the PSA is helpful, therefore, its provision should encourage the judge to impose small or no bail on

safe cases and impose a greater amount of bail on risky cases (we formally define “safe” and “risky”

cases below). This demands the study of an important causal heterogeneity by distinguishing among

cases with different risk levels. In addition, we may also be interested in knowing how PSA provision

affects the gender and racial fairness of judges’ decisions. Thus, the goal of the remainder of the

paper is to develop statistical methods that directly address these and other questions.

3 The Proposed Evaluation Methodology

In this section, we describe the proposed methodology for experimentally evaluating the impacts

of algorithmic recommendations on human decision-making. Although we refer to our specific ap-

plication throughout, the proposed methodology can be applied or extended to other settings, in

which humans make decisions using algorithmic recommendations as an input. We will begin by

considering a binary decision and then extend our methodology to an ordinal decision in Section 3.4.

3.1 The Setup

Let Zi be a binary treatment variable indicating whether the PSA is presented to the judge of case

i = 1, 2, . . . , n. We use Di to denote the binary detention decision made by the judge to either detain

(Di = 1) or release (Di = 0) the arrestee prior to the trial. In addition, let Yi represent the binary

outcome: we code all our outcomes — NCA, NVCA, and FTA — as binary variables. For example,

Yi = 1 (Yi = 0) implies that the arrestee of case i commits (does not commit) an NCA. Finally, we

use Xi to denote a vector of observed pre-treatment covariates for case i. They include age, gender,

race, and prior criminal history.

We adopt the potential outcomes framework of causal inference and assume the stable unit

treatment value assumption (SUTVA) (Rubin, 1990). In particular, we assume no interference

among cases, implying that the treatment assignment for one case does not influence the judge’s

decision and outcome variable in another case. This assumption is reasonable in our analysis because

we focus only on first arrests and do not analyze cases with subsequent arrests. Appendix S3 provides

the empirical evidence in support of this assumption.
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Let Di(z) be the potential value of the pretrial detention decision if case i is assigned to the

treatment condition z ∈ {0, 1}. Furthermore, Yi(z, d) represents the potential outcome under the

scenario, in which case i is assigned to the treatment condition z and the judge makes the decision

d ∈ {0, 1}. Then, the observed decision is given by Di = D(Zi) whereas the observed outcome is

denoted by Yi = Yi(Zi, Di(Zi)).

Throughout this paper, we maintain the following three assumptions, all of which we believe are

reasonable in our application. First, because the treatment assignment is essentially randomized,

the following independence assumption is automatically satisfied.

Assumption 1 (Randomization of the Treatment Assignment)

{Di(z), Yi(z, d),Xi} ⊥⊥ Zi for z ∈ {0, 1} and all d.

Second, we assume that the provision of the PSA influences the outcome only through the judge’s

decision. Because an arrestee would not care and, perhaps, would not even know whether the judge

is presented with the PSA at their first appearance, it is reasonable to assume that their behavior,

be it NCA, NVCA, or FTA, is not affected directly by the treatment assignment.

Assumption 2 (Exclusion Restriction)

Yi(z, d) = Yi(z
′, d) for z, z′ ∈ {0, 1} and all i, d.

Under Assumption 2, we can simplify our notation by writing Yi(z, d) as Yi(d). A potential viola-

tion of this assumption is that the PSA may directly influence the judge’s decision about release

conditions, which can in turn affect the outcome. The extension of the proposed methodology to

multi-dimensional decisions including the bail amount and monitoring conditions is left for future

research.

Finally, we assume that the judge’s decision monotonically affects the outcome. Thus, for NCA

(NVCA), the assumption implies that each arrestee is no less likely to commit a new (violent) crime

if released. If FTA is the outcome of interest, this assumption implies that an arrestee is no more

likely to appear in court if released. The assumption is reasonable because being held in custody of

a court makes it difficult to engage in NCA, NVCA, and FTA.

Assumption 3 (Monotonicity)

Yi(1) ≤ Yi(0) for all i.
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3.2 Causal Quantities of Interest

We define causal quantities of interest using principal strata that are determined by the joint values

of potential outcomes, i.e., (Yi(1), Yi(0)) = (y1, y0), where y1, y0 ∈ {0, 1} (Frangakis and Rubin,

2002). Since Assumption 3 eliminates one principal stratum, (Yi(1), Yi(0)) = (1, 0), there are three

remaining principal strata. The stratum (Yi(1), Yi(0)) = (0, 1) consists of those who would engage

in NCA (NVCA or FTA) only if they are released. We call members of this stratum as “preventable

cases” because keeping those arrestees in custody would prevent the negative outcome (NCA, NVCA,

or FTA). The stratum (Yi(1), Yi(0)) = (1, 1) is called “risky cases,” and corresponds to those who

always engage in NCA (NVCA or FTA) regardless of the judge’s decision. In contrast, the stratum

(Yi(1), Yi(0)) = (0, 0) represents “safe cases,” in which the arrestees would never engage in NCA

(NVCA or FTA) regardless of the detention decision.

We are interested in examining how PSA provision influences the judge’s detention decisions

across different types of cases. We define the following three average principal causal effects (APCE),

APCEp = E{Di(1)−Di(0) | Yi(1) = 0, Yi(0) = 1}, (1)

APCEr = E{Di(1)−Di(0) | Yi(1) = 1, Yi(0) = 1}, (2)

APCEs = E{Di(1)−Di(0) | Yi(1) = 0, Yi(0) = 0}. (3)

If the PSA is helpful, its provisions should make the judge more likely to detain the arrestees of the

preventable cases. That is, the principal causal effect on the detention decision for the preventable

cases (APCEp) should be positive. In addition, the PSA should encourage the judge to release the

arrestees of the safe cases, implying that the principal causal effect for the safe cases (APCEs) should

be negative. The desirable direction of the principal causal effect for risky cases (APCEr) depends

on various factors including the societal costs of holding the arrestees of this category in custody.

3.3 Nonparametric Identification

We consider the nonparametric identification of the principal causal effects defined above. The

following theorem shows that under the aforementioned assumptions, these effects can be identified

up to the marginal distributions of Yi(d) for d = 0, 1.

Theorem 1 (Identification) Under Assumptions 1, 2, and 3,

APCEp =
Pr(Yi = 1 | Zi = 0)− Pr(Yi = 1 | Zi = 1)

Pr{Yi(0) = 1} − Pr{Yi(1) = 1}
,

APCEr =
Pr(Di = 1, Yi = 1 | Zi = 1)− Pr(Di = 1, Yi = 1 | Zi = 0)

Pr{Yi(1) = 1}
,
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APCEs =
Pr(Di = 0, Yi = 0 | Zi = 0)− Pr(Di = 0, Yi = 0 | Zi = 1)

1− Pr{Yi(0) = 1}
.

Proof is given in Appendix S4.2. Because Pr{Yi(d)} is not identifiable without additional assump-

tions, we cannot estimate the causal effects based on Theorem 1. The denominators of the expressions

on the right-hand side of Theorem 1, however, are positive under Assumption 3. As a result, the

signs of the causal effects are identified from Theorem 1, which allows us to draw qualitative con-

clusions. In addition, the theorem implies that the sign of APCEp is the opposite of the sign of the

average causal effect on the outcome. This is intuitive because if the provision of the PSA increases

the probability of NCA (NVCA or FTA), then the judge must have released more arrestees for

preventable cases.

Furthermore, we can obtain the nonparametric bounds on these causal quantities by bounding

Pr{Yi(d) = y} that appears in the denominators. From Assumption 1 and the law of total probability,

Pr{Yi(d) = 1} = Pr{Yi(d) = 1 | Zi = z}

= Pr(Yi = 1 | Di = d, Zi = z) Pr(Di = d | Zi = z)

+ Pr{Yi(d) = 1 | Di = 1− d, Zi = z}Pr(Di = 1− d | Zi = z)

for z, d = 0, 1. Under Assumption 3, the bounds on the unidentifiable terms are Pr{Yi = 1 | Di =

1, Zi = z} ≤ Pr{Yi(0) = 1 | Di = 1, Zi = z} ≤ 1 and 0 ≤ Pr{Yi(1) = 1 | Di = 0, Zi = z} ≤ Pr{Yi =

1 | Di = 0, Zi = z}. This yields the following bounds on Pr{Yi(d) = 1},

max
z

Pr(Yi = 1, Di = 1 | Zi = z) ≤ Pr{Yi(1) = 1} ≤ min
z

Pr(Yi = 1 | Zi = z),

max
z

Pr(Yi = 1 | Zi = z) ≤ Pr{Yi(0) = 1} ≤ 1−max
z

Pr(Yi = 0, Di = 0 | Zi = z).

For point identification, we consider the following unconfoundedness assumption, which states

that conditional on a set of observed pre-treatment covariates Xi and PSA provision, the judge’s

decision is independent of the potential outcomes.

Assumption 4 (Unconfoundedness)

Yi(d) ⊥⊥ Di | Xi = x, Zi = z,

where we also assume 0 < Pr(Di = d | Xi = x, Zi = z) < 1 for z ∈ {0, 1}, and all x ∈ X and d.

Assumption 4 holds if Xi contains all the information the judge has access to when making the

detention decision under each treatment condition. As noted in Section 2.2, however, the judge may

receive and use additional information regarding whether the arrestee has a job or a family in the
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jurisdiction, or perhaps regarding the length of time the arrestee has lived in the jurisdiction. If these

factors have an impact on both the judge’s decisions and arrestee’s behaviors, then the assumption

is unlikely to be satisfied. Later, we address this issue by developing a sensitivity analysis for the

potential violation of Assumption 4 (see Section 3.5).

To derive the identification result, consider the following principal scores (Ding and Lu, 2017),

which represent in our application the population proportion (conditional on Xi) of preventable,

risky, and safe cases, respectively,

eP (x) = Pr{Yi(1) = 0, Yi(0) = 1 | Xi = x},

eR(x) = Pr{Yi(1) = 1, Yi(0) = 1 | Xi = x},

eS(x) = Pr{Yi(1) = 0, Yi(0) = 0 | Xi = x}.

Under Assumptions 2, 3, and 4, we can identify the principal scores as,

eP (x) = Pr{Yi = 1 | Di = 0,Xi = x} − Pr{Yi = 1 | Di = 1,Xi = x},

eR(x) = Pr{Yi = 1 | Di = 1,Xi = x},

eS(x) = Pr{Yi = 0 | Di = 0,Xi = x}.

The next theorem shows that we can identify the APCE as the difference in the weighted average

of judge’s decisions between the treatment and control groups.

Theorem 2 (Identification under Unconfoundedness) Under Assumptions 1, 2, 3, and 4,
APCEp, APCEr and APCEs are identified as,

APCEp = E{wP (Xi)Di | Zi = 1} − E{wP (Xi)Di | Zi = 0},
APCEr = E{wR(Xi)Di | Zi = 1} − E{wR(Xi)Di | Zi = 0},
APCEs = E{wS(Xi)Di | Zi = 1} − E{wS(Xi)Di | Zi = 0},

where

wP (x) =
eP (x)

E{eP (Xi)}
, wR(x) =

eR(x)

E{eR(Xi)}
, wS(x) =

eS(x)

E{eS(Xi)}
.

Proof is given in Appendix S4.2. Although Ding and Lu (2017) also identify principal causal effects

using principal scores, they consider principal strata based on an intermediate variable. In contrast,

we are interested in the causal effects on the decision within each principal stratum defined by the

values of the potential outcomes.

In some situations, we might consider the following strong monotonicity assumption instead of

Assumption 3.
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Assumption 5 (Strong Monotonicity)

Yi(1) = 0 for all i.

The assumption implies that the detention decision prevents NCA, NVCA, or FTA. The assumption

is plausible for FTA, but may not hold for NCA/NVCA in some cases. In our data, for example, we

find some NCA and NVCA among the incarcerated arrestees.

Under Assumption 5, the risky cases do not exist and hence the APCEr is not defined. This leads

to the following identification result.

Theorem 3 (Identification under Strong Monotonicity) Under Assumptions 1, 2, and 5,

APCEp =
Pr(Di = 0, Yi = 1 | Zi = 0)− Pr(Di = 0, Yi = 1 | Zi = 1)

Pr{Yi(0) = 1}
,

APCEs =
Pr(Di = 0, Yi = 0 | Zi = 0)− Pr(Di = 0, Yi = 0 | Zi = 1)

Pr{Yi(0) = 0}
.

Proof is given in Appendix S4.4. As in Theorem 1, the APCEp and APCEs depend on the distribution

of Yi(0), which is not identifiable. However, as before, the sign of each effect is identifiable.

For point identification, we invoke the unconfoundedness assumption. Note that under the strong

monotonicity assumption, Assumption 4 is equivalent to a weaker conditional independence relation

concerning only one of the two potential outcomes,

Yi(0) ⊥⊥ Di | Xi, Zi = z

for z = 0, 1. We now present the identification result.

Theorem 4 (Identification under Unconfoundedness and Strong Monotonicity) Under
Assumptions 1, 2, 4 and 5,

APCEp = E{wP (Xi)Di | Zi = 1} − E{wP (Xi)Di | Zi = 0},
APCEs = E{wS(Xi)Di | Zi = 1} − E{wS(Xi)Di | Zi = 0},

where

wP (x) =
eP (x)

E{eP (Xi)}
, wS(x) =

eS(x)

E{eS(Xi)}
.

Proof is straightforward and hence omitted. While the identification formulas are identical to those

in Theorem 2, under Assumption 5, we can simply compute the principal score as eS(x) = Pr(Yi =

0 | Di = 0,Xi = x) and set eP (x) = 1− eS(x).
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3.4 Ordinal Decision

We generalize the above identification results to an ordinal decision. In our application, this extension

is important as the judge’s release decision often is based on different amounts of cash bail or varying

levels of supervision of an arrestee. We first generalize the monotonicity assumption (Assumption 3)

by requiring that a decision with a greater amount of bail is no less likely to make an arrestee engage

in NCA (NVCA or FTA). The assumption may be reasonable, for example, because a greater amount

of bail is expected to imply a greater probability of being held in custody. The assumption could

be violated if arrestees experience financial strain in an effort to post bail, causing them to commit

NCA (NVCA or FTA).

Formally, let Di be an ordinal decision variable where Di = 0 is the least amount of bail, and

Di = 1, . . . , k represents a bail of increasing amount, i.e., Di = k is the largest bail amount. Then,

the monotonicity assumption for an ordinal decision is given by,

Assumption 6 (Monotonicity with Ordinal Decision)

Yi(d1) ≤ Yi(d2) for d1 ≥ d2.

To generalize the principal strata introduced in the binary decision case, we define the decision

with the least amount of bail that prevents an arrestee from committing NCA (NVCA or FTA) as

follows,

Ri =


min{d : Yi(d) = 0} if Yi(k) = 0,

k + 1 if Yi(k) = 1.

We may view Ri as an ordinal measure of risk with a greater value indicating a higher degree of

risk. When Di is binary, Ri takes one of the three values, {0, 1, 2}, representing safe, preventable,

and risky cases, respectively. Thus, Ri generalizes the principal strata to the ordinal case under the

monotonicity assumption.

Now, we define the principal causal effects in the ordinal decision case. Specifically, for r =

1, . . . , k (excluding the cases with r = 0 and r = k+ 1), we define the average principal causal effect

of the PSA on the judge’s decisions as a function of this ordinal risk measure,

APCEp(r) = Pr{Di(1) ≥ r | Ri = r} − Pr{Di(0) ≥ r | Ri = r}. (4)

Since the arrestees with Ri = r would not commit NCA (NVCA or FTA) under the decision with

Di ≥ r, APCEp(r) represents a reduction in the proportion of NCA (NVCA or FTA) that is at-

tributable to PSA provision among the cases with Ri = r. Thus, the expected proportion of NCA
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(NVCA or FTA) that would be reduced by the PSA is given by,

k∑
r=1

APCEp(r) · Pr(Ri = r).

This quantity equals the overall Intention-to-Treat (ITT) effect of PSA provision on NCA (NVCA

or FTA).

Furthermore, the arrestees with Ri = 0 would never commit a new crime regardless of the judge’s

decisions. We may, therefore, be interested in estimating the increase in the proportion of the most

lenient decision for these safest cases. This generalizes the APCEs to the ordinal decision case,

APCEs = Pr{Di(1) = 0 | Ri = 0} − Pr{Di(0) = 0 | Ri = 0}.

For the cases with Ri = k+1 that would always result in a new criminal activity, a desirable decision

may depend on a number of factors. Note that if we assume the strong monotonicity, i.e., Yi(k) = 0

for all i, then such cases do not exist.

Like the APCEs, the APCEp(r) can be expressed as a function of the average principal causal

effect (APCE) for each decision d = 0, 1, 2, . . . , k. This generalized APCE is given by,

APCE(d, r) = Pr{Di(1) = d | Ri = r} − Pr{Di(0) = d | Ri = r}. (5)

In our empirical analysis, we estimate this causal quantity, which has the same identification condi-

tions.

The identification of these principal causal effects requires the knowledge of the distribution of

Ri. Fortunately, under the unconfoundedness and monotonicity assumptions (Assumptions 4 and 6),

this distribution is identifiable conditional on Xi,

er(x) = Pr(Ri = r | Xi = x)

= Pr(Ri ≥ r | Xi = x)− Pr(Ri ≥ r + 1 | Xi = x)

= Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}

= Pr{Yi = 1 | Di = r − 1,Xi = x} − Pr{Yi = 1 | Di = r,Xi = x}, for r = 1, . . . , k,(6)

ek+1(x) = Pr{Yi(k) = 1 | Xi = x} = Pr{Yi = 1 | Di = k,Xi = x},

e0(x) = Pr{Yi(0) = 0 | Xi = x} = Pr{Yi = 0 | Di = 0,Xi = x}.

Since er(x) cannot be negative for each r, this yields a set of testable conditions for Assump-

tions 4 and 6. This statement is also true in the binary decision case.

Finally, we formally present the identification result for the ordinal decision case.
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Theorem 5 (Identification with Ordinal Decision) Under Assumptions 1, 2, 4 and 6, the
APCE is identified by

APCEp(r) = E{wr(Xi)1(Di ≥ r) | Zi = 1} − E{wr(Xi)1(Di ≥ r) | Zi = 0},
APCEs = E{w0(Xi)1(Di = 0) | Zi = 1} − E{w0(Xi)1(Di = 0) | Zi = 0},

where wr(x) = er(x)/E{er(Xi)} and 1() is the indicator function.

Proof is given in Appendix S4.5.

3.5 Sensitivity Analysis

The unconfoundedness assumption, which enables the nonparametric identification of causal effects,

may be violated when researchers do not observe some information that is used by the judge and is

predictive of arrestees’ behavior. As noted in Section 2.2, the length of time the arrestee has lived in

the community may represent an example of such unobserved confounders. It is important, therefore,

to develop a sensitivity analysis for the potential violation of the unconfoundedness assumption

(Assumption 4).

We propose a parametric sensitivity analysis (see Appendix S8 for a nonparametric sensitivity

analysis). We consider the following bivariate ordinal probit model for the observed judge’s decision

D and the latent risk measure Ri,

D∗i (z) = βZz + X>i βX + zX>i βZX + εi1, (7)

R∗i = X>i αX + εi2, (8)

where εi1
εi2

 ∼ N
0

0

 ,

1 ρ

ρ 1

 ,

and

Di(z) =



0 D∗(z) ≤ θz1

1 θz1 < D∗i (z) ≤ θz2
...

...

k − 1 θz,k−1 < D∗i (z) ≤ θzk

k θzk < D∗i (z)

, Ri =



0 R∗i ≤ δ0

1 δ0 < R∗i ≤ δ1
...

...

k δk−1 < R∗i ≤ δk

k + 1 δk < R∗i

.

The error terms (εi1, εi2) are assumed to follow a bivariate normal distribution. Under this model, ρ

represents a sensitivity parameter since ρ = 0 implies Assumption 4. If the value of ρ is known, then
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the other coefficients, i.e., βX , αX and βZ , can be estimated, which in turn enables the estimation

of the APCE. In the literature, Frangakis, Rubin and Zhou (2002), Barnard et al. (2003), and

Forastiere, Mealli and VanderWeele (2016) also model the distribution of principal strata using the

ordinal probit model.

Because Ri is a latent variable, the estimation of this model is not straightforward. In our

empirical application, we conduct a Bayesian analysis to estimate the causal effects (see e.g., Hirano

et al., 2000; Schwartz, Li and Mealli, 2011; Mattei et al., 2013; Jiang, Ding and Geng, 2016, for

other applications of Bayesian sensitivity analysis). Appendix S5 presents the details of the Bayesian

estimation. We also perform a frequentist analysis, based on Theorem 2, that does not require an

outcome model, assessing the robustness of the results to the outcome model (though we assume

ρ = 0).

3.6 Fairness

Next, we discuss how the above causal effects relate to the fairness of the judge’s decision. In

particular, Imai and Jiang (2020) introduce the concept of “principal fairness.” The basic idea is

that within each principal stratum a fair decision should not depend on protected attributes (race,

gender, etc.). Imai and Jiang (2020) provide a detailed discussion about how principal fairness is

related to the existing definitions of fairness (see also Corbett-Davies et al., 2017; Chouldechova and

Roth, 2020, and references therein). Although Coston et al. (2020) consider the potential outcomes

framework, they only focus on one potential outcome Yi(0) rather than the joint potential outcomes

(Yi(0), Yi(1)).

Formally, let Ai ∈ A be a protected attribute such as race and gender. We first consider a binary

decision. We say that decisions are fair on average with respect to Ai if it does not depend on the

attribute within each principal stratum, i.e.,

Pr{Di = 1 | Ai, Yi(1) = y1, Yi(0) = y0} = Pr{Di = 1 | Yi(1) = y1, Yi(0) = y0} (9)

for all y1, y0 ∈ {0, 1}. We can generalize this definition to the ordinal case as,

Pr(Di ≥ d | Ai, Ri = r) = Pr(Di ≥ d | Ri = r)

for 1 ≤ d ≤ k and 0 ≤ r ≤ k + 1.

The degree of fairness for principal stratum Ri = r can be measured using the maximal deviation

among the distributions for different groups,

∆r(z) = max
a,a′,d

∣∣Pr{Di(z) ≥ d | Ai = a,Ri = r} − Pr{Di(z) ≥ d | Ai = a′, Ri = r}
∣∣ (10)
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for z = 0, 1. By estimating ∆r(z), we can use the experimental data to examine whether or not the

provision of the PSA improves the fairness of the judge’s decisions. Specifically, if PSA provision

improves the fairness of judge’s decisions for the principal stratum r, we should have ∆r(1) ≤ ∆r(0).

3.7 Optimal Decision Rule

The discussion so far has focused on estimating the impacts of algorithmic recommendations on

human decisions. We now show that the experimental data can also be used to derive an optimal

decision rule given a certain objective. In addition, by comparing human decisions and algorithmic

recommendations with optimal decision rules, we can evaluate their efficacy. In our application, one

goal is to prevent as many NCAs (NVCAs or FTAs) as possible while avoiding unnecessarily harsh

initial release decisions. To achieve this, we must carefully weigh the cost of negative outcomes and

that of unnecessarily harsh decisions. Once these costs are specified as part of the utility function,

one can empirically assess this tradeoff using the experimental data.

Formally, let δ be the judge’s decision based on Xi, which may include the PSA. We consider

a deterministic decision rule, i.e., δ(x) = d if x ∈ Xd where Xd is a non-overlapping partition of

the covariate space X with X =
⋃k
r=0Xr and Xr ∩ Xr′ = ∅. We consider the utility function of the

following form,

Ui(δ) =


−c0 δ(Xi) < Ri

1 δ(Xi) = Ri

1− c1 δ(Xi) > Ri

,

where c0 and c1 represent the cost of an NCA (NVCA or FTA) and that of an unnecessarily harsh

decision, respectively. Under this setting, preventing an NCA (NVCA or FTA) with the most lenient

decision (δ(Xi) = Ri) yields the utility of one, while we incur the cost c1 for an unnecessarily harsh

decision (δ(Xi) > Ri), leading to the net utility of 1− c1.

The relative magnitude of these two cost parameters, c0 and c1, may depend on the consideration

of various factors including the potential harm to the public and arrestees caused by the negative

outcomes and unnecessarily harsh decisions, respectively. When c0 = c1 = 0, for example, Ui(δ)

reduces to 1{δ(Xi) ≥ Ri}, which is non-zero only if the decision is sufficiently harsh so that it

prevents the negative outcome. The optimal decision under this utility is the most stringent decision,

i.e., δ(Xi) = k, for all cases. If c0 = 2 and c1 = 1, the resulting utility function implies that the cost

of NCA (NVCA or FTA) is twice as large as that of an unnecessarily harsh decision.
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We derive the optimal decision rule δ∗ that maximizes the expected utility,

δ∗ = argmax
δ

E{Ui(δ)}.

For r = 0, . . . , k + 1 and d = 0, . . . , k, we can write,

E[1{δ(Xi) = d,Ri = r}] = E{1(Xi ∈ Xd, Ri = r)} = E {1(Xi ∈ Xd) · er(Xi)} .

Thus, we can express the expected utility as,

E{Ui(δ)} (11)

=

k+1∑
r=0

(∑
d>r

(1− c1)E[1{δ(Xi) = d,Ri = r}] +
∑
d=r

E[1{δ(Xi) = d,Ri = r}]−
∑
d<r

c0E[1{δ(Xi) = d,Ri = r}]

)

=

k+1∑
r=0

∑
d≥r

E {1(Xi ∈ Xd) · er(Xi)} − c0
∑
d<r

E {1(Xi ∈ Xd) · er(Xi)} − c1
∑
d>r

E {1(Xi ∈ Xd) · er(Xi)}


=

k∑
d=0

E

1(Xi ∈ Xd)

∑
r≤d

er(Xi)− c0 ·
∑
r>d

er(Xi)− c1 ·
∑
r<d

er(Xi)


 . (12)

This yields the following optimal decision,

δ∗(x) = argmax
d∈{0,...,k}

gd(x) where gd(x) =
∑
r≤d

er(x)− c0 ·
∑
r>d

er(x)− c1 ·
∑
r<d

er(x). (13)

We can, therefore, use the experimental estimate of er(x) to learn about the optimal decision.

Policy makers could derive the optimal decision rule by using the above result and then adopt this

rule as the recommendation for judges. However, this may not be useful if the judge decides to follow

the algorithmic recommendation selectively for some cases or ignore it altogether. Instead, we may

wish to construct PSA scores that maximize the optimality of the judge’s decision. Unfortunately,

the derivation of such an optimal PSA score is challenging since the PSA scores were not directly

randomized in our experiment. We tackle this problem in a separate paper (Ben-Michael et al., 2021).

In Appendix S6, we also consider the optimal provision of the PSA given the same goal considered

above (i.e., prevent as many NCAs (NVCAs or FTAs) as possible with the minimal amount of bail).

4 Empirical Analysis

In this section, we apply the proposed methodology to the data from the field RCT described in

Section 2.

20



safe

 easily             
 preventable    

          preventable

  risky

0.00

0.25

0.50

0.75

1.00

Overall Female Male Non−white
Male

White
Male

Failure to Appear (FTA)

0.00

0.25

0.50

0.75

1.00

Overall Female Male Non−white
Male

White
Male

New Criminal Activity (NCA)

0.00

0.25

0.50

0.75

1.00

Overall Female Male Non−white
Male

White
Male

New Violent Criminal Activity (NVCA)

Figure 3: Estimated Proportion of Each Principal Stratum. Each plot represents the result using
one of the three outcome variables (FTA, NCA, and NVCA), where the blue, black, red, and brown
diamonds represent the estimates for safe, easily preventable, preventable, risky cases, respectively.
The solid vertical lines represent the 95% Bayesian credible intervals. The results show that a vast
majority of cases are safe across subgroups and across different outcomes. The proportion of safe
cases is estimated to be especially high for NVCA.

4.1 Preliminaries

As explained in Section 2.3, we use the ordinal decision variable with three categories — the signature

bond (Di = 0), the bail amount of $1,000 or less (Di = 1), and the bail amount of greater than

$1,000 (Di = 2). Given this ordinal decision, we label the principal strata as safe (Ri = 0), easily

preventable (Ri = 1), preventable (Ri = 2), and risky cases (Ri = 3).

We fit the Bayesian model defined in Equations (7) and (8) with a diffuse prior distribution as

specified in Appendix S5, separately for each of three binary outcome variables — FTA, NCA, and

NVCA. The model incorporates the following pre-treatment covariates: gender (male or female), race

(white or non-white), the interaction between gender and race, age, and several indicator variables

regarding the current and past charges. It also includes a binary variable for the presence of pending

charge (felony, misdemeanor, or both) at the time of offense, four binary variables for current charges

(non-violent misdemeanor, violent misdemeanor, non-violent felony, and violent felony), a four-level

ordinal variable for the DMF recommendation, three variables for prior conviction (binary variables

for misdemeanor and felony as well as a four-level factor variable for violent conviction), a binary

variable for prior sentence to incarceration, and two variables for prior FTA (a three-level factor

variable for FTAs from past two years, and a binary variable for FTAs from over two years ago).

We use the Gibbs sampling and run five Markov chains of 100,000 iterations each with random

starting values independently drawn from the prior distribution. Based on the Gelman-Rubin statis-

tic for convergence diagnostics, we retain the second half of each chain and combine them to be

used for our analysis. Appendix S5 presents the computational details including the Gibbs sampling

algorithm we use.
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We begin by computing the estimated population proportion of each principal stratum based on

Equation (6). Figure 3 presents the results. We find that for FTA, the overall proportion of safe

cases (blue) is estimated to be 67%, whereas those of easily preventable (black), preventable (red),

and risky (brown) cases are 6%, 7%, and 20% respectively. A similar pattern is observed for FTA

and NCA across different racial and gender groups, while the estimated overall proportion of safe

cases is even higher for NVCA, exceeding 90%.

4.2 Average Principal Causal Effects

Figure 4 presents the estimated APCE of PSA provision on the three ordinal decision categories,

separately for each of the three outcomes and each principal stratum (see Equation (5)). The overall

and subgroup-specific results are given for each of the four principal strata — safe (blue), easily

preventable (black), preventable (red), and risky (brown) cases. For a given principal stratum, we

present the estimated APCE on each decision category — signature bond (circle), small cash bond

(triangle), and large cash bond (square). The left column of each panel shows that PSA provision

has little overall impact on the judge’s decision across four principal strata for FTA and NCA. There

is a suggestive, but inconclusive, evidence that PSA provision leads to an overall harsher decision

for NVCA among easily preventable, preventable, and risky cases.

We also present the estimated APCE for different gender and racial groups in the remaining

columns of each panel. We find potentially suggestive evidence that PSA provision may make it

more likely for the judge to impose signature bonds (circles) on female arrestees instead of cash

bonds (triangles and squares) across three outcomes. Interestingly, for all outcomes, this pattern

appears to hold for any of the four principal strata, implying that PSA provision might not help the

judge distinguish different risk levels of female arrestees. Our analysis also finds that for NVCA,

PSA provision may lead to a harsher decision for easily preventable, preventable, and risky cases

among male arrestees while it has little effect on the safe cases. This suggests that PSA provision

may help distinguish different risk levels among male arrestees, resulting in improved decisions at

least in terms of the original goal of the PSA. There is no discernible racial difference in these effects.

In Appendix S2.2, we explore the estimated APCE for different age groups. We find that PSA

provision may lead to a harsher decision for arrestees of the 29–35 years old group across three

outcomes. This pattern appears to generally hold across all principal strata though for NVCA the

effects are more pronounced for easily preventable, preventable, and risky cases. In addition, our

analysis yields suggestive evidence that across all outcomes, PSA provision may make the judge’s

decision more lenient for the oldest (46 years old or above) group. This appears to be true across all
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Figure 4: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision. Each panel presents the overall and subgroup-specific results for a different outcome
variable. Each column within a panel shows the estimated APCE of PSA provision for safe (blue),
easily preventable (black), preventable (red), and risky (brown) cases. For each of these principal
strata, we report the estimated APCE on the judge’s decision to impose a signature bond (circles), a
small cash bail amount of 1,000 dollars or less (triangles), and a large cash bail amount of greater than
1,000 (squares). The vertical line for each estimate represents the Bayesian 95% credible interval.
The results show that PSA provision may make the judge’s decision more lenient for female arrestees
regardless of their risk levels. PSA provision may also encourage the judge to make harsher decisions
for male arrestees with a greater risk level though the effect sizes are relatively small.
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three outcomes except that for NVCA the effect may exist only for safe cases. We reiterate, however,

that these results are based on preliminary data and the effect sizes are relatively small.

We conduct two robustness analyses. First, we perform a frequentist analysis that is based

on Theorem 2 and does not assume an outcome model. The results are shown in Appendix S7,

and are largely consistent with those shown here. As expected, the estimation uncertainty of the

frequentist analysis, which makes less stringent assumptions than Bayesian analysis, is greater.

Second, we conduct parametric sensitivity analyses using the methods described in Section 3.5 (see

Appendix S9). We set the value of correlation parameter ρ to 0.05, 0.1, and 0.3, and examine how the

estimated APCE changes. The results (see Figures S13–S15) are largely consistent across different

values of ρ although the effects for females tend to exhibit a large degree of estimation uncertainty

especially when the correlation is high and particularly for NVCA. This is not surprising. There are

only a small number of female arrestees and only a handful of NVCA events corresponding to them.

4.3 Gender and Racial Fairness

We now examine the impacts of PSA provision on gender and racial fairness. Specifically, we evaluate

the principal fairness of PSA provision as discussed in Section 3.6. We use gender (female vs. male)

and race (white male vs. non-white male) separately as a protected attribute, and analyze whether

or not the provision of the PSA improves the fairness of the judge’s decision in terms of the protected

attribute. While the gender analysis is based on the entire sample, the racial analysis is based on

the male sample only due to the limited sample size for females.

Figure 5 presents the results for gender (top panel) and racial (bottom panel) fairness across

the principal strata and separately for each of the three outcomes. Each column within a given

plot presents ∆r(z) defined in equation (10), which represents the maximal subgroup difference in

the judge’s decision probability distribution within the same principal stratum Ri = r under the

provision of the PSA z = 1 (no provision z = 0). In this application, the maximal difference always

occurs at d = 1, allowing us to interpret ∆r(z) as the difference in probability of imposing a cash

bond (D ≥ 1) rather than a signature bond. We also present the estimated difference caused by

PSA provision in the two maximal subgroup differences, i.e., ∆r(1) − ∆r(0). If this difference is

estimated to be positive, then PSA provision reduces the fairness of judge’s decisions by increasing

the maximal subgroup difference.

We find that PSA provision might worsen the gender fairness of the judge’s decisions. When

the PSA is provided, the maximal gender difference in the judge’s decision probability is on average

greater than that when it is not provided. The effect is particularly large and statistically significant
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Figure 5: Gender and Racial Fairness of the Judge’s Decisions. Within each plot, we show three
estimates separately for each principal stratum — the maximal subgroup difference in the judge’s
decision probability of imposing a cash bond with PSA provision (squares; ∆(1)) and without it
(triangles; ∆(0)) as well as the difference between them (circles; ∆(1) − ∆(0)). The vertical solid
lines represent the 95% Bayesian credible intervals. A positive value of the difference would imply
that the PSA reduces the fairness of the judge’s decisions. For the gender analysis (top panel),
even without the PSA, the judge seems to be more likely to impose a cash bond on male arrestees
when compared to female arrestees with the same risk levels. PSA provision appears to increase this
tendency. For the race analysis (bottom panel), PSA provision has little impact across all outcomes
and risk levels. We reiterate, however, that these results are based on the preliminary data.

for NVCA and for preventable, easily preventable, and risky cases. This is consistent with our

finding that especially for NVCA, PSA provision might make the judge’s decision more lenient for

female arrestees while it leads to a harsher decision for male arrestees among preventable, easily

preventable, and risky cases. Thus, PSA provision appears to increase disparate decision-making

across gender.

PSA provision, however, does not have a statistically significant impact on the racial fairness of

the judges’ decisions among male arrestees. For instance, in the principal stratum of safe cases, we

find that PSA provision does not affect the maximal difference in the judge’s decision probability

(between non-white males and white males). This suggests that in terms of principal fairness, the

PSA may not alter any existing racial difference in the judge’s decisions.
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(b) The cases whose DMF recommendation is a cash bond
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Figure 6: Estimated Proportion of Cases for Which Cash Bond is Optimal. Each column represents
the results based on one of the three outcomes (FTA, NCA, and NVCA). The top (bottom) panel
shows the results for the cases whose DMF recommendation is a signature (cash) bond. In each plot,
the contour lines represent the estimated proportions of cases for which a cash bond is optimal, given
the cost of an unnecessarily harsh decision (c1; y-axis) and that of a negative outcome (c0; x-axis).
A dark grey area represents a greater proportion of such cases. The results show that regardless of
DMF recommendation, a signature bond is optimal unless the cost of a negative outcome is much
greater than the cost of an unnecessarily harsh decision.

4.4 Using Optimal Decision to Evaluate the DMF Recommendation

Finally, we evaluate the DMF recommendation by comparing it with the optimal decision under

different values of the costs. For simplicity, we consider a binary decision: signature or cash bond.

As discussed in Section 3.7, given a specific pair of cost parameters (c0, c1) and the experimental

estimate of er(x) for r = 0, 1, 2, we can compute the optimal decision for each case according to

Equation (13). We then obtain the estimated proportion of cases, for which a cash bond is optimal.

We repeat this process for a grid of different values for the cost of a negative outcome (c0; FTA,

NCA, and NVCA) and that of an unnecessarily harsh decision (c1).
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The top panel of Figure 6 presents the results for the cases whose DMF recommendation is a

signature bond. In contrast, the bottom panel of the figure shows the results for the other cases

(i.e., the DMF recommendation is a cash bond). In each plot, a darker grey region represents a

greater proportion of cases, for which a cash bond is optimal. The results suggest that unless the

cost of a negative outcome is much higher than the cost of an unnecessarily harsh decision, imposing

a signature bond is the optimal decision for a vast majority of cases.

We also find that for all three outcomes, a cash bond is optimal for a greater proportion of cases

when the DMF recommendation is indeed a cash bond. However, this difference is small, suggesting

that the DMF recommendation is only mildly informative. Similar results are found even if we

separately examine three PSA scores (see Figure S16 in Appendix S10).

4.5 Comparison between the Judge’s Decisions and DMF Recommendations

Lastly, we compare the judge’s actual decision with the DMF recommendation in terms of the

expected utility given in Equation (12). The top panel of Figure 7 represents the results for the

treatment group (i.e., judge’s decisions with the PSA), whereas the bottom panel represents those

for the control group (i.e., judge’s decisions without the PSA). A darker grey area indicates that the

expected utility for the judge’s decision is estimated to be greater than the DMF recommendation.

Most of these estimates are statistically significant (see Figure S17 for more details). Therefore,

unless the cost of a negative outcome is much greater than the cost of an unnecessarily harsh

decision, the judge’s decision (with or without the PSA scores) yields a greater expected utility than

the DMF recommendation. This is especially true for NVCA. Altogether, our analysis implies that

the DMF recommendations may be unnecessarily harsher than the judge’s decisions.

5 Concluding Remarks

In today’s data-rich society, many human decisions are guided by algorithmic recommendations.

While some of these algorithmic-assisted human decisions may be trivial and routine (e.g., online

shopping and movie suggestions), others that are much more consequential include judicial and

medical decision-making. As algorithmic recommendation systems play increasingly important roles

in our lives, we believe that a policy-relevant question is how such systems influence human decisions

and how the biases of algorithmic recommendations interact with those of human decisions. These

questions necessitate the empirical evaluation of the impacts of algorithmic recommendations on

human decisions.

In this paper, we present a set of general statistical methods that can be used for the experimental
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Figure 7: Estimated Difference in the Expected Utility between Judge’s Decisions and DMF Rec-
ommendations for the Treatment (top panel) and Control (bottom panel) Group. Each column
represents the results based on one of the three outcomes with a darker region indicating the values
of the costs (the cost of a negative outcome and the cost of an unnecessarily harsh decision) for
which the Judge’s decision yields a higher expected utility than the corresponding DMF recommen-
dation. The results show that the judge’s decision yields a higher expected utility than the DMF
recommendation unless the cost of a negative outcome is much higher than that of an unnecessarily
harsh decision. This pattern holds for all outcomes and is unchanged by the provision of the PSA.

evaluation of algorithm-assisted human decision-making. We applied these methods to the prelimi-

nary data from the first-ever randomized controlled trial for assessing the impacts of PSA provision

on judges’ pretrial decisions. There are several findings that emerge from our initial analysis. First,

we find that PSA provision has little overall impact on the judge’s decisions. Second, we find poten-

tially suggestive evidence PSA provision may encourage the judge to make more lenient decisions for

female arrestees regardless of their risk levels while leading to more stringent decisions for males who

are classified as risky. Third, PSA provision appears to widen the existing gender difference of the

judge’s decisions against male arrestees whereas it does not seem to alter decision-making across race
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among male arrestees. We caution, however, that these findings could be explained by other factors

that are correlated with gender and race. Finally, we find that for a vast majority of cases, the

optimal decision is to impose a signature bond rather than a cash bond unless the cost of a negative

outcome is much higher than that of a decision that may result in unnecessary incarceration. This

suggests that the PSA’s recommendations may be harsher than necessary.
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S1 Distribution of Judge’s Decisions Given the PSA for Subgroups
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Figure S1: The Distribution of Judge’s Decisions Given the Pretrial Public Safety Assessment (PSA)
among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups Among Female
Arrestees.
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S1.2 Non-white Male Arrestees
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Figure S2: The Distribution of Judge’s Decisions given the Pretrial Public Safety Assessment (PSA)
among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups Among Non-
white Male Arrestees.
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S1.3 White Male Arrestees
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Figure S3: The Distribution of Judge’s Decisions Given the Pretrial Public Safety Assessment (PSA)
among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups Among White
Male Arrestees.
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S2 Subgroup Analysis for Age Groups

In this appendix, we conduct the subgroup analysis for different age groups.

S2.1 Age Distribution, Descriptive Statistics, and Average Causal Effects
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Figure S4: The Distribution of Age in the Treatment (Left Panel) and Control (Right Panel) Groups
Among Arrestees.

no PSA PSA

Signature Cash bond Signature Cash bond
bond ≤$1000 >$1000 bond ≤$1000 >$1000 Total (%)

22 or below 135 24 22 136 24 16 357
(7.1) (1.3) (1.2) (7.2) (1.3) (0.8) (18.9)

23 – 28 158 25 23 148 29 28 411
(8.4) (1.3) (1.2) (7.8) (1.5) (1.5) (21.7)

29 – 35 157 40 14 151 33 28 423
(8.3) (2.1) (0.7) (8.0) (1.7) (1.5) (22.3)

36 – 45 142 22 26 133 30 22 375
(7.5) (1.2) (1.4) (7.0) (1.6) (1.2) (19.9)

46 or above 113 21 21 137 14 19 325
(6.0) (1.1) (1.1) (7.2) (0.7) (1.0) (17.1)

Table 2: The Joint Distribution of Treatment Assignment, Decisions, and Age. The table shows the
number of cases in each category with the corresponding percentage in parentheses.

Figure S4 presents the distribution of age for the treatment and control groups. As expected, the
two distributions are similar. We observe that the age distribution is right skewed with many more
young arrestees. Table 2 presents the descriptive statistics for different age groups examined here.
We divide the arrestees into five subgroups with different ranges of age (aged 22 or below, between
23 to 28, between 29 to 35, between 36 to 45, 46 or above). Within each age group, the signature
bond appears to be the dominant decision.
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Figure S5: Estimated Average Causal Effects of PSA Provision on Judge’s Decisions and Outcome
Variables for First Arrest Cases (FTA, NCA, and NVCA). The results are based on the difference-
in-means estimator. The vertical bars represent the 95% confidence intervals. In the left figure, we
report the estimated average causal effect of PSA provision on the decision to charge a signature
bond (circles), a small cash bail ($1,000 dollars or less; triangles), and a large cash bail (greater than
$1,000; squares). In the right figure, we report the estimated average causal effect of PSA provision
on the three different outcome variables: FTA (open circles), NCA (open triangles), and NVCA
(open squares).

Figure S5 presents the estimated Intention-to-Treat (ITT) effects of PSA provision on judge’s
decisions (left panel) and arrestee’s behaviors (right panel). We find that PSA provision has little
effect on the judge’s decisions with the exception of the 29 – 35 years old group and the oldest group.
For the 29 – 35 years old group, the PSA appears to lead to a harsher decision while for the 46 or
older group the effect is the opposite. As for the effects on arrestee’s behavior, our analysis suggests
that PSA provision may increase NVCA among the 29 – 35 years old group though the estimate is
only marginally significant.

S2.2 Principal Stratum Proportion and Average Principal Strata Effects
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Figure S6: Estimated Proportion of Each Principal Stratum. Each plot represents the result using
one of the three outcome variables (FTA, NCA, and NVCA), where the blue, black, red, and brown
diamonds represent the estimates for safe, easily preventable, preventable, risky cases, respectively.
The solid vertical lines represent the 95% Bayesian credible intervals.

Figure S6 presents the estimated proportion of each principal stratum for different age groups.
We observe that the principal stratum size is similar across age groups with the safe cases being
the most dominant. The proportion of safe cases appears to be greater for older age groups though
the rate of increase is modest. The interpretation of Figure S7 is given in the last paragraph of
Section 4.2.
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Figure S7: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision. Each panel presents the age group-specific results for a different outcome variable. Each
column within a panel shows the estimated APCE of PSA provision for safe (blue), easily preventable
(black), preventable (red), and risky (brown) cases. For each of these principal strata, we report the
estimated APCE on the judge’s decision to impose a signature bond (circles), a small cash bail amount
of 1,000 dollars or less (triangles), and a large cash bail amount of greater than 1,000 (squares). The
vertical line for each estimate represents the Bayesian 95% credible interval.
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S3 Testing the Potential Existence of Spillover Effects

S3.1 Conditional Randomization Test

We examine the possible existence of spillover effects. In particular, we use a conditional random-
ization test to examine whether or not PSA provision of prior cases affects the judge’s decision in
later cases (e.g., Aronow, 2012; Athey, Eckles and Imbens, 2018; Candès et al., 2018). The basic idea
is to test whether the decision, Di, is conditionally independent of the treatment assignment of the
other cases whose court hearing date is prior to that of case i, given its own treatment assignment
status Zi. The judge made decision for 1, 891 cases on 274 different dates. Unfortunately, we do not
have information about the ordering of decisions within each hearing date. Let Oi ∈ {1, 2, . . . , 274}
denote the order of the hearing date of case i. Let Z̃i = |{i′ ∈ {1, 2, . . . , n} : Oi′ = Oi − 1}| denote
the proportion of treated cases whose hearing date order is immediately before that of case i. Then,
the null hypothesis is given by H0 : Z̃i ⊥⊥ Di | Zi. We conduct a conditional randomization test as
follows:

1. Create a new treatment assignment Z ′i as follows:

(a) For each i, if Oi is even then Z ′i = Zi

(b) For each i, if Oi is odd then randomly sample Z ′i ∼ Bernoulli(1/2)

Then compute Z̃ ′i based on Z ′i, i.e., Z̃ ′i = |{i′ ∈ {1, 2, . . . , n} : Oi′ = Oi − 1}|.

2. Regress Di on (1, Zi, Z̃
′
i) only using the subset of observations whose Oi is even. Let our test

statistic T be the squared term of estimate of coefficient of Z̃ ′i.

3. Repeat the above S times and compute (one-sided) p-value: 1
S

∑S
s=1 1{T (s) ≥ Tobs} where T (s)

is the test statistic for the sth iteration and Tobs is the observed test statistic.

p−value =  0.7107
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Figure S8: The Distributions of Test Statistics. The red vertical lines indicate the observed test
statistics.

Figures S8 presents the resulting distribution of our test statistics. The p-value is 0.71 for the
test statistics T , and thus we fail to reject the null hypothesis. That is, we find no statistically
significant evidence that the judge’s decision is influenced by PSA provision of the prior cases. This
is consistent with the assumption of no inference among the cases, which is made throughout our
analysis.
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S3.2 Power: A Simulation Analysis

We examine the power of the statistical test used above via a simulation study. Our simulation
procedure is as follows:

1. Regress Di on (1, Zi, Z̃i) using the ordinal logistic regression model based on the observed data.
Let ω denote the coefficient for Z̃i.

2. Choose a value of ω, and set the other model parameters to their estimated values. Using this
mode, generate Di with the same sample size and observed treatment variable.

3. Conduct the conditional randomization test as described in Section S3.1. Repeat this for 1, 000
times and calculate the proportion of rejecting the null hypothesis at the 0.05 level.

4. Repeat the above procedure for each value of ω ∈ {−1.5,−1,−0.5, 0, 0.5, 1, 1.5}.
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Figure S9: The Proportion of Rejecting the Null Hypothesis at the 0.05 Level.

Figures S9 presents the results of our simulation study for calculating the power of the test. Here,
if the proportion of treated cases whose hearing date order is immediately before is 1, the odds of
judges making harsher decision is expω times that of the arrestees whose proportion of treated cases
whose hearing date order is immediately before is 0. According to the simulation, the power of the
test reaches about 0.8 when ω = 1 or expω = 2.72. Thus, it is possible that with the given sample
size, only the relatively large effect can be detected. This suggests that we must interpret the result
of this test presented in Section S3.1 with caution.
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S4 Proofs of the Theorems

S4.1 Lemmas

To prove the theorems, we need some lemmas.

Lemma S1 Consider two random variables X and Y . Suppose that they have finite moments and
the support of Y contains that of X. Let f1(x) and f2(y) be their density functions. Then, any
function g(·),

E{g(X)} = E
{
f1(Y )

f2(Y )
g(Y )

}
.

Proof is straightforward and hence omitted.

Lemma S2 For a binary decision, Assumption 4 implies {Yi(1), Yi(0)}⊥⊥Di | Xi, Zi = z under As-
sumption 3. For an ordinal decision, Assumption 4 implies Ri⊥⊥Di | Xi, Zi = z under Assumption 6.

Proof of Lemma S2. For a binary decision, we have

Pr{Yi(1) = 1, Yi(0) = 1 | Di,Xi, Zi = z} = Pr{Yi(1) = 1 | Di,Xi, Zi = z}
= Pr{Yi(1) = 1 | Xi, Zi = z}
= Pr{Yi(1) = 1, Yi(0) = 1 | Xi, Zi = z},

where the first and third equality follow from Assumption 3 and the second equality follows from
Assumption 4. Similarly, we have

Pr{Yi(1) = 0, Yi(0) = 0 | Di,Xi, Zi = z} = Pr{Yi(0) = 0 | Di,Xi, Zi = z}
= Pr{Yi(0) = 0 | Xi, Zi = z}
= Pr{Yi(1) = 0, Yi(0) = 0 | Xi, Zi = z},

where the first and third equality follow from Assumption 3 and the second equality follows from
Assumption 4. As a result, {Yi(1), Yi(0)}⊥⊥Di | Xi, Zi = z because {Yi(1), Yi(0)} takes only three
values.

For a discrete decision Di taking values in {0, . . . , k}, we have

Pr(Ri = r | Di,Xi, Zi = z) = Pr(Ri ≥ r | Di,Xi, Zi = z)− Pr(Ri ≥ r + 1 | Di,Xi, Zi = z)

= Pr(Yi(r − 1) = 1 | Di,Xi, Zi = z)− Pr(Yi(r) = 1 | Di,Xi, Zi = z)

= Pr(Yi(r − 1) = 1 | Xi, Zi = z)− Pr(Yi(r) = 1 | Xi, Zi = z)

= Pr(Ri ≥ r | Xi, Zi = z)− Pr(Ri ≥ r + 1 | Xi, Zi = z)

= Pr(Ri = r | Di,Xi, Zi = z)

for r = 1, . . . , k, where the second and the fourth equality follow from the definition of Ri and the
third equality follows from Assumption 4. Similarly, we have

Pr(Ri = 0 | Di,Xi, Zi = z) = Pr(Yi(0) = 0 | Di,Xi, Zi = z)

= Pr(Yi(0) = 0 | Di, Zi = z)

= Pr(Ri = 0 | Di, Zi = z),

Pr(Ri = k + 1 | Di,Xi, Zi = z) = Pr(Yi(k) = 1 | Di,Xi, Zi = z)

= Pr(Yi(k) = 1 | Di, Zi = z)

= Pr(Ri = k + 1 | Di, Zi = z).

As a result, Ri⊥⊥Di | Xi, Zi = z. �
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S4.2 Proof of Theorem 1

First, Assumption 3 implies,

Pr{Yi(0) = 0, Yi(1) = 0} = Pr{Yi(0) = 0}, Pr{Yi(0) = 1, Yi(1) = 1} = Pr{Yi(1) = 1},
Pr{Yi(0) = 1, Yi(1) = 0} = 1− Pr{Yi(0) = 0} − Pr{Yi(1) = 1}.

Second, we have

Pr{Di(z) = 1, Yi(0) = 0, Yi(1) = 0}
= Pr{Yi(0) = 0, Yi(1) = 0} − Pr{Di(z) = 0, Yi(0) = 0, Yi(1) = 0}
= Pr{Yi(0) = 0} − Pr{Di(z) = 0, Yi(0) = 0}
= Pr{Yi(0) = 0} − Pr{Di(z) = 0, Yi(Di(z)) = 0 | Zi = z}
= Pr{Yi(0) = 0} − Pr(Di = 0, Yi = 0 | Zi = z),

where the second equality follows from Assumption 3 and the third equality follows from Assump-
tion 1. Similarly, we can obtain

Pr{Di(z) = 1, Yi(0) = 1, Yi(1) = 1} = Pr{Di(z) = 1, Yi(1) = 1}
= Pr{Di(z) = 1, Yi(Di(z)) = 1 | Zi = z}
= Pr(Di = 1, Yi = 1 | Zi = z).

Therefore,

Pr{Di(z) = 1, Yi(0) = 1, Yi(1) = 0}
= pr{Di(z) = 1} − Pr{Di(z) = 1, Yi(0) = 0, Yi(1) = 0} − Pr{Di(z) = 1, Yi(0) = 1, Yi(1) = 1}
= pr{Di = 1 | Zi = z} − Pr{Yi(0) = 0}+ Pr(Di = 0, Yi = 0 | Zi = z)− Pr(Di = 1, Yi = 1 | Zi = z)

= Pr(Yi = 0 | Zi = z)− Pr{Yi(0) = 0}.

Finally, we have,

APCEp =
Pr{Di(1) = 1, Yi(0) = 1, Yi(1) = 0} − Pr{Di(0) = 1, Yi(0) = 1, Yi(1) = 0}

Pr{Yi(0) = 1, Yi(1) = 0}

=
Pr(Yi = 1 | Zi = 0)− Pr(Yi = 1 | Zi = 1)

Pr{Yi(0) = 1} − Pr{Yi(1) = 1}
,

APCEr =
Pr{Di(1) = 1, Yi(0) = 1, Yi(1) = 1} − Pr{Di(0) = 1, Yi(0) = 1, Yi(1) = 1}

Pr{Yi(0) = 1, Yi(1) = 1}

=
Pr(Di = 1, Yi = 1 | Zi = 1)− Pr(Di = 1, Yi = 1 | Zi = 0)

Pr{Yi(1) = 1}
,

and

APCEs =
Pr{Di(1) = 1, Yi(0) = 0, Yi(1) = 0} − Pr{Di(0) = 1, Yi(0) = 0, Yi(1) = 0}

Pr{Yi(0) = 0}

=
Pr(Di = 0, Yi = 0 | Zi = 0)− Pr(Di = 0, Yi = 0 | Zi = 1)

Pr{Yi(0) = 0}
.

�
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S4.3 Proof of Theorem 2

Assumption 4 and Lemma S2 imply,

E{Di(z) | Yi(1) = y1, Yi(0) = y0} = E [E{Di(z) | Xi, Yi(1) = y1, Yi(0) = y0} | Yi(1) = y1, Yi(0) = y0]

= E [E{Di(z) | Xi} | Yi(1) = y1, Yi(0) = y0] .

Based on Lemma S1,

E [E{Di(z) | Xi} | Yi(1) = y1, Yi(0) = y0]

= E
[

Pr{Xi | Yi(1) = y1, Yi(0) = y0}
Pr(Xi)

E{Di(z) | Xi}
]

= E

(
E

[
Pr{Xi | Yi(1) = y1, Yi(0) = y0}

Pr(Xi)
Di(z)

∣∣∣∣∣Xi

])

= E

(
E

[
Pr{Yi(1) = y1, Yi(0) = y0 | Xi}

Pr{Yi(1) = y1, Yi(0) = y0}
Di(z)

∣∣∣∣∣Xi

])

= E
[

Pr{Yi(1) = y1, Yi(0) = y0 | Xi}
Pr{Yi(1) = y1, Yi(0) = y0}

Di(z)

]
= E

[
Pr{Yi(1) = y1, Yi(0) = y0 | Xi}

Pr{Yi(1) = y1, Yi(0) = y0}
Di

∣∣∣∣∣Zi = z

]
, (S1)

where the last equality follows from Assumption 1. We can then obtain the expressions for APCEp,
APCEr, and APCEs by choosing different values of y1 and y0 in (S1). �

S4.4 Proof of Theorem 3

Assumption 1 implies,

Pr{Di(z) = d, Yi(d) = y} = Pr{Di(z) = d, Yi(Di(z)) = y | Zi = z} = Pr(Di = d, Yi = y | Zi = z).

Therefore,

Pr{Di(z) = 1 | Yi(0) = y} =
Pr{Di(z) = 1, Yi(0) = y}

Pr{Yi(0) = y}

=
Pr{Yi(0) = y} − Pr{Di(z) = 0, Yi(0) = y}

Pr{Yi(0) = y}

=
Pr{Yi(0) = y} − Pr(Di = 0, Yi = y | Zi = z)

Pr{Yi(0) = y}
.

As a result, we have

APCEp =
Pr(Di = 0, Yi = 1 | Zi = 0)− Pr(Di = 0, Yi = 1 | Zi = 1)

Pr{Yi(0) = 1}
,

APCEs =
Pr(Di = 0, Yi = 0 | Zi = 0)− Pr(Di = 0, Yi = 0 | Zi = 1)

Pr{Yi(0) = 0}
.

�
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S4.5 Proof of Theorem 5

Using the law of total expectation, we have

E[1{Di(z) ≥ r} | Ri = r] = E(E[1{Di(z) ≥ r} | Xi, Ri = r] | Ri = r)

= E(E[1{Di(z) ≥ r} | Xi] | Ri = r)

= E
(

Pr(Xi | Ri = r)

Pr(Xi)
E[1{Di(z) ≥ r} | Xi]

)
= E

(
Pr(Ri = r | Xi)

Pr(Ri = r)
E[1{Di(z) ≥ r} | Xi]

)
= E

[
Pr(Ri = r | Xi)

Pr(Ri = r)
1{Di(z) ≥ r}

]
= E

[
Pr(Ri = r | Xi)

Pr(Ri = r)
1{Di ≥ r} | Zi = z

]
,

where the second equality follows from Assumption 4 and Lemma S2, and the last equality follows
from Assumption 1. Thus,

APCEp(r) = E{wr(Xi)1(Di ≥ r) | Zi = 1} − E{wr(Xi)1(Di ≥ r) | Zi = 0}.

We can prove the expression for APCEs similarly. �

S5 Details of the Bayesian Estimation

We only consider the algorithm for sensitivity analysis with ordinal decision since the computation
of the original analysis is straightforward by setting the sensitivity parameters to zero. Consider the
model given in Equations (7) and (8). We can write Equation (7) in terms of the observed data as,

D∗i = βZZi + X>i βX + ZiX
>
i βZX + εi1, (S2)

where

Di =



0 D∗ ≤ θZi,1

1 θZi,1 < D∗i ≤ θZi,2

...
...

k − 1 θZi,k−1 < D∗i ≤ θZi,k

k θZi,k < D∗i

.

We then consider Equation (8). For r = 0, . . . , k, because Ri ≥ r + 1 is equivalent to Yi(r) = 1, we
have

Pr{Y (r) = 1} = Pr(R∗i > δr) = Pr(X>i αX + εi2 > δr) = Pr(−δr + X>i αX + εi2 > 0).

Therefore, we can introduce a latent variable Y ∗(r), and write

Y ∗i (r) = −δr + X>i αX + εi2, (S3)

where Yi(r) = 1 if Y ∗i (r) > 0 and Yi(r) = 0 if Y ∗i (r) ≤ 0. We can further write Equation (S3) in
terms of the observed data as

Y ∗i = −
k∑
r=0

δr1(Di = r) + X>i αX + εi2, (S4)
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where Yi = 1 if Y ∗i > 0 and Yi = 0 if Y ∗i ≤ 0.
Combining Equations (S2) and (S4), we have

D∗i = βZZi + X>i βX + ZiX
>
i βZX + εi1, (S5)

Y ∗i = −
k∑
d=0

δd1(Di = d) + X>i αX + εi2, (S6)

where (
εi1
εi2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

and

Di =



0 D∗ ≤ θZi,1

1 θZi,1 < D∗i ≤ θZi,2

...
...

k − 1 θZi,k−1 < D∗i ≤ θZi,k

k θZi,k < D∗i

, Yi =

{
0 Y ∗i ≤ 0

1 Y ∗i > 0

with δd ≤ δd′ for d ≤ d′.
We choose multivariate normal priors for the regression coefficients, (βZ , β

>
X , β

>
ZX) ∼N2p+1(0,ΣD)

and αX ∼ Np(0,ΣR). We choose the priors for θ and δ in the following manner. We first choose
a normal prior for θz1 and δ0, θz1 ∼ N(0, σ20) and δ0 ∼ N(0, σ20) for z = 0, 1. We then choose
truncated normal priors for other parameters, θzj ∼ N(0, σ20)1(θzj ≥ θz,j−1) for j = 2, . . . , k and
δl ∼ N(0, σ20)1(δl ≥ δl−1) for l = 1, . . . , k. In this way, we guarantee that θ’s and δ’s are increasing.
In our empirical analysis, we choose ΣD = 0.01 · I2p+1, ΣR = 0.01 · Ip, and σ0 = 10.

Treating Y ∗i and D∗i as missing data, we can write the complete-data likelihood as

L(θ, β, δ, α)

=
n∏
i=1

Li(θ, β, δ, α)

∝
n∏
i=1

exp

− 1

2(1− ρ2)

(D∗ −X>i βX − βZZi − ZiX>i βZX)2 +

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}2

−2ρ(D∗ −X>i βX − βZZi)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
.

Imputation Step. We first impute the missing data given the observed data and parameters.
Using R package tmvtnorm, we can jointly sample Y ∗i and D∗i . Given (Di, Yi, Zi,X

>
i , θ, β, α, δ),

(D∗i , Y
∗
i ) follows a truncated bivariate normal distribution whose means are given by X>i βX+βZZi+

ZiX
>
i βZX and −

∑k
d=0 δd1(Di = d) + X>i αX , and whose covariance matrix has unit variances and

correlation ρ where D∗ is truncated within interval [θzd, θz,d+1] if Zi = z and Di = d (we define
θ0 = −∞ and θk+1 =∞) and Y ∗i is truncated within (−∞, 0) if Yi = 0 and [1,∞) if Yi = 1.

13



Posterior Sampling Step. The posterior distribution is proportional to

n∏
i=1

exp

− 1

2(1− ρ2)

(D∗ −X>i βX − βZZi − ZiX>i βZX)2 +

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}2

−2ρ(D∗ −X>i βX − βZZi − ZiX>i βZX)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])

· exp

{
−

(βZ , β
>
X , β

>
ZX)Σ−1D (βZ , β

>
X , β

>
ZX)>

2

}
· exp

(
−
α>XΣ−1R αX

2

)

· exp

(
− θ

2
11

2σ20

)
exp

(
− δ20

2σ20

) k∏
j=2

{
exp

(
−
θ21j
2σ20

)
1(θ1j ≥ θ1,j−1)

}
k∏
l=1

{
exp

(
−
δ2l

2σ20

)
1(δl ≥ δl−1)

}

· exp

(
− θ

2
01

2σ20

) k∏
j=2

{
exp

(
−
θ20j
2σ20

)
1(θ0j ≥ θ0,j−1)

}
.

We first sample (βZ , β
>
X , β

>
ZX). From the posterior distribution, we have

f(βZ , β
>
X , β

>
ZX | ·)

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
(D∗i −X>i βX − βZZi − ZiX

>
i βZX)2

−2ρ(D∗i −X>i βX − βZZi − ZiX
>
i βZX)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
· exp

{
− (βZ , β

>
X , β

>
ZX)>Σ−1

D (βZ , β
>
X , β

>
ZX)

2

}

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
(βZ , β

>
X , β

>
ZX)(Zi,X

>
i , ZiX

>
i )>(Zi,X

>
i , ZiX

>
i )(βZ , β

>
X , β

>
ZX)> − 2D∗i (Zi,X

>
i , ZiX

>
i )(βZ , β

>
X , β

>
ZX)>

+2ρ

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}
(Zi,X

>
i , ZiX

>
i )(βZ , β

>
X , β

>
ZX)>

])
· exp

{
− (βZ , β

>
X , β

>
ZX)>Σ−1

D (βZ , β
>
X , β

>
ZX)

2

}
.

Therefore, we can sample

(βZ , β
>
X , β

>
ZX)> | · ∼Np+1(µ̂D, Σ̂D),

where

Σ̂D =

{
1

1− ρ2
n∑
i=1

(Zi,X
>
i , ZiX

>
i )>(Zi,X

>
i , ZiX

>
i ) + Σ−1D

}−1
,

µ̂D = Σ̂D

(
1

1− ρ2
n∑
i=1

(Zi,X
>
i , ZiX

>
i )>

[
D∗i − ρ

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
.

We then consider sampling αX . We have

f(αX | ·)

∝
n∏

i=1

exp

− 1

2(1− ρ2)

{Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}2

−2ρ(D∗i −X>i βX − βZZi − ZiX
>
i βZX)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
· exp

(
−α
>
XΣ−1

R αX

2

)

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
α>XX>i XiαX − 2

{
Y ∗i +

k∑
d=0

δd1(Di = d)

}
XiαX + 2ρ(D∗i −X>i βX − βZZi − ZiX

>
i βZX)XiαX

])
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· exp

(
−α
>
XΣ−1

R αX

2

)
.

Therefore, we can sample

αX | · ∼Np(µ̂R, Σ̂R),

where

Σ̂R =

{
1

1− ρ2
n∑
i=1

X>i Xi + Σ−1R

}−1
,

µ̂R = Σ̂R

(
1

1− ρ2
n∑
i=1

Xi

[{
Y ∗i +

k∑
d=0

δd1(Di = d)

}
− ρ(D∗i −X>i βX − βZZi − ZiX>i βZX)

])
.

To sample δ’s, we write
∑k

d=0 δd1(Di = d) = δ0 +
∑k

d=1(δd − δd−1)1(Di ≥ d) and denote
Wi = (1,1(Di ≥ 1), . . . ,1(Di ≥ k)) and δ = (δ0, δ1 − δ0, . . . , δk − δk−1). Thus, we have

f(δ | ·)

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[{
Y ∗i + Wiδ −X>i αX

}2

− 2ρ(D∗i −X>i βX − βZZi − ZiX
>
i βZX)

{
Y ∗i + Wiδ −X>i αX

}])

· exp

(
− δ20

2σ2
0

) k∏
l=1

{
exp

(
− δ2l

2σ2
0

)
1(δl − δl−1 ≥ 0)

}

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
δ>W>

i Wiδ + 2
(
Y ∗i −X>i αX

)
Wiδ − 2ρ(D∗i −X>i βX − βZZi − ZiX

>
i βZX)Wiδ

])

· exp

(
− δ20

2σ2
0

) k∏
l=1

{
exp

(
− δ2l

2σ2
0

)
1(δl − δl−1 ≥ 0)

}

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
δ>W>

i Wiδ + 2
(
Y ∗i −X>i αX

)
Wiδ − 2ρ(D∗i −X>i βX − βZZi − ZiX

>
i βZX)Wiδ

])

· exp

(
−δ
>C>Cδ

2σ2
0

) k∏
l=1

1(δl − δl−1 ≥ 0),

where C is a (k+1)× (k+1) lower triangular matrix with all non-zero entries equal to 1. Therefore,
we can draw from a truncated normal distribution with mean and covariance matrix

Σ̂δ =

{
1

1− ρ2
n∑
i=1

W>
i Wi +

C>C

σ20

}−1
,

µ̂δ = Σ̂δ

[
1

1− ρ2
n∑
i=1

W>
i

{
ρ(D∗i −X>i βX − βZZi − ZiX>i βZX)−

(
Y ∗i −X>i αX

)}]
,

where the 2-th to (k + 1)-th element is truncated within interval [0,∞). We can then transform δ
to obtain (δ0, δ1, . . . , δk).

Finally, we sample

θz1 | · ∼ TN(0, σ20; max
i:Zi=z,Di=0

D∗i , min
i:Zi=z,Di=1

(D∗i , θ2)).

We then sample

θzj | · ∼ TN(0, σ20; max
i:Zi=z,Di=j−1

(D∗i , θj−1), min
i:Zi=z,Di=j

(D∗i , θj+1))
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for j = 2, . . . , k − 1, and

θzk | · ∼ TN(0, σ20; max
i:Zi=z,Di=k−1

(D∗i , θk−1), min
i:Zi=z,Di=k

D∗i ).

The MCMC gives the posterior distributions of the parameters and therefore we can obtain
the posterior distributions of Pr(Di | Ri,Xi = x, Zi = z) and Pr(Ri | Xi = x). As a result, for
r = 1, . . . , k, we have

APCEp(r) = Pr{Di(1) ≥ r | Ri = r} − Pr{Di(0) ≥ r | Ri = r}

=
E {Pr(Di(1) ≥ r,Ri = r | Xi)}

E{Pr(Ri = r | Xi)}
− E {Pr(Di(0) ≥ r,Ri = r | Xi)}

E{Pr(Ri = r | Xi)}
,

APCEs = Pr{Di(1) = 0 | Ri = 0} − Pr{Di(0) = 0 | Ri = 0}

=
E {Pr(Di(1) = 0, Ri = 0 | Xi)}

E{Pr(Ri = 0 | Xi)}
− E {Pr(Di(0) = 0, Ri = 0 | Xi)}

E{Pr(Ri = 0 | Xi)}
.

We can calculate the conditional probabilities Pr{Di(z), Ri | Xi} and Pr(Ri | Xi) based on the
posterior sample of the coefficients, and then replace the expectation with the empirical average to
obtain the estimates.

S6 Optimal PSA Provision

In this appendix, we consider the optimal PSA provision rule and conduct an empirical analysis.
Let ξ be a PSA provision rule, i.e., ξ(x) = 1 (the PSA is provided) if x ∈ B1 and ξ(x) = 0 (the
PSA is not provided) if x ∈ B0, where X = B0

⋃
B1 and B0 ∩ B1 = ∅. The judges will make their

decisions based on the PSA and other available information included in Xi = x. To consider the
influence of the PSA on judges’ decision, we define δi1 the potential decision rule of case i if the
judge received the PSA and δi0 if not. Thus, δiz(x) = d if x ∈ Xi,zd where Xi,zd is a partition of the

covariate space with X =
⋃k
d=0Xi,zd and Xi,zd ∩Xi,zd′ = ∅ for z = 0, 1. Although we allow the judge

to make a different decision even if the observed case characteristics Xi are identical, we assume
that the judges’ decisions are identically distributed given the observed case characteristics and PSA
provision. That is, we assume Pr{δiz(x) = d} = Pr{δi′z(x) = d} for fixed x, z and i 6= i′, where the
probability is taken with respect to the super population of all cases.

Given this setup, we derive the optimal PSA provision rule. We consider the 0–1 utility Ui(ξ) =
1{δi,ξ(Xi)(Xi) = Ri}. This utility equals one, if the judge makes the most lenient decision to prevent
an arrestee from engaging in NCA (NVCA or FTA), and equals zero otherwise. As before, we begin
by rewriting the expected utility in the following manner,

E{Ui(ξ)} = E
[
1{Ri = δi,ξ(Xi)(Xi)}

]
=

k∑
r=0

E
[
1{Ri = r, δi,ξ(Xi)(Xi) = r}

]
=

k∑
r=0

1∑
z=0

E[1{Ri = r, δiz(Xi) = r,Xi ∈ Bz}].

Under the unconfoundedness assumption, we can write,

E[1{Ri = r, δiz(Xi) = r,Xi ∈ Bz}] = E[Pr(Ri = r | Xi) · Pr{δiz(Xi) = r | Xi} · 1{Xi ∈ Bz}]
= E[er(Xi) · Pr{δiz(Xi) = r} · 1{Xi ∈ Bz}].
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Because in the experiment, the provision of the PSA is randomized, we can estimate Pr{δiz(Xi) =
r} = Pr(Di = r | Zi = z,Xi) from the data. Therefore, we obtain

E{Ui(ξ)} =
∑
z=0,1

E

([
k∑
r=0

er(Xi) · Pr(Di = r | Zi = z,Xi)

]
· 1{Xi ∈ Bz}

)
.

Then, the optimal PSA provision rule is,

ξ(x) = argmax
z=0,1

hz(x) where hz(x) =
k∑
r=0

er(x) · Pr(Di = r | Zi = z,Xi). (S7)

Thus, we can use the experimental data to derive the optimal PSA provision rule.

S7 Frequentist Analysis

In this appendix, we implement frequentist analysis and present the results. We fit the model defined
in Equation (S4) with probit regression. Recall that for r = 0, . . . , k, Ri ≥ r + 1 is equivalent to
Yi(r) = 1. Hence, we can estimate the conditional probabilities er(Xi) for each r = 0, . . . , k + 1
based on the estimates of the regression coefficients,

êr(x) = Φ(−δ̂r−1 + x>α̂X)− Φ(−δ̂r + x>α̂X), for r = 1, . . . , k,

êk+1(x) = Φ(−δ̂k + x>α̂X),

ê0(x) = 1− Φ(−δ̂0 + x>α̂X),

where Φ(·) denotes the cumulative distribution function of the standard normal distribution. We
estimate APCEp(r) and APCEs using Hajek estimator as follows,

ÂPCEp(r) =

∑
i ŵr(Xi)1(Di ≥ r)1(Zi = 1)∑

i ŵr(Xi)1(Zi = 1)
−
∑

i ŵr(Xi)1(Di ≥ r)1(Zi = 0)∑
i ŵr(Xi)1(Zi = 0)

,

ÂPCEs =

∑
i ŵ0(Xi)1(Di = 0)1(Zi = 1)∑

i ŵ0(Xi)1(Zi = 1)
−
∑

i ŵ0(Xi)1(Di = 0)1(Zi = 0)∑
i ŵ0(Xi)1(Zi = 0)

,

where ŵr(x) = êr(x)/{ 1n
∑

i êr(Xi)}. We use bootstrap to compute the 95% confidence interval.
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Figure S10: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision based on Frequentist Analysis. Each panel presents the overall and subgroup-specific results
for a different outcome variable. Each column within a panel shows the estimated APCE of PSA
provision for safe (blue), easily preventable (black), preventable (red), and risky (brown) cases. For
each of these principal strata, we report the estimated APCE on the judge’s decision to impose a
signature bond (circles), a small cash bail amount of 1,000 dollars or less (triangles), and a large
cash bail amount of greater than 1,000 (squares). The vertical line for each estimate represents the
95% credible interval.
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Figure S11: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision based on Frequentist Analysis with Random Effects. Each panel presents the overall and
subgroup-specific results for a different outcome variable. Each column within a panel shows the
estimated APCE of PSA provision for safe (blue), easily preventable (black), preventable (red), and
risky (brown) cases. For each of these principal strata, we report the estimated APCE on the judge’s
decision to impose a signature bond (circles), a small cash bail amount of 1,000 dollars or less
(triangles), and a large cash bail amount of greater than 1,000 (squares). The vertical line for each
estimate represents the 95% credible interval.

Figures S10 presents the estimated APCE of PSA provision on the three ordinal decision cate-
gories, separately for FTA and NCA within each principal stratum. The results for NVCA are not
presented due to the fact that the number of events is too small for an informative subgroup analysis.
The results are largely consistent with those of the Bayesian analysis presented in the main text. As
a robustness check for the assumption of no interference among the cases, Figure S11 presents the
estimated APCE of PSA provision with the model including random effects for the hearing date of
the case, and the results are the same. Figure S12 presents the results for each age group similar to
the one in Appendix S2.
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Figure S12: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision based on Frequentist Analysis. Each panel presents the age group-specific results for a
different outcome variable. Each column within a panel shows the estimated APCE of PSA provision
for safe (blue), easily preventable (black), preventable (red), and risky (brown) cases. For each of
these principal strata, we report the estimated APCE on the judge’s decision to impose a signature
bond (circles), a small cash bail amount of 1,000 dollars or less (triangles), and a large cash bail
amount of greater than 1,000 (squares). The vertical line for each estimate represents the 95%
credible interval.

20



S8 Nonparametric Sensitivity Analysis

We consider a nonparametric sensitivity analysis for the ordinal decision under the monotonicity
assumption (Assumption 6). We introduce the following sensitivity parameters, ξrdz(x) for r, d =
0, . . . , k and z = 0, 1, to characterize the deviation from the unconfoundedness assumption,

ξrdz(x) =
Pr{Yi(r) = 1 | Di(z) = d,Xi = x}
Pr{Yi(r) = 1 | Di(z) = 0,Xi = x}

,

which is equal to 1 for all (r, d, z) and x when the unconfoundedness assumption holds.
We can directly relate the parametric sensitivity parameter ρ to the parameters of the nonpara-

metric sensitivity analysis. Because Ri ≥ r+1 is equivalent to Yi(r) = 1, we can obtain the following
formula from Equations (7) and (8),

Pr{Yi(r) = 1 | Di(z) = d,Xi = x} =
Pr(θzd < βZz + x>βX + zx>βZX + εi1 ≤ θz,d+1, δr < x>αX + εi2)

Pr(θzd < βZz + x>βX + zx>βZX + εi1 ≤ θz,d+1)
,

where θz0 = −∞ and δk+1 = ∞. Together with Proposition S1, we can express the sensitivity
parameters in the nonparametric sensitivity analysis ξrdz(x) in terms of the model parameters given
in Equations (7) and (8). Thus, the parametric sensitivity analysis, while much simpler, imposes
restrictions on the nonparametric counterpart.

The following proposition gives the identification formulas for Pr{Di(z) = d | Ri = r} for all
(r, d, z) with any given value of ξrdz(x).

Proposition S1 Under Assumptions 1, 2, and 6, if ξrdz(x) is known for all (r, d, z) and x, then
we have

Pr{Di(z) = d | Ri = r} =
E [Pr{Yi(r − 1) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}]

−E [Pr{Yi(r) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}]

for r = 1, . . . , k and all (d, z), and

Pr{Di(z) = d | Ri = k + 1} =
E [Pr{Yi(k) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(k) = 1 | Xi = x}]
,

Pr{Di(z) = d | Ri = 0} =
E [Pr{Yi(0) = 0 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(0) = 0 | Xi = x}]

for all (d, z), where

Pr{Yi(r) = 1 | Di(z) = d,Xi = x} =
ξrdz(x)

ξrrz(x)
· Pr(Yi = 1 | Zi = z,Di = r,Xi = x),

Pr{Yi(r) = 1 | Xi = x} =

∑k
d=0 ξrdz(x) Pr(Di = d | Zi = z,Xi = x)

ξrrz(x)

·Pr(Yi = 1 | Zi = z,Di = r,Xi = x).

Proof: The randomization of treatment assignment (Assumption 1) implies,

Pr{Yi(r) = 1 | Di(z) = r,Xi = x} = Pr(Yi = 1 | Zi = z,Di = r,Xi = x).
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Therefore, with given values of ξrdz(x), we have,

Pr{Yi(r) = 1 | Di(z) = d,Xi = x} =
ξrdz(x)

ξrrz(x)
· Pr(Yi = 1 | Zi = z,Di = r,Xi = x),

Pr{Yi(r) = 1 | Xi = x} =

k∑
d=0

Pr{Yi(r) = 1 | D(z) = d,Xi = x}Pr{D(z) = d | Xi = x}

=

∑k
d=0 ξrdz(x) Pr(Di = d | Zi = z,Xi = x)

ξrrz(x)

·Pr(Yi = 1 | Zi = z,Di = r,Xi = x).

From the above two terms, we have

Pr{Di(z) = d | Ri = r}

=
E [Pr{Di(z) = d,Ri = r | Xi = x}]

E {Pr(Ri = r | Xi = x)}

=
E [Pr{Di(z) = d, Yi(r − 1) = 1 | Xi = x} − Pr{Di(z) = d, Yi(r) = 1 | Xi = x}]

E [Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}]

=
E [Pr{Yi(r − 1) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}]

−E [Pr{Yi(r) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}]

for r = 1, . . . , k, where the first equality follows from the law of total expectation, and the second
equality follows from Assumption 6.

Similarly, we can obtain

Pr{Di(z) = d | Ri = k + 1}

=
E [Pr{Di(z) = d,Ri = k + 1 | Xi = x}]

E {Pr(Ri = k + 1 | Xi = x)}

=
E [Pr{Di(z) = d, Yi(k) = 1 | Xi = x}]

E [Pr{Yi(k) = 1 | Xi = x}]

=
E [Pr{Yi(k) = 1 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(k) = 1 | Xi = x}]
,

Pr{Di(z) = d | Ri = 0}

=
E [Pr{Di(z) = d,Ri = 0 | Xi = x}]

E {Pr(Ri = 0 | Xi = x)}

=
E [Pr{Di(z) = d, Yi(0) = 0 | Xi = x}]

E [Pr{Yi(0) = 0 | Xi = x}]

=
E [Pr{Yi(0) = 0 | Di(z) = d,Xi = x}Pr(Di = d | Zi = z,Xi = x)]

E [Pr{Yi(0) = 0 | Xi = x}]
.

�
Using this result, we can compute the APCE with any given value of ξrdz(x). Unfortunately,

this nonparametric sensitivity analysis requires the specification of too many sensitivity parameters,
making it unsuitable for practical use.
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S9 Parametric Sensitivity Analysis Results

In this appendix, we implement sensitivity analysis for unconfoundedness assumption (Assumption 4)
and present the results. For nonparametric sensitivity analysis, we estimate Pr(Yi = 1 | Zi = z,Di =
r,Xi = x) and Pr(Di = d | Zi = z,Xi = x) using the model defined in Equations (S5) and (S6).
Figures S13, S14, and S15 show the results for the parametric sensitivity analysis. The patterns
of the estimated APCEs of PSA provision with different sets of sensitivity parameters are generally
consistent with those in the case where the unconfoundedness assumption holds.
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Figure S13: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision with ρ = 0.05. Each panel presents the overall and subgroup-specific results for a different
outcome variable. Each column within a panel shows the estimated APCE of PSA provision for
safe (blue), easily preventable (black), preventable (red), and risky (brown) cases. For each of these
principal strata, we report the estimated APCE on the judge’s decision to impose a signature bond
(circles), a small cash bail amount of 1,000 dollars or less (triangles), and a large cash bail amount
of greater than 1,000 (squares). The vertical line for each estimate represents the Bayesian 95%
credible interval.
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Figure S14: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision with ρ = 0.1. Each panel presents the overall and subgroup-specific results for a different
outcome variable. Each column within a panel shows the estimated APCE of PSA provision for
safe (blue), easily preventable (black), preventable (red), and risky (brown) cases. For each of these
principal strata, we report the estimated APCE on the judge’s decision to impose a signature bond
(circles), a small cash bail amount of 1,000 dollars or less (triangles), and a large cash bail amount
of greater than 1,000 (squares). The vertical line for each estimate represents the Bayesian 95%
credible interval.
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Figure S15: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision with ρ = 0.3. Each panel presents the overall and subgroup-specific results for a different
outcome variable. Each column within a panel shows the estimated APCE of PSA provision for
safe (blue), easily preventable (black), preventable (red), and risky (brown) cases. For each of these
principal strata, we report the estimated APCE on the judge’s decision to impose a signature bond
(circles), a small cash bail amount of 1,000 dollars or less (triangles), and a large cash bail amount
of greater than 1,000 (squares). The vertical line for each estimate represents the Bayesian 95%
credible interval.
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S10 Additional Results for Optimal Decision

(a) The cases whose DMF recommendation is a signature bond
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(b) The cases whose DMF recommendation is a cash bond
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Figure S16: Estimated Proportion of Cases for Which Cash Bond is Optimal. Each column repre-
sents the results based on one of the three outcomes (FTA, NCA, and NVCA). The top (bottom)
panel shows the results for the cases whose DMF recommendation is a signature (cash) bond. Unlike
Figure 6, which uses the overall DMF recommendation, the results are based on the separate DMF
recommendation for each outcome. In each plot, the contour lines represents the estimated propor-
tion of cases, for which a cash bond is optimal, given the cost of an unnecessarily harsh decision (c1;
y-axis) and that of a negative outcome (c0; x-axis). A grey area represents a greater proportion of
such cases.
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S11 Additional Results for the Comparison between Judge’s De-
cisions and DMF Recommendations

(a) Treatment Group
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(b) Control Group
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Figure S17: Estimated Difference in the Expected Utility under Selected Values of Cost Parameters
between Judge’s Decisions and DMF Recommendations for the Treatment (top row) and Control
(bottom row) Group. Each column represents the results base on one of the three outcomes, given
the cost of an unnecessarily harsh decision (c1; each panel) and that of a negative outcome (c0;
x-axis). A positive value implies that the judge’s decision yields a higher expected utility (i.e.,
more optimal) than the corresponding DMF recommendation. The vertical line for each estimate
represents the Bayesian 95% credible interval.
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