

Stick or switch?	
Activity Summary:	And the Andrew
This activity introduces people to the concept of conditional probability via the Monty Hall problem - a brain teaser, loosely based on the American television game show Let's Make a Deal and named after its original host, Monty Hall.	
Activity Learning Outcomes:	Suggested Resources:
 Understand what the phrase "conditional probability" means Use conditional probability to determine the best strategy to win a game 	 Mock set as shown in the picture above comprising 3 doors, 2 goat pictures & 1 car picture Results table (available from website) Graph paper

How to run the activity:

• Prior to each participant's engagement with the activity, pre-load the set by putting a car behind one door, and goats behind two doors, remembering where the car is located!

- Show the set to the participant(s)
- Explain that the star prize of a car is hiding behind one door, but that goats hide behind the other two doors, and as the host, you want them to win
- Get the participant to be the contestant, and the organiser should play the role of the host
- Game rules:
 - a. All three doors must be closed
 - b. The host asks the contestant to select the door which they believe is concealing the car but do not open it
 - c. The host acts in the contestant's favour and opens another door to reveal a goat
 - d. The host then asks the contestant if they wish to stick with their original choice of door, or swap to the other unopened door
 - e. The host opens the door the contestant has selected to reveal the contestant's prize
- Fill in the results table, and the chart, to show the participant(s) the results over time

Exploring the activity:

- What are the participants' initial reactions? Stick or switch?
- What happens over time (i.e. repeating the game)?
- How often do the contestants who choose to stick win?
- How often do the contestants who choose to switch win?

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I</t

What's going on?

- At the start of the game (with all doors shut), there is a 1/3 probability of the car being behind each door, as there is one car, and three doors.
- After the contestant has selected a door, and the host has opened another door to reveal a goat, the probability of the car behind the opened door is 0 we know that there is a goat there!
- The probability that the car is behind the door the contestant has selected is still 1/3 as nothing has changed for this door.
- However, given that probabilities must sum to one, the probability of the car being behind the remaining door is now 1-1/3 = 2/3.
- Therefore, the contestant will be more likely to win the car if they swap from their original choice of door.

& host opened door

• This is a demonstration of conditional probabilities as the probability of one event (winning the car), depends on a previous event (the host revealing a goat).

Video demonstration:

A video demonstrating this activity is available on the RSS website at www.rss.org.uk/hands-on

Risk assessment:

There are no risks associated with this activity

Additional information and taking it further:

Online Monty Hall simulation: https://math.ucsd.edu/~crypto/Monty/monty.html

Wikipedia explanation of The Monty Hall Problem: <u>http://en.wikipedia.org/wiki/Monty_Hall_problem</u>

including situations where the host is not on the participant's side

Basic conditional probability tutorial within BBC Bitesize:

http://www.bbc.co.uk/schools/gcsebitesize/maths/statistics/probabilityhirev3.shtml

Credits:

Idea & photographs by Laura Bonnett (University of Liverpool).