
Response to comments from RSS meeting 
  
We thank all the discussants for their excellent and constructive remarks. We generally 
agree with all of them, and take this opportunity to integrate some of these comments with 
further considerations.   
 
Different information provided by $R$ and $r$ 
One of the cornerstones of our manuscript was the comparison between the reproduction 
number $R$ and the growth rate $r$, including the different information they provide. 
Although discussion points raised in previous sessions aimed to conclude that one concept is 
uniformly “better” than the other, our position is much more in line with the spirit of 
Kucharski and Scalia-Tomba’s comments (also voiced by many other discussants throughout 
the meeting) concerning the fact that different tools might be more or less appropriate 
depending on the question at hand or the purpose of the analysis. For example – as we 
mention at the end of the manuscript – if all we want to do is to track whether the epidemic 
is growing or declining or how the previous change in policy has affected the epidemic 
trend, then $R$ provides no more information than $r$, might be more sluggish at 
responding to changes in trends, and requires increased model complexity. Similarly, if what 
we need is to provide a short-term projection of the current trend under the assumption 
that conditions are not changing, “interpretability” (Kucharski) or “knowledge” (Scalia-
Tomba) might not be the primary concern. In this case, again $r$ requires fewer modelling 
assumptions and fewer model ingredients (such as the generation time distribution), which 
themselves come with associated uncertainty, and therefore might be preferable to $R$. If, 
however, separation of the various mechanisms involved in the transmission process, the 
likely impact of future control options, or considerations about critical immunity thresholds 
are the primary interest, then $R$ might be more informative. 
  
In [1] and in a comment in Session 1 of this meeting, we argued that robust estimates of the 
unconstrained growth rate $r_0$ are essential in the early epidemic phase.  Especially in 
combination with estimates of delays between interventions and the observation of their 
effects, they provide crucial guidance about the timing of initial interventions, which the 
time-insensitive $R_0$ cannot provide. We do not expand further on these important points 
here, as they are extensively covered in [1] and Session 1. However, it is particularly relevant 
to this discussion to note how Figure 4 in [1] displays a relatively narrow range in the early 
(until mid-March 2020) estimates of $R_0$ despite the corresponding $r_0$ estimates being 
more variable, likely due to the limited knowledge on the generation time distribution at the 
start of the pandemic. The inconsistency between the range of $R_0$ and $r_0$ is a natural 
result of different modelling assumptions, but might be of particular concern if resulting 
from a propensity of research groups providing new estimates of $R_0$ to remain in line 
with previous, highly cited, values. This case may also exemplify a potential tendency to 
avoid uncertainty when communicating results to the public (Scalia-Tomba). 



 
Another valuable difference between the two concepts that is worth clarifying, given its 
recent relevance, concerns the emergence of COVID-19 variants and potential assessment 
of their transmission advantage and increased severity [2,3,4]. Growth rates can describe 
the speed at which new infections occur in a population, or could simply be used to describe 
the speed at which any observed data stream of interest is growing: for example they can be 
used to describe the growth in hospital admissions, or the growth in positive cases, while 
remaining agnostic about the source of such cases. Transforming a growth rate into a 
reproduction number instead requires the assumption that those cases are the exclusive 
result of transmission in the population of interest. For example, the UK has witnessed a 
distinct growth in positive cases of the Delta variant since April 2021, fuelled initially by 
importations, primarily from India. With limited or delayed information about the incidence 
of cases among travellers, the temptation to blindly apply methods that directly estimate 
$R$ from observed cases would result in incorrect estimates of the transmission advantage 
of the Delta variant. More refined methods, which separate importations from community 
transmission (and hence require relevant data), would reach more robust conclusions. 
 
We note, however, that there are many cases during outbreaks where the value of $R$ is 
actually key in determining management. Consider, for example, the 2012-13 measles 
outbreak in Wales [5], during which various local authorities experienced periods of 
extremely short doubling times, often close to weekly. The main intervention against this 
outbreak was catch-up vaccination, but the levels of additional vaccine coverage required 
depends on $R$. This epidemic therefore provides a good example of the use of different 
quantities: the doubling time provided evidence for the urgency of fast action, while 
consideration of $R$ informed the level of intervention required. 
  
Modelling the observation process 
A common theme across numerous comments concerned the modelling of the observation 
process linking the unobserved transmission dynamics to the data collected in practice, to 
estimate how the delays between infections and observations change over time with 
changing control policies, age distribution of infections, improvements in treatment, vaccine 
coverage etc. Undoubtedly this is easier said than done when tracking the epidemic in real-
time, due to the large demand in terms of data and, importantly, of information on the data 
collection mechanisms and reliability. For example, answers to questions like “how has the 
data been collected?” or “have testing efforts been increased in a specific region due to an 
assessed or hypothesised local outbreak?” have been, in the authors’ experience, really 
hard to obtain, especially in real time. Models can capture apparent inconsistencies or 
suspected changes in the data streams, for example by allowing some parameters (e.g. the 
infection-fatality rate) to vary over time. However, proper assessment of the causes of 
observed changes or inconsistencies requires a lot more data and possibly expanding the 
model to introduce further mechanistic details to correct for biases and disentangle 



transmission from other confounding processes. This assessment is likely only possible (if 
ever) retrospectively. 
 
If sufficient data is available, Riley’s comment opens up the question about whether 
assuming discontinuous changes in the transmission rate is appropriate, as opposed to 
assuming smoother transitions. We agree that the answer to this question might motivate 
slightly different modelling structures. However, it could be argued that, since incidence is 
never directly observed and what can be observed is effectively a convolution with some 
distribution (infection-to-testing or infection-to-hospitalisation), it is difficult to assess 
whether a smoother change in $R$ (like those estimated with non-mechanistic models) or a 
step-wise one (like those used for simplicity in the mechanistic models discussed in Sections 
3.1.2 and 3.1.3 of the manuscript) are more appropriate. Ultimately, they both appear to fit 
the same “smeared” data equally satisfactorily. 
  
Challenges in the estimation of population immunity 
As the interest shifts from simply fitting epidemic trends or generating short-term 
projections assuming stable conditions to disentangling the effect of various factors 
affecting the infection and observation processes, increasingly complex mechanistic models 
are needed. As noted in Diggle’s comment, one of the most difficult factors to properly 
assess is the fraction of the susceptible population. There are multiple reasons for this, 
including: large scale survey studies (e.g. ONS and REACT in the UK) typically allow 
estimation of current prevalence in the community, but this is not the same as cumulative 
incidence and in any case such studies are not available from the beginning of the pandemic 
and do not necessarily cover specific subpopulations particularly at risk (care homes, health 
care workers, etc.); information on seroprevalence does not translate directly to immunity; 
vaccine effectiveness against infection is difficult to estimate precisely and changes over 
time with an evolving virus; and loss of immunity due to infection or vaccination is similarly 
difficult to quantify. The lack of precise estimates of susceptibility in the population means 
prediction of the timing and height of the epidemic peak, which are primarily driven by the 
depletion of susceptibles, is fraught with difficulties. Correctly predicting the peak is further 
complicated by the intrinsic problems of assessing the right level of individual heterogeneity 
to capture in the model structure and the possible lack of suitable information to 
parameterise it. Finally, it is often not possible to predict changes in individuals’ behaviour 
and control policies between the time of the forecast and the peak. 
  
The difficulty in estimating the fraction of the susceptible population also affects the 
accurate estimation of $R_c$, and hence the impact of interventions. However, similar sets 
of interventions applied in different phases of the epidemic would in theory have the same 
$R_c$ but different $R_e$ and could provide information on the reduction in the 
susceptible population that occurred between such phases. The presence of different 
variants and natural changes in individuals’ behaviour (e.g. due to intervention fatigue), may 



however falsify the assumption that $R_c$ remained the same even for the same set of 
interventions. When different combinations of interventions are implemented at different 
times, the situation is even more complex. Scalia-Tomba suggested potential extensions of 
the concept of $R_c$ (one value accounting for all forms of control policy altering natural 
contact patterns) to provide different reproduction numbers associated with each separate 
control policy. However, as we explain in the manuscript, the compounded effect of control 
policies is not necessarily the sum of the effects of each single control policy. To draw a 
parallel with network theory, a static network might remain connected (each node can be 
reached by any other node) if each of two distinct sets of links were to be removed 
separately, while  removal of both sets simultaneously might break the network apart and 
render it disconnected, thus qualitatively changing the spread of an infection on it. 
However, crude approximations that attribute an “$R$ budget” to each control policy have 
been used in practice to help discussions in the UK response. Effort to formalise these ideas 
and clarify when they offer a useful approximation and when they do not is undoubtedly 
valuable. 
  
Kucharski states that "vaccination decouples the relationship between available datasets", 
and we agree that, as vaccination is rolled out, the link between infections, hospitalisations 
and deaths will change. However, we deem expressions like “dilute” to be more appropriate 
than stronger ones like “decouple” or “break” in terms of communication to non-experts 
and expectation management: if conditions remain constant over time, in theory the same 
exponential growth should be observed in all these data streams, though with smaller 
proportions of cases resulting in deaths and hospitalisations. Hence, a large number of cases 
could still lead to substantial hospitalisations and deaths. 
 
Panovska-Griffith echoes Kucharski in pointing out how the profound change due to mass 
vaccination poses the question of how to combine different data streams in order to 
monitor the epidemic status and inform interventions. A natural follow-up question is 
whether $R$ remains a useful quantity to be monitored, or whether alternatives such as the 
growth rate in the number of hospitalised cases should be preferred. Our opinion is that 
estimates of $R$ and $r$ should not be abandoned for several reasons. First, because 
estimates of $R$ remain relevant as indicators of ongoing transmission, allowing an 
understanding of the new relationships between the data streams (e.g. new estimates of 
the infection-fatality rate) and providing an alert of impending changes in severity. Second, 
comparison of the growth rates of infections and hospitalisations is important to investigate 
the reasons for possible discrepancies, since the two data streams should in theory have the 
same growth. Finally, estimation of $R$ and $r$ would not require additional efforts, as they 
have been regularly monitored since the beginning of the epidemic. 
  
All these considerations have hopefully further highlighted the range of subtleties that 
accompany the concepts of reproduction numbers and growth rates. This reinforces the 



case for effective communication of such subtleties, and demands that continuous effort 
should be devoted to their clarification and to education of policy makers and the general 
public. We are therefore very grateful to the organisers of this meeting, the other authors 
and the discussants, for their valuable contributions to this cause. 
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