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Summary. The reproduction number R has been a central metric of the COVID-19 pan-

demic response, published weekly by the UK government and regularly reported in the
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media. Here, we provide a formal definition and discuss the advantages and most com-

mon misconceptions around this quantity. We consider the intuition behind different for-

mulations of R, the complexities in its estimation (including the unavoidable lags involved),

and its value compared to other indicators (e.g. the growth rate) that can be directly ob-

served from aggregate surveillance data and react more promptly to changes in epidemic

trend. As models become more sophisticated, with age and/or spatial structure, formu-

lating R becomes increasingly complicated and inevitably model-dependent. We present

some models currently used in the UK pandemic response as examples. Ultimately, lim-

itations in the available data streams, data quality and time constraints force pragmatic

choices to be made on a quantity that is an average across time, space, social structure

and settings. Effectively communicating these challenges is important but often difficult in

an emergency.

Keywords: Reproduction numbers, growth rate, real-time estimation

1. Introduction

Real-time assessment of the current state and trend of an evolving pandemic is vi-

tal for situational awareness, evaluation of the impact of policies and guidance for the

choice and timing of further interventions, all of which have been highlighted during

the UK COVID-19 pandemic. These assessments either provide snapshots of the epi-

demic state (e.g. infection prevalence, hospital occupancy) (Survey, 2021) or describe

epidemic trends (e.g. growth rate, reproduction number) (Anderson et al., 2020). The

combined analysis of the current state and onward trend is required to better inform the

introduction or relaxation of public health interventions (Brooks-Pollock et al., 2021).

Despite this, politicians, media and the public predominantly have focused on a single

measure, resulting in the reproduction number becoming the headline of the COVID-19

pandemic in many countries worldwide (e.g. in the UK, it is a key value reported weekly

by the Government (UK Government Guidance, 2020)). Such focus risks putting too

much emphasis on a single number, potentially obscuring heterogeneity, and highlights

the need for transparency on the complexities involved in its real-time estimation and

interpretation as a key epidemiological indicator.
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In this work, we consider three different reproduction numbers, R0, Re(t) and Rc(t),

the basic, effective and control reproduction number, respectively.

The basic reproduction number R0 describes the expected number of secondary infec-

tions caused by a typical infected individual in a completely susceptible host population,

under standard behavioural patterns. R0 is thus a constant which aptly describes the

early stages of an epidemic caused by a novel pathogen. As the epidemic spreads fewer

secondary infections may be caused, either due to behavioural changes or a reduction in

the susceptible pool due to e.g. prior infection or death. These two drivers motivate the

introduction of Re(t) and Rc(t).

The effective reproduction number Re(t) (often denoted by Rt) describes the expected

number of secondary infections under the current conditions of population mixing, trans-

mission and immunity. Figure 1 illustrates how both drivers are captured by a smooth

decline as the pool of susceptibles decreases, and in response to interventions that impact

mixing.

The control reproduction number (or reproduction number excluding immunity), Rc(t),

describes the expected number of secondary infections under the current contact and

transmission patterns in an otherwise fully susceptible population. Figure 1 illustrates its

time-variation resulting from interventions, without the smooth changes resulting from

the depletion of susceptibles. Rc(t) therefore does not describe ongoing transmission,

except when immunity in the population is negligible. However, it allows comparison

of the effects of control measures applied at different times in the epidemic by factoring

out the impact of different levels of immunity at those times, and has been fundamental

in the discussions guiding or estimating the impact of control policies during the highly

variable intervention timeline of the COVID-19 pandemic.

One of the most common uses of these reproduction numbers (generically denoted by

R) is related to their threshold value of 1: R0 > 1 means that the infection can cause a

large outbreak in a fully susceptible population; Re(t) > 1 indicates that the epidemic

is growing under the current conditions; and Rc(t) > 1 means that the control measures

alone are insufficient to contain an invasion in a susceptible population, although the

epidemic may be effectively decaying due to widespread immunity.
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Fig. 1. Illustrative example of dynamics, reproduction numbers and growth rates for a simple

epidemic model (Section 2.1) with an average infectious period of 30 units of time. We simulate

a public health intervention through a control implemented at time 150 that is partially relaxed

at time 300 (indicated by the dashed lines). Note that all three reproduction numbers coincide

when there are no interventions and the depletion of susceptibles is negligible.
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An alternative quantity characterising the dynamics of an epidemic is the real-time

growth rate r, which, in contrast to a reproduction number, describes the exponential

rate at which new infections grow (r > 0) or decline (r < 0). In what follows we

distinguish between the basic (r0), effective (re(t)), and control (rc(t)) growth rates,

associated with the three reproduction numbers above.

The simplicity of these definitions is invaluable for guiding intuition, and they ignore

many real-life complexities. For example, R0 depends both on the pathogens and on the

natural transmission patterns (biological and behavioural) in the population, so although

here described as constant, it might be different in different populations, settings and

environmental conditions (e.g. when seasonality affects virus survival and hosts’ natural

contact patterns - see remarks in Section 2.1).

In this paper, we discuss the challenges, both theoretical and practical, that arise

when defining reproduction numbers in models of increasing complexity and when es-

timating them in practice. We additionally provide examples of such challenges for

models used by research groups in the Scientific Pandemic Influenza Group on Mod-

elling (SPI-M), informing the official estimates published by the UK Government in

response to the current COVID-19 pandemic. In parallel we also consider growth rates,

which historically have preceded reproduction numbers, more naturally emerge from the

representation of epidemic as dynamical systems, and are easier to estimate. We con-

clude with a discussion of the dominant role that reproduction numbers have played, and

their strength and limitations. We argue that, ultimately, no single measure in isolation

is sufficient to guide policy response, so multiple metrics should be used in combination.

2. Definition and properties of reproduction numbers in simple epidemic mod-

els

A common feature of many epidemics and epidemic models is the presence of an ex-

ponentially growing phase, i.e. a time window during which infections are growing or

declining exponentially. Such a phase occurs whenever the depletion of the susceptible

population as the epidemic progresses can be ignored, i.e. when the system’s dynamics

can be reasonably approximated with a linear process. The most commonly considered
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case is in the early phase of the epidemic, when the number of infected, though growing,

does not change too rapidly in absolute terms. In this phase, the epidemic will grow if

r0 > 0, and will die out if r0 < 0.

The same epidemic can be followed in a “generational” perspective (Keeling and

Rohani, 2011, Ch 2). In this case, during the same exponentially growing phase, the

number of cases will grow geometrically from one generation to the next (being this a

discrete-time linear process with a generation, i.e. the average time from one infection to

the infectious contacts they make, as time unit), with per-generation multiplicative factor

R0. The threshold condition r0 = 0 above is therefore equivalent to R0 = 1. Note that

this change of perspective, from continuous time to generations, “removes” time from

the epidemic process: without additional information on the duration of a generation,

R0 cannot describe the speed of the infection; conversely, the real-time growth rate r0

cannot provide direct information on the number of infections generated by each infected

individual.

With small adjustments, the same concepts apply to their stochastic formulation: a

branching process provides the linear approximation to the early phase of the epidemic,

which in the case of a discrete-generation perspective is a Galton–Watson branching

process with R0 being the mean of the offspring distribution (Diekmann et al., 2012, Ch

1).

In the following sections, we consider some well-studied deterministic models and

discuss the definitions of R0 and r0 in each case.

2.1. Single-type, homogeneously mixing models

In the case of the well-known deterministic Susceptible-Infected-Recovered (SIR) model

(Keeling and Rohani, 2011, Ch 2) with transmission rate β and recovery rate γ, the

linear approximation to the epidemic process is described by

dI

dt
= (β − γ) I, (1)

where I(t) denotes the total number of infected (and infectious) individuals at time t,

and the growth rate, or Malthusian parameter, is r0 = β− γ (Diekmann et al., 2012, Ch
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1 and 8.2). In the generational perspective, R0 = β/γ and the time unit of the discrete

process is 1/γ. Note that as β and γ are both rates, their ratio is dimensionless.

This linear approximation is typically employed in the early epidemic phase, but can

also be applied at any point of the epidemic if the considered time window is sufficiently

short (and giving, in the limit of an infinitesimal window, the instantaneous epidemic

trend). In the latter case, depletion of susceptibles may be relevant, and one should use

re(t) = βS(t)/N − γ and Re(t) = R0S(t)/N in place of r0 and R0, where S(t) denotes

the number of susceptible individuals at time t.

In the simplest epidemic models, basic parameters (in particular β) are assumed

constant. However, in practically relevant contexts, they are likely to change in time,

either as a consequence of imposed controls, or due to natural variation of environmental

conditions. For example, the aggressive implementation of physical distancing measures

(e.g. lockdown) during the COVID-19 pandemic inverted the initial growth into a decline.

The latter was not driven by depletion of susceptibles, but rather by a change in contact

patterns. In this context, the transmission rate in (1) would be described by a time-

dependent function β(t), whilst the control reproduction number Rc(t) = β(t)/γ, and

the control growth rate rc(t) = β(t)− γ, capture the changes in transmission.

When parameters change due to natural variation over time in environmental con-

ditions affecting virus survival and fitness, behaviour of vectors (if present) or natural

contact patterns in the population, e.g. weather and school terms, r0 and R0 should be

treated as time-dependent quantities. However, in the particular example of periodic

time variations, like simple representation of seasonality, an alternative definition of R0

that maintains its desirable feature of being a single number can be obtained by inte-

grating a time-varying R0 over the entire period (Bacaër and Guernaoui, 2006). The

usefulness of such a definition, though, depends on the particular question at hand and,

in particular, the time-scale of the epidemic compared to the duration of a full period:

averaging over a yearly seasonal oscillation in transmission might be informative for in-

fectious period lasting decades (e.g. HIV), but might not be helpful when an epidemic

is consumed throughout a single winter season (e.g. influenza or measles).

Variations to the simplest model involving for instance additional latent phases or
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multiple compartments in series or parallel are conceptually similar, though simple for-

mulae and analytic results are quickly lost as the complexity increases.

A mathematically different generalisation, formulated with integral equations or par-

tial differential equations, is obtained when the infectivity is described as a function

β(τ), where τ denotes the time since infection. The same concepts as in the model with

constant recovery rate apply, but now R0 =
∫∞
0 β(τ)dτ and r0 is the implicit solution

of the characteristic (or Euler–Lotka) equation (Diekmann et al., 2012, Ch 2 and 9)∫ ∞
0

β(τ)e−r0τdτ = 1. (2)

The generation time distribution (or generation interval distribution), i.e. the distribu-

tion of time intervals between the infection of a case and the transmission events they

make, is given by ω(τ) = β(τ)/R0. Like 1/γ in the model with constant recovery rate,

ω(τ) is the key piece of temporal information that, through the Euler–Lotka equation

(2), links the real-time epidemic perspective with the a-temporal generation perspective.

The same considerations above in the case of time-varying environmental conditions can

be applied to this model, with a transmission rate β(t, τ) that is allowed to vary over

both calendar time and time-since-infection, and hence a basic reproduction number

that can vary with time.

2.2. Multi-type models

When individuals are distinguished in classes or sub-populations that are epidemiologi-

cally distinct from each other, for example different age bands or geographical locations,

the model is typically referred to as a multi-type model. Individuals of each type are

assumed to be epidemiologically homogeneous, and each sub-population is assumed to

be large. If there are m types, the transmission rate β in (1) is replaced by an m ×m

matrix B = (βij), where βij describes the transmission rate from each type j to each

type i (Keeling and Rohani, 2011, Ch 3) and the linear equation in (1) is replaced by

a system of m linear equations for the infectious individuals of each type i, Ii(t). The

system is described by the matrix H = B − γJm (Jm being the m-dimensional identity

matrix). Note that, like in the single-type case, the total number of cases will eventually

grow exponentially with rate r0. However, in this case r0 is computed as the dominant
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eigenvalue (or spectral radius) of H and the exponential growth only occurs after some

transient dynamics, dependent on the initial conditions, required for the proportion of

cases of each type to converge to the elements of the (normalised) right eigenvector rel-

ative to r0. In this case, the exponentially growing phase consists of the window after

the initial transient dynamics but before any of the sub-populations starts experiencing

depletion of susceptibles.

From a generational perspective, the dynamics are described by the next generation

matrix K = (kij) = (βij/γ), where kij gives the number of cases of type i infected by

an infected individual of type j in a fully susceptible population (Diekmann et al., 2012,

Ch 7). The same caveats about initial transient dynamics apply, and R0 is defined as

the dominant eigenvalue of K, which gives the per-generation multiplicative factor of an

epidemic when individuals are distributed in types proportionally to the right eigenvector

relative to R0. The equivalence of the threshold conditions r0 = 0 and R0 = 1 holds also

in the more complex case when γ is type-dependent, or when a multi-type time-since-

infection model is used and B = (βij(τ)). The existence of r0 and R0 (as unique and real

largest eigenvalues) for biologically sensible matrices H and K (i.e., with non-negative

elements) is typically guaranteed by Perron-Frobenius theory (Diekmann et al., 2012,

Ch 7) under the technical conditions of primitivity and irreducibility. Notable cases

that require special attention are for instance vector-borne diseases (matrices are not

primitive), and cases where the epidemic remains “contained” in some sub-populations,

so that some types are never infected (matrices are reducible). In practice, complications

arise when the matrix is “almost” reducible, for example in the case of an epidemic spread

in different geographical locations with very weak coupling between locations. In this

situation, with a finite population, depletion of susceptibles in various sub-populations

may occur before the system converges to the dominant eigenvector, thus effectively

compressing the exponentially growing phase to the point it disappears, and resulting

in de-synchronised epidemics.
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2.3. Properties of R0

In the simple SIR model (Keeling and Rohani, 2011, Ch 2), in addition to being a

threshold parameter and informing the amount of transmission to be blocked to achieve

control, R0 has two further properties: a) the final epidemic size depends only on R0;

and b) R0 directly provides the critical immunity threshold cT = 1− 1/R0 (Keeling and

Rohani, 2011, Ch 8). These two highly praised properties, however, are only true in the

simplest single-type model. Already with multi-type models, R0 no longer describes the

final size (Diekmann et al., 2012, Ch 1)), though it still informs the critical vaccination

coverage if the vaccine is distributed at random (better strategies, however, are possible,

which are which are not fully characterised by R0 alone). As soon as the model includes

local saturation of susceptibles, the second property is also generally lost, e.g. in the case

of households models 1− 1/R0 only provides a lower bound to cT (Ball et al., 2016).

Further complications arise when R0 is allowed to vary with time, e.g. due to natural

time variations in parameters, as the critical immunity threshold will also be time-

dependent. In the case of time variations imposed by interventions, instead, we interpret

the critical immunity threshold as referred to the natural (pre-intervention) population

mixing, and therefore Rc(t) alone cannot inform the critical vaccination threshold: for

example, if R0 = 4 and, at a certain time t, Rc(t) = 2, the epidemic would appear to

be declining if 50% of the population is immunised. However, lifting non-vaccine based

controls would lead to epidemic growth when the immune population is less than 75%.

3. Estimating reproduction numbers

The reproduction numbers R can be directly estimated in real time from cohorts of

infected individuals if knowledge is available on chains of transmission (e.g. who infected

whom). This information is hardly ever available, so the R values need to be estimated

using an underlying mathematical model linking transmission to other epidemiological

information. A rich literature exists exploiting time series data on reported infections,

including methods: based on the early exponential growth of an outbreak (Lipsitch

et al., 2003); using information on symptoms onsets of reported cases over time and on

the generation time distribution (see Section 2.1) to reconstruct the unobserved chains
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of transmission (Wallinga and Teunis, 2004) and derive an estimate of R; generalising

the Euler–Lotka equation (2) and coupling it with estimates of the generation time

distribution to derive R through the estimation of the underlying number of infections

(Cori et al., 2013). These all depend on: consistent (over time) and unbiased (i.e. not

subject to ascertainment biases) collection of the data they use; knowledge or ability to

estimate the generation time distribution or its proxies (e.g. serial interval); and in some

cases on the ability to reconstruct the unobserved underlying number of infections from

the available data. These issues have all been discussed in recent literature (Britton and

Scalia Tomba, 2019; Gostic et al., 2020).

Alternatively, estimates of R can be derived from mechanistic models of transmis-

sion (Anderson et al., 2020, Table A1). Here the first practical challenge is again that

transmission events are not observed, therefore the compartmental structure (e.g. S and

I) is not informed by direct data. So, the approach is to consider the model com-

partments as latent and estimate the parameters governing the system dynamics by

linking indirect data to these compartments. For COVID-19, the main surveillance

data sources available are symptomatic cases, hospitalisations, and deaths (UK Gov-

ernment, 2021), supplemented by randomised swabbing (Survey, 2021; REACT 1, 2020)

and serology (REACT 2, 2020). The linking between observations and the unobserved

transmission process is carried out through the specification of observational models. For

instance, hospitalisations result from infections developing severe symptoms and being

hospitalised. Assuming some information about the probability of hospitalisation given

infection and the delay between infection and hospitalisation, theoretical hospitalisa-

tions can be derived from the transmission model. The observed data are then treated

as an imperfect measure of the modelled hospitalisations and the observational model

is constructed to reflect this, by assuming an appropriate error model. In a likelihood

based inference using multiple data streams, a likelihood component is specified for each

stream as a function of all the parameters leading to the observed data, including the

unknown parameters governing the infection process. Then maximisation of the like-

lihood or its use in a Bayesian framework allows estimation of parameters and any of

their functions (e.g. reproduction numbers) (De Angelis and Presanis, 2019).
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In what follows we report on our direct experience of estimation of R using a non-

mechanistic model of the type of Cori et al. (2013), as well as single and multi-type

deterministic mechanistic models.

3.1. Examples and challenges from the UK response

Over the course of the pandemic, modelling groups from a number of UK universities

and public bodies have routinely supplied real-time estimates of the current state of the

pandemic to SPI-M. Of the various modelling outputs, estimates of Re(t) became the

headline figure used to inform policy and communicate the severity of the pandemic to

the public. In this section we look at how these estimates were produced by a subset of

the contributing modelling groups.

3.1.1. Non-mechanistic Re(t) estimation

Multiple groups (e.g. Bristol/Exeter, Lancaster) provide near real-time Re(t) estimates

for SPI-M, using an implementation of the Cori method (Cori et al., 2013; Thompson

et al., 2019), which only models one generation of transmission without requiring a full

mechanistic formulation of the transmission process. The method estimates Re(t) from

Re(t) = i(t)/
t∑

s=1

i(t− s)ws,

where i(t) is the infection incidence at time t, and ws is the discretised serial interval

distribution, measured from the symptom onset data between pairs of epidemiologically-

linked cases and used as a proxy for the generation interval distribution ω(s) indirectly

used in (2). The Cori method is widely used, and the challenges surrounding the result-

ing Re(t) estimates mainly relate to data quality, data processing, the appropriate spatial

scale at which to aggregate case data, and interpretation. Groups differ in their choice

of input data and the processing of those data. Data include NHS111 (emergency) calls,

testing data, hospital admissions and deaths, each with specific time intervals from infec-

tion, often estimated from limited observations. The Cori method requires information

about the generation time distribution, and groups used estimates from different studies

(see e.g. Challen et al., 2021). The generation time is likely to be population-specific
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and change with public health interventions and behavioural responses (Challen et al.,

2020); estimates for the UK were not available until July 2020 (PHE, personal communi-

cation). The Cori method estimates Re(t) over a subjectively-chosen rolling time window

during which the effective reproduction number is assumed to be constant (Cori et al.,

2013). Window sizes differ between groups, ranging between 5 and 28 days (Challen

et al., 2021). Other methodological issues associated with data processing, to account

for right censoring (e.g. individuals who are infected but have yet to develop symptoms

and be tested or admitted) and how best to impute infection dates (from data anchored

to testing date, for example) are covered elsewhere (Gostic et al., 2020). As with other

approaches, the suitability of estimating Re(t) using this method at large geographical

scales depends on assumptions about mixing and transmission within the population.

Changes in data collection, spatio-temporal variation in testing rates or care-seeking

behaviour were generally not accounted for, due to limited data being available to esti-

mate how these processes vary over time and space. Because of the relatively short delay

between infection and emergency calls or testing data compared to other data streams,

Re(t) estimates from the non-mechanistic approaches and testing data often provided

more up-to-date estimates than other approaches. However, because the method does

not assume an underlying transmission process, the resulting estimates are effectively

only a transformation of the (reconstructed) incidence curve, so cannot disentangle the

impact of immunity from a decrease in transmission (i.e. an estimate of Rc(t) is not

possible), or forecast epidemic dynamics beyond the most recent data point.

3.1.2. Manchester/Oxford/Lancaster model

This is an example of a single-type compartmental model with multiple latent and infec-

tious compartments, coupled with a detailed description of progression through different

hospital compartments. The model is calibrated, through a Bayesian approach, using

time-series data for daily hospital admissions, daily deaths in hospital, and the total

number of beds occupied and patients in critical care, as well as information on hos-

pital length of stay for COVID-19 patients (Vekaria et al., 2020). The out-of-hospital

component of the model, which describes transmission in the community, is informed by
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estimates of incubation period, generation time and severity from the literature, with

only the most severe cases seeking hospital admission. Further details are reported in

Anderson et al. (2020) and the full model description will be available soon (Overton

et al., 2021).

With behavioural changes brought about by policy, a time-varying transmission rate

needs to be allowed in the model (Figure 1 and Section 2.1). This model assumes

that the transmission rate β(t) is piecewise constant, with change points fixed to days

of important interventions or clearly visible changes in data trends. A final change

is allowed three weeks before the last data point, which is short enough to provide

a relatively up-to-date estimate of the reproduction number (an average over the last

three weeks) but long enough that noise in the data does not excessively affect the point

estimate. Since this model only uses hospital data and it takes on average about ten

days from infection to hospitalisation, although Re(t) is averaged over the last three

weeks in the model, the impact of any significant event likely to influence transmission

within the last ten days would not be detected (Figure 2).

The fact that the model is only fitted to hospital data means there is a lack of

identifiability in the out-of-hospital epidemic (in the absence of reliable prior parameter

estimates on the hospitalisation rate). For instance, the same hospital data would be

fitted equally well by two different epidemics, one in which twice as many individuals get

infected as in the other, but only half as many are hospitalised. Since Re(t) is strongly

informed by the observed growth rate in hospital admissions (irrespective of the amount

of immunity), these two epidemics will be associated with the same Re(t). However, the

Rc(t) values will differ because one epidemic is characterised by a higher transmission

rate (but smaller susceptible population) compared to the other. Therefore, such a model

will generate reliable estimates for Re(t), but may struggle to accurately estimate Rc(t)

in the absence of informative priors.

Finally, this model does not consider age structure in the population, which is si-

multaneously an advantage and a limitation. For example, without age structure, the

reproduction number is easily defined and understood within this model (Section 2.1

and Figure 1). However, the reproduction number estimates may not reflect the real
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Fig. 2. Illustration of Manchester/Oxford/Lancaster model fit to COVID-19 hospital admissions

2 weeks (blue) and 4 weeks (red) after the first UK lockdown. Notice how: a change in trans-

mission only becomes visible in hospitalisations more than a week later; the noise in the data

makes it difficult to estimate a robust trend well after the peak has passed; uncertainty in Re(t)

estimates depends on how many data points are available since the last allowed change in

transmission (2 weeks for blue, 3 for red); and how past estimates of the effective reproduction

number change retrospectively as more data become available. The paired lines indicate the

95% prediction and confidence intervals, respectively. The vertical dotted lines indicate when

transmission rate changes: the first date (13/03/2020) corresponds to 9 days before a clear

change in the log-scale admissions gradients; the second (23/03/2020) to the first lockdown in

the UK; and the third (31/03/2020) is a flexible change point that is added three weeks before

the last data point (provided no major changes occurred in this three-week window), in order to

capture more recent changes in transmission.
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transmission trends in periods where the distribution of cases across age groups is not

stable. In such periods, age-structured models can provide an advantage, but might also

suffer from problems related to convergence to the dominant eigenvector (Section 2.2

and 3.1.3). Finally, irrespective of whether the model has age structure or not, models

purely informed by data on severe events may be unable to pick up growth among cases

in children (e.g. when only schools reopen after a lockdown), if their infections are much

less severe.

3.1.3. PHE/Cambridge model

The PHE/Cambridge model (Birrell et al., 2021) is a multi-type deterministic com-

partmental model (Section 2.2) with an age-stratified structure in each of a number of

spatially disjoint regions of England. The latent and infectious states are subdivided

into two states each to give non-exponential waiting times. The regional epidemics are

assumed to be non-interacting, but they have co-dependence through some shared pa-

rameters. The model uses data on: COVID-19 deaths; serological data from the NHS

Blood Transfusion Service during the first pandemic wave, providing information on the

presence of immunity conferring antibodies in blood sera samples; and contact matrices

derived from the POLYMOD study (Mossong et al., 2008), updated weekly through

Google mobility, the UK time-use survey UKTUS (Gershuny, 2017) and information on

school attendance from the Department for Education (DfE) (van Leeuwen et al., 2020).

Deaths are linked to the new infections generated by the transmission model via the

convolution of a time- and age-varying fraction (the infection-fatality ratio, IFR) of the

infections over an assumed-known distribution of the time from infection to symptoms

and from symptoms to death. The proportions testing positive in the serological testing

inform the fractions of individuals in the population remaining susceptible to infection,

subject to the sensitivity and specificity of the test. The unknown parameters, esti-

mated in a Bayesian framework, fall into two groups: those governing the transmission

process and those related to the observational process. Some parameters, for example the

time-varying infection-fatality rates and the serological test sensitivity and specificity,

are “global”—i.e. they are the same in each region—whereas the majority are regional
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parameters, such as the initial seeding of infection and the parameters that define the

effective reproduction number Re(t).

Specifically, the reproduction number is a product of a number of quantities: weekly

contact matrices; contact parameters that account for mis-specification of these ma-

trices and have the interpretation of age-group susceptibilities to infection given an

infectious contact; time-varying transmission potentials β(t); and region-specific r0 pa-

rameters. Initially, R0 is calculated directly from these growth rates (Wearing et al.,

2005). Over time, β(t) evolves through a random-walk, with weekly increments, encap-

sulating changes in the nature of social interactions (such as social-distancing, improved

hand hygiene and mask-wearing). The weekly changes in the contact matrices and β(t)

induce consequent step changes in Re(t). With each step change, the system is shifted

away from its equilibrium (if the equilibrium had even been found, see Section 2.2). So,

how reliable is the value of Re(t) as derived from the dominant eigenvalue of the next-

generation matrix? The sharpest change in Re(t) followed the first lockdown in March,

2020. Figure 3(a) shows that this led to an estimated fall in Re(t) from 2.5 to less than

0.5. Figure 3(b) shows the certainty that at this time Re(t) > 1. However, after an initial

steep drop, there is actually an increase in infections (Figure 3(c)), and there appears to

be a lag of three days (the assumed mean length of the latency period) before incidence

can be seen to be obeying an Re(t) < 0.5 regime. In practice, the weekly changes in Re(t)

constitute much smaller perturbations, and Re(t) > 1 is a reliable indicator of increasing

transmission. However, the potential exists around large-scale pandemic interventions

for the estimated Re(t) to be more volatile than the smoothed growth rates that can be

derived directly from the time trend in the estimated infection incidence.

Incidence of COVID-19 deaths is the primary data stream used in this model. The

assumed time from infection to death has a mean of around three weeks, which, when

coupled with the reporting delay inherent in deaths registration, results in these data

being uninformative about patterns of incidence over the previous two weeks. Therefore,

any estimate of Re(t) would appear to be a very lagged indicator. However, the weekly

contact matrices are available almost in real-time, and it is these data that are used to

produce “nowcasts” of Re(t)—the projection forward of the lagged Re(t) estimates to the
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current day. As we have no information on the β(t) over this period, it is assumed that

changes in mobility and school attendance (for example) translate directly into changes

in Re(t) with no compensatory or amplifying effects. This has led to estimates for the

reproduction number produced by the PHE/Cambridge model seemingly being out of

step with many of the companion models contributing to the SPI-M consensus at times

of changes in pandemic mitigation measures or closure/re-opening of schools. Figure

3(d) examines the validity of the assumption that Re(t) changes in proportion to the

spectral radius of the weekly contact matrices, by plotting them alongside the estimated

β(t) used to scale them. A negative correlation would indicate that the model seeks to

counteract or downplay the impact of changes in mobility on transmission, whereas a

positive correlation would suggest an amplification. From the plots it is clear that both

correlations are present: there is a negative correlation over the pandemic first wave,

but a positive correlation over the second half of 2020, suggesting more recent changes

in transmission were more extreme than the mobility data might have suggested. The

consequence of this can be seen in Figure 3(a), where the negative correlation leads to a

greater smoothing in the Re(t) as the impacts of any changes in mobility are dampened

by the compensatory β(t). This makes sense as pandemic policy and governmental

advice were consistent over this period. In the second wave, measures were imposed

and relaxed not only with greater frequency, but asynchronously across the country,

whilst schools were open with periods of holiday. Viewed in this way, it is perhaps less

surprising that the Re(t) is more volatile over this period. Greater reliability in the

now-casting of Re(t) could therefore be achieved by expanding the model to incorporate

such possible correlations, thus increasing the utility and reliability of movement and

contact data to inform transmission.

3.2. Communication challenges

Since May 2020, the UK Government has published official estimates of Re(t) and,

from the summer, re(t), which conveys the rate of spread in real-time rather than in

generations. The alternative related measure of the doubling time does not have the

same long history of R and r, but is also conceptually simple and easy to communicate
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(a) (b) (c)

(d)

Figure 3: (a) PHE/Cambridge model:  estimated over time based on data up to 26/3/2021𝑅
𝑒

for London; (b) the corresponding probability that over time; (c) Estimated incidence𝑅
𝑒
> 1

around the time of the first lockdown in March 2020; (d) The relationship between β(𝑡)
(x-axis) and the dominant eigenvalue of contact matrices derived from POLYMOD, UKTUS,
Google mobility and DfE data (y-axis). The colour of points indicates the point during the
pandemic, with darker points corresponding to the earlier stages.
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Fig. 3. (a) PHE/Cambridge model: estimated Re(t) over time based on data up to 26/3/2021

for London; (b) the corresponding probability that Re(t) > 1 over time; (c) Estimated incidence

around the time of the first lockdown in March 2020; (d) The relationship between β(t) (x-axis)

and the dominant eigenvalue of contact matrices derived from POLYMOD, UKTUS, Google

mobility and DfE data (y-axis). The colour of points indicates the point during the pandemic,

with darker points corresponding to the earlier stages.
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during periods of epidemic growth. However, as a growing epidemic gradually slows

down and starts declining, the doubling time tends to infinity and turns into a halving

time, thus lacking an easy-to-understand threshold. Although the growth rate does have

a threshold (re(t) = 0), being a rate, it is harder to communicate.

The published estimates of Re(t) are produced on the basis of the contributed es-

timates from the SPI-M modelling groups. The complexities of the full collection of

estimates and their inherent uncertainties motivated an approach for the combination of

model estimates (Maishman et al., 2021). Because of the differences in model structure

and data streams used by the various modelling groups, as well as the limited interaction

between them, model outputs were treated as independent expert “opinions”. The con-

ceptual challenges associated with model combination have been discussed extensively

in SPI-M and include: the weighting methodology, giving equal weight to all contribut-

ing models, rather than using measures of model performance, a difficult process when

different models generate different outputs and there is no observable “true” value of

Re(t); and the combination of estimates that are affected by different lags. More recently,

SPI-M have been putting forward lagged estimates for Re(t) as not all groups are able

to nowcast the effective reproduction number to the present day. Whether or not the

caveats have been fully conveyed, how these estimates are used to inform policy is also

not straightforward. In one example, in results published in early June (Birrell et al.,

2020-06-03), the PHE/Cambridge model produced an estimate of Re(t) centred on 1.01

for North West England, corresponding to a posterior probability of 51% that Re(t) > 1.

This was the first publicly available regional estimate for Re(t) from a SPI-M model, and

was used as the justification for schools to remain closed in Greater Manchester (The

Guardian, 6 June 2020), contrary to national re-opening policy. This local decision was

clearly guided by a single, highly uncertain metric. Estimates of the prevalence of in-

fection, and in particular hospital occupancy, as well as growth rates should be factored

into such a decision. How to combine these indicators remains an open, and to some

extent political, problem.
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4. Practical considerations and our position

The deceptively intuitive meaning associated with the different types of reproduction

numbers masks a plethora of subtleties in their definition, interpretation, estimation

and communication. In the simplest epidemic models, R0 is often taken as the most

useful quantity that, alone, informs about how parameter values affect model behaviour,

as it determines the final size of the epidemic, the critical immunity threshold and the

amount of transmission to be prevented in order to stop the outbreak. However, these

properties are rapidly lost as model complexity increases. Furthermore, when study-

ing an epidemic model theoretically, R0 and its time-varying counterparts are typically

thought of as implying whether the number of infections will grow or decline. However,

when assessing an epidemic in real time, parameters are estimated from surveillance data

as they become available, so that reproduction numbers are estimated to be greater or

smaller than one because the observed data are growing or declining. In addition, their

value is used to measure how “fast” the epidemic is growing or declining. However,

the latter concept is to be interpreted in a generational perspective, while we argue

that the same information is provided more directly by the exponential growth rates,

which describe the epidemic speed in real time. In this position paper we have pre-

sented and discussed the less commonly used control reproduction number Rc(t). It is

worth stressing that this is a unique value describing the impact of transmission of all

current intervention measures combined. Although, when evaluating control measures,

policy makers and the public may be interested in how each intervention affects the

reproduction number, thus attempting to assign an “R budget” to each measure, such

an approach might be helpful in specific circumstances but is conceptually flawed, since

the impacts of different interventions are not compounded in any simple fashion. The

control reproduction number Rc(t) only describes the overall potential impact on trans-

mission of the combined interventions at time t, but has the purpose of comparing sets of

control measures applied at different times under potentially different amounts of pop-

ulation immunity. Furthermore, we argue that, as COVID-19 transitions from epidemic

to endemic, Rc(t) is also likely to facilitate the discussion around control when waning

immunity starts to dominate the system dynamics. We have highlighted challenges that
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apply to both reproduction numbers and growth rates:

• They are averages over time, where an arbitrary choice of the time window, which

should be long enough to grant enough data points for estimation but short enough

to capture the “latest” trend, affects both the uncertainty around the point esti-

mates and the time such estimates allegedly refer to.

• They conceptually pertain to an exponential phase, so although estimates can be

computed during the transitions between different phases, their interpretation is

unclear; this is particularly the case for multi-type models, where continuously

changing policies affecting contact patterns (e.g. lockdown, opening and closing

schools, etc.) may cause the system to hop from transient phase to transient phase

without ever stabilising in a regime where the proportions of cases of each type

have converged to the component of the dominant eigenvector.

• When estimated from data, these quantities are necessarily delayed: infections are

not observed directly, but rather reconstructed from other observable events in

individuals’ infectious episodes; latest data points are not always reliable; data

collation is not instantaneous.

• All data streams arise from measurement and ascertainment processes which can

change over time. Until enough data become available to capture such a change,

inferred trends in R and r may be biased. Challenges lie in balancing the input of

earlier, less direct, data, with more robust but delayed data and reaching a timely

understanding of how the observational process might be varying.

In addition to these difficulties, while r values can be directly inferred from data,

reproduction numbers are predominantly estimated through a model that requires as-

sumptions on the transmission process (e.g. at least the specification of a serial interval)

and this additional transmission step makes them slower at responding to changes in ob-

served data trends. For these reasons, we argue that the growth rate r is often preferable

for asserting how quickly an epidemic is growing or declining, or whether a previously

applied intervention is having a visible effect. On the other hand, R does provide infor-

mation on how much transmission needs to be prevented to achieve controls, although
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the relevance of such information is unclear when the impacts of non-pharmaceutical

interventions are uncertain.

Ultimately, no single number can summarise all the relevant information about the

epidemic and at best provides a limited, partial, perspective. Instead, a combination

is needed: at the very least, metrics of both the current epidemic state and its trend.

As an example, R = 1 (or, equivalently, r = 0) indicates that daily infections are

sustained. However, this provides no information of whether they are stable at, for

instance, 10 or 10 000 new infections per day, with very different outcomes in terms of

public health response. In practice, policy response to an epidemic relies on a diverse

toolkit of measures that, integrated together, are used to make risk assessment and take

policy decisions. A key challenge remains how to communicate combinations of different

metrics, rather than a single number, to both policy makers and the public, especially

when different epidemic indicators may disagree with each other.

The COVID-19 pandemic has brought infectious disease modelling and the repro-

duction number into public discourse. While this concept is important, over-reliance on

any single metric of epidemic spread is unwise. One reason for this phenomenon is the

easy interpretation of the meaning and threshold value of R (a number) compared to the

possibly less intuitive r (a rate). Doubling times, which are mathematically equivalent

to exponential growth rates, can be easier to communicate when the epidemic is growing,

but less so when switching between epidemic growth and decline. A second reason is

related to the dominance of reproduction numbers over growth rates in scientific liter-

ature. At the start of an epidemic, for instance, modelling studies typically strive to

produce and present R0 estimates as their main result, possibly driven by the fact that

only reporting exponential growth estimates, though informative, does not appear as a

worthwhile scientific result. However, the single numerical results often overshadow the

fact that R estimates are inherently dependent on the underlying modelling assumptions

used to analyse the data (Pellis et al., 2021), and, beyond their apparent simplicity, hide

a range of subtle challenges with definition and meaning. We believe it is the respon-

sibility of the scientific community to educate politicians and the general public as to

the meaning and limitations of estimates of epidemic spread, and although at the begin-
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ning of this pandemic we were pleased to have introduced the concept of reproduction

numbers to policy makers and the public, we encourage increased transparency in the

communication of their estimates in combination with their underlying assumptions,

precise meaning, and limitations.
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