
We thank the Royal Statistical Society for the opportunity to appraise comments from discus-1

sants and the discussants themselves for providing feedback. As some of the comments cover2

similar topics, we respond to the points raised rather than individual responses.3

Estimating accurate case counts (Diggle) Entire editions of academic journals are dedicated4

to infectious disease modelling efforts while proper use of data to inform the modelling has been5

emphasized only recently (e.g. Held et al., 2020). The importance of data deserves highlighting6

and it is noteworthy that one of themost detailed and often analysed datasets in the field dates back7

to a measles outbreak in 1861 (recently re-analysed in Aaby et al., 2021). Without useful data,8

we will not be able to estimate the susceptible and asymptomatic proportions of the population.9

Strengthening and improving national and intergovernmental (coordinated by bodies such as10

ECDC andWHO) disease surveillance andmonitoring systems allows for improved early disease11

outbreak detection. Such disease surveillance systems include both mandatory case reporting of12

notifiable disease, sentinel surveillance systems, and also internet and news media, under the13

umbrella of epidemic intelligence services. Disease surveillance requires certain amounts of14

man power and resources to function and systems have seen increases in technological capacity15

in recent years (Hulth et al., 2010; Groseclose and Buckeridge, 2017). Time series of infec-16

tious disease cases typically arising from a surveillance system can easily be modelled using the17

framework we used and presented. However, if the underlying data is flawed, so too will be the18

outputs. We are cognisant of the adage “garbage in, garbage out”. While we are aware of many19

funding opportunities for COVID-19 modelling, it is unclear how much emergency grant sup-20

port has been given to strengthening current and future data gathering and storing infrastructure.21

Utilising existing data mechanisms rather than “re-inventing the wheel” is paramount. Relat-22

edly, there has recently been an attempt at rebranding the data-focused parts of infectious disease23

surveillance as “outbreak analytics” (Polonsky et al., 2019).24

In our own work examining the effect of travel restrictions to neighbouring regions on cases25

in Switzerland we have recently considered both Italian and French case data (see Grimée et al.,26
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2021, for an initial analysis of some of the data) and have experienced two matters that caused27

us to consider the data in further detail and not simply model it as-is. The first is that certain28

case counts in Italian regions show changes from one day to the next which seem unrealistic. In29

particular we have instances of zero (or even negative!) case counts followed by large counts.30

The second is incoherence in case counts for French regions between data sets after changing31

data providers. The Zurich case data does not suffer such problems, but certain cases may not be32

captured by the surveillance system, and so there is a risk of underreporting.33

Underreporting (Diggle, Scalia-Tomba, and Kucharski) Routine infectious disease surveil-34

lance systems are prone to only capturing part of the disease prevalence and so provide an in-35

complete picture of the burden. Specifically, not all infected persons will develop symptoms36

(asymptomatic cases) and thus seek healthcare, whereby their case may not be reported in either37

notifiable disease surveillance systems or sentinel and syndromic surveillance systems. The im-38

pact of underreporting on endemic-epidemic models was examined by Bracher and Held (2020b)39

and we are aware we need to correct for this in our larger Switzerland-wide analysis of school40

closure, taking into account that underreporting may be age-dependent. The reporting also de-41

pends on a correct clinical diagnosis (i.e. no misdiagnosis) and timely entry in the notification42

system. Certain delays are inherent to the reporting system, e.g. the time between a test being43

taken and sent to laboratory for analysis, and are usually corrected for using nowcasting (Höhle44

and an der Heiden, 2014). Increased testing efforts are expected to change the reporting rate as45

more asymptomatic cases will be captured.46

Metrics for communication between technical experts and policy makers (Scalia-Tomba,47

Kucharski, and Panovska-Griffiths) Our work is a “proof-of-concept” analysis and forms48

the basis for an extended analysis of data from all of Switzerland and so the feedback will help49

hone future efforts. Our paper provides expected case counts in order to investigate the effect of50

school closures on disease incidence in the relevant age groups and shows that such an approach51

works. Such case counts could be a metric reported in addition to the effective reproduction52
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number R and the growth rate r. For specific formulations of endemic-epidemic models, it is53

even possible to estimate an effective reproduction number in addition to expected cases (see54

Bracher and Held, 2020b, for details).55

Need for null hypotheses in infectious disease modelling (Riley) We agree that there is a56

need for well-specified null hypotheses to examine the effect of disease control interventions.57

Null hypotheses may need to be born from benefit-harm assessments. The societal damage from58

a public health emergency affects more than simple case counts. It is crucial to balance benefits59

and harms, which policy makers do qualitatively, in a quantitative manner. As we are not in the60

position to decide which measures to introduce or lift, we cannot determine with great certainty61

what an “acceptable” number of additional expected cases is, but we like to stress the importance62

of age in such considerations.63

Related to this, we wish to briefly highlight an experience we have had during our work in the64

previous year. To avoid creating unnecessary research waste and add to the gargantuan amount65

of exploratory COVID-19 modelling papers, we submitted our work as registered research with66

an associated study protocol (Chambers, 2019a,b). The preregistration was written according67

to Van den Akker et al. (2020) specifications. One of the sticking points from our protocol is68

how to determine a specific and testable hypothesis for our approach with associated rationale69

(question 4 of the Van den Akker et al. (2020) specification). In the absence of well-defined null70

hypotheses as requested by Riley, such protocols can be hard to complete.71

Reviewers specialised in modelling analyses of infectious disease surveillance data do not72

seem well-versed in the preregistered publication approach. The academic editor admitted to73

finding reviewers with the required subject matter expertise who were also able to review pro-74

posed procedures difficult. Finding reviewers for the myriad COVID-19 papers being released is75

already taxing (Schwab and Held, 2020). It would seem following traditional publication meth-76

ods (with review only occurring after the analysis is completed) are the ones used by the wider77

field, albeit with pre-prints and providing access to a repository with their analysis code being78
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increasingly utilised (Brooks-Pollock et al., 2021). These approaches still do not allow the option79

to appraise the methods before they are applied to data. Additionally, checks of data quality prior80

to modelling (cf. the need for improved data) provide additional motivation for infectious disease81

modellers to preregister their work.82

Comparing hypothetical control options (Kucharski) While we used prediction retrospec-83

tively, the model could also be used prospectively to predict the effects of a future control sce-84

nario. The endemic-epidemic modelling framework is often used in probabilistic forecasting85

(Bauer et al., 2016; Ray et al., 2017; Stojanović et al., 2019; Held and Meyer, 2020). Many86

of the recent extensions to the framework consider aspects which need to be considered for87

such forward-looking approaches (Held et al., 2017; Bracher and Held, 2020a) and incorporate88

methodology used in weather forecasting. We have not personally examined future scenarios89

of interventions using the modelling framework, as we have preferred to inform our work by90

available data.91

Informing the model with future hypothetical time-varying contact matrices would enable us92

to examine the predicted number of cases under such hypothetical scenarios, e.g. returning to93

baseline contact levels to represent fully reopening/removal of all social distancingmeasures. For94

examples of how such hypothetical contact matrices may be constructed see Willem et al. (2020)95

and Prem et al. (2020). Similarly to how we constructed our contact matrix with data on policy96

interventions, Alleman et al. (2020) informed changes to a contact matrix with mobility data97

and van Leeuwen et al. (2020) updated a contact matrix using time-use survey information. An98

alternative would be to use contact surveys conducted during the COVID-19 pandemic (Jarvis99

et al., 2020b,a; Feehan and Mahmud, 2020; Latsuzbaia et al., 2020). In the work presented100

here—the pilot analysis of Zurich COVID-19 case data—we used a synthetic contact matrix101

which is informed by demographic data as well as contact diary surveys (Mistry et al., 2020).102

Demographic data has also been suggested as a way of “updating” older contact matrices for103

newer use (Arregui et al., 2018) as the commonly used POLYMOD matrices are now some 16104
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years old and conducting a contact survey may be resource intensive.105

Changes in transmissibility and choice of age groups (Riley and Scalia-Tomba) The con-106

struction of our time-varying transmission weights is based upon informing a contact matrix by107

policy indicators given as step functions. We have previously considered use of ramp functions108

(as an alternative representation of changes in policy) in place of step functions. However, the109

choice of slope in such a ramp function needs to be informed by relevant information. We have110

not considered a smooth function as suggested by Riley. For simplicity, we continued our work111

with the step function representation of policy (hence transmission opportunity) changes.112

It is true that the construction of the time-varying contact matrices has assumed all members113

of the population are in the same class with respect to factors that are not age. If information on114

subclasses of interest (e.g. “responding”) is available to inform the model, it would be possible115

to include an extended contact matrix including subclasses, meaning cases would also need to be116

further divided depending on subclass status. If such a status is true for certain age groups, e.g.117

the younger three, it may be better represented as a covariate with the samematrix structure as the118

observed counts rather than increasing the dimension of thematrix to reflect the increased number119

of classes. The goal is to include enough nuance that the transmissionmatrix is informative for the120

groups of interest included in the model, but doesn’t incorporate unnecessary distinctions which121

could mean artificially low disease counts would enter the model, and could cause convergence122

problems.123

For example, in our work we have not stratified cases by sex, as the patterns of case counts are124

similar for each sex. It bears mentioning that summing the results from a multivariate endemic-125

epidemic model may not yield the same as those found in the univariate version, as the interplay126

between groups will not have been incorporated. A related issue is how sensitive the results are127

to the choice of the age groups. We have tried to define the age groups in a reasonable manner128

(school children, working adults, elderly, etc.) though it would be interesting to investigate how129

sensitive the results are to other stratifications.130
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Generalisability and vaccines (Kucharski) While our modelling approach can easily be ap-131

plied to other countries, when working with COVID-19 data for multiple regions, it is pertinent132

that users of data gathered consider whether the case definitions and testing strategies are the133

same across regions. If data is not harmonised in such a manner, conclusions may not be straight-134

forward in multi-region comparisons. With regards to the roll out of COVID-19 vaccines, it is135

important to know not just how many doses of vaccine have been given but also which ones136

they are. To continue with the examples of the two countries considered, at the time of writing137

(July 2021), Switzerland has only licensed messenger RNA vaccines (Comirnaty and Spikevax)138

for use against COVID-19, while other options exist (e.g. adenovirus-based Vaxzevria) in the139

United Kingdom, a nuance which might not be evident from numbers of proportion vaccinated140

in each country. Furthermore the immunisation regimes are different, many younger Swiss resi-141

dents are currently fully vaccinated with 4-6 weeks between shots while their British equivalents142

are waiting up to 12 weeks between shots and were invited later. However, once appropriate143

considerations have been made regarding vaccine and case data, it is possible to incorporate144

(time-dependent) vaccination coverage rates in endemic-epidemic modelling. To appropriately145

account for the remaining (unvaccinated) number of susceptibles, use of the log proportion of146

unvaccinated cases is recommended following Herzog et al. (2011). This is also the approach147

Kucharski and colleagues have utilised in their endemic-epidemic model for measles which in-148

cluded vaccination (Robert et al., 2021).149

Interpretability (Kucharski) It is true that there is a balance between what data allows us150

to fit and how realistic and interpretable our model is. The benefit of the endemic-epidemic151

modelling framework is that it allows us to examine the spread of disease across age groups with152

flexible statistical techniques. The first instance of such a multivariate model is Knorr-Held and153

Richardson (2003) which investigated the spatio-temporal dynamics of meningococcal disease.154

Compartmental models are easier to interpret, but more difficult to apply to surveillance data (see155

Held et al., 2006; Paul et al., 2008, for further discussion).156
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