
Discussion of the papers by Mishra et al (2021) and Teh et al.
(2021)

I congratulate both teams for these welcome contributions on modelling the
COVID19 pandemic. To produce results of such quality within exacting timescales
is a genuine achievement.

Both studies infer a time-varying reproduction number Rt from summary
data constructing hierarchical Bayesian frameworks embodying Rt as an intrin-
sic parameter. Observations arise as noisy, time-shifted, representations of an
autoregressive infection process with weights specified by generation-time prob-
abilities and moderated by Rt. With a common root in Flaxman et al. (2020),
the papers differ in their treatment of temporal effects and spatial coupling
(with Teh et al. (2021) adopting an explicitly spatio-temporal Gaussian process
for logRt while Mishra et al. (2021) use a random walk prior), in their use of
data, and in certain underlying assumptions.

Neither study, in the prior for Rt, incorporates foreseeable effects such as
step changes following interventions, the impact of improved testing on track-
and-trace measures, or the expected decline in Rt due to susceptible depletion.
Incidentally, the presentation of the infection model in Mishra et al. (2021)
seems confusing, with Rt between equations (1) and (2) changing from an in-
stantaneous reproduction number to a ‘raw’ reproduction number, subsequently
re-scaled by the susceptible proportion before reporting. The papers’ general
approach is arguably the ‘image analyst’s take’ on epidemic modelling, where
the objective is to recover a ‘true’ Rt from a noisy image, with prior distributions
providing regularisation rather than capturing mechanistic thinking.

This approach differs from that often taken by modellers of plant or animal
pathogens, who aim to estimate parameters controlling distinct aspects of the
transmission process, such as contact rates and spatial kernel functions, and
then to extrapolate ‘mechanistic’ understanding to other settings. The quantity
Rt, where this can be defined, is a by-product of the transmission process and
putative surveillance and control strategies, rather than an intrinsic parameter.
It is common in such fields to present results, not in terms of Rt, but rather
using predictive distributions of practically important outcomes (e.g. Parry et
al. (2014)). This latter approach is only feasible thanks to the well understood
nature of the host population and the richness of available data. For modellers
of COVID19 the host population’s mixing structure is complex, reflected in the
model used by Ferguson et al. (2020) that informed the UK’s early response.
Moreover, available data typically include coarse-scale summaries of detected
cases, hospitalisations and deaths, with biases and uncertainties from reporting
processes. With the need to support real-time decision making, it is under-
standable that these studies have adopted the approach taken.

Some questions and sensitivities nevertheless merit further exploration. Both
papers employ highly dispersed distributions in infection and observation mod-
els. As the prior for the dispersal parameters places increasing weight on high
dispersal, might we expect the data to become less informative regarding Rt,
with implications for uncertainty in forecast outcomes? Similarly, since step-
changes in Rt are not explicitly accommodated by the prior then, should the
imputed Rt exhibit rapid changes, must these be explained by the volatility
terms in the Gaussian process or random-walk prior, again with implications
for uncertainty in forecasting? Can we incorporate more mechanistic thinking
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to mitigate such potential sensitivities - for example using priors based on mean-
reverting univariate or multivariate auto-regressive processes for logRt, where
the mean may change according a jump process?

Further questions relate to model assessment. Mishra et al. (2021) compare
posterior median predictions with observed case numbers and, given that the
plots of Figure 5 utilise a logarithmic scale, find considerable disparity. Teh
et al. (2021) inter alia investigate their methods’ ability to recover the true
Rt, when data are generated from their model. Are the methods capable, for
example, of recovering ‘ground truths generated using more detailed simulation
models (cf Firestone et al. (2019))? For example, when analogous data are
simulated for a structured population with reproduction matrix Rt, can the
imputed Rt imputed successfully track the maximal eigenvalue of the true Rt,
or may it underestimate this quantity given that the distribution of infections
over groups may not match the corresponding eigenvector? A comparison with
simpler smoothing methods would also be welcome.

The papers highlight an important challenge in statistical modelling of pan-
demics - that of statistical inference for more complex mechanistic models that
can potentially inform the design of targeted control strategies. This demands
that the richness of available data is better matched to the complexity of mod-
els; achieving such a matching is a major challenge in itself. The authors of
these papers have made effective use of available data and their modelling is
an important step towards understanding the impact of spatial interactions. It
will be interesting to explore whether their framework extends to other hetero-
geneities, such as those arising from age structure, whose importance has been
highlighted in other studies (e.g. Lau et al., 2020).

Gavin J. Gibson, Maxwell Institute for Mathematical Sciences, Heriot Watt
University, Edinburgh, EH14 4AS, Scotland
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