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1 | INTRODUCTION

Summary statistics, often derived from simplified models
of epidemic spread, inform public health policy in real time.
The instantaneous reproduction number, R, is predominant
among these statistics, measuring the average ability of an
infection to multiply. However, R; encodes no temporal in-
formation and is sensitive to modelling assumptions. Con-
sequently, some have proposed the epidemic growth rate,
rt, i.e., the rate of change of the log-transformed case inci-
dence, as a more temporally meaningful and model-agnostic
policy guide. We examine this assertion, identifying if and
when estimates of r; are more informative than those of R;.
We assess their relative strengths both for learning about
pathogen transmission mechanisms and for guiding public

health interventions in real time.
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Inferring changes in pathogen transmissibility during epidemics is an important challenge. Increases in transmissibility
may forewarn of elevating caseloads and hospitalisations, while decreasing rates of spread may evidence the effec-
tiveness of earlier interventions or the influence of infection-acquired immunity (Anderson and May,|1991). Practical
limitations on the scope and speed of outbreak surveillance mean that population-wide summary statistics, derived

from simplified models of epidemics, often inform public health policy in real time. The instantaneous reproduction
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number at time ¢, denoted R;, is predominant among these statistics. It measures the average number of secondary
infections generated per effective primary case at that time. An R, above (or below) 1 indicates a growing (or waning)
epidemic and often forms part of the evidence base for policy decisions on the imposition or release of interventions
(Anderson et al.}|2020). However, R; encodes no temporal information. For example, R; = 2 indicates approximate
epidemic doubling (per generation of infections) but not the speed of that doubling. Moreover, because inference of
R: depends on the model used (and hence its assumptions), differing estimates may be obtained from the same data,
complicating the interpretation of R; as a signal for epidemic response (Lloyd,|2009; |Parag and Donnelly,{2020).

Consequently, the instantaneous epidemic growth rate, r¢, defined as the rate of change of the log-transformed
case incidence, has been proposed as a more informative and understandable measure of transmission dynamics (Pellis
et al.,|2020). Growth rates may be estimated directly from the gradient of the log-transformed observed incidence
curve, have a natural temporal interpretation as the speed of case accumulation and still encode key dynamics e.g.,
the sign of r; and R; — 1 signify similar transmission trends. Estimates of r; can therefore, seemingly, be derived
independently of an epidemic model. However, if a model is assumed, there is a one-to-one correspondence between
re and R;. Thus, R; may provide no more information about transmission patterns than that available already from r;
(Wallinga and Lipsitch}|2007). While these observations may at first recommend r; as the more useful measure for
policymaking, there are implicit complications.

First, when comparing transmission across different spatial scales, epidemic phases or even data types (e.g., hospi-
talisations or cases), a non-dimensional parameter may be more useful. A value of R; = 2 has the same interpretation
of a primary case generating two secondary ones on average, regardless of the region studied or the phase of the epi-
demic considered, with important implications for interventions (e.g. if R; = 2, then more than half of transmissions
must be prevented for the epidemic to start declining). Second, the process of estimating the logarithmic derivative
of a noisy incidence curve is not trivial and noise-smoothing choices may actually be equivalent to modelling assump-
tions. Third, information encoded in R; may be more easily leveraged to develop other useful outbreak analytics, such
as probabilities of epidemic elimination (Parag et al.||2020) or herd immunity thresholds (see Discussion and [Heth;
cote (2000)). Last, biases and delays in reporting and surveillance may have differing impacts on estimates of both
quantities, making it unclear which offers the higher fidelity view of transmission (Lloyd, 2009).

In this paper, we investigate and discuss the various complexities and subtleties mediating the practical informa-
tiveness of estimates of both R; and r;, which we denote R; and #;, respectively. We outline how these quantities can
be computed from incidence curves using renewal models and smoothing filters. This leads us to our main result: that
the smoothing assumptions inherent in obtaining 7; from noisy incidence curves can be in some senses equivalent to
the epidemiological ones necessary for obtaining R;. Consequently, we conclude that the question of whether R; or r;
is more informative for real-time public health policymaking depends on the relative accuracy of the epidemiological
assumptions and on how well the subtleties and uncertainties underlying each summary statistic are communicated.
Estimates of R; and r; in combination, alongside contextual information about the ongoing epidemic, will provide the

most complete picture of pathogen transmission and control.

2 | METHODS

2.1 | Computing reproduction numbers and growth rates

Inferring the time-varying transmissibility of a pathogen from routinely available surveillance data is vital to assess
ongoing and upcoming trends in epidemic dynamics. Among the most common data types is the incidence curve,

which represents the time-series of of new cases. We use I; to denote the incidence at time ¢ and let w; be the
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probability that a primary case takes j time units (usually in days) to generate a secondary case. The set of w; for
all j constitutes the generation time distribution of the disease, where we make the common assumption that the
generation time distribution is approximated by the serial interval distribution (Wallinga and Teunis,|2004;|Cori et al.,
2013). The serial interval distribution describes the times between symptom onsets for primary and secondary cases
and is often computed from independent line-list data (Cowling et al.||2009; |Hart et al.;2021). We assume that the
set of w; has been well characterised for the infectious disease of interest.

The renewal model (Fraser,|2007) relates the instantaneous reproduction number at time ¢, R;, to the incidence
curve and generation time distribution as in Eq. (1) with E[I;] indicating the mean of I;. Typically, an assumed distri-
bution (e.g. Poisson or negative binomial) is used to statistically relate this mean to I;, and estimates of R; (i.e. R;) are

obtained using various Bayesian or maximum likelihood computational approaches.
t-1
E[Ie]=ARe  Ac= Y Iojw; &
j=1

The total infectiousness, A;, summarises how past incidence propagates forwards in time by incorporating knowledge
of the generation time distribution via a convolution. Many approaches exist for inferring R; from the incidence curve
{I, I, ..., IT} with T as the last observed time (see (Anderson et al.,[2020) for more details). These estimates, R;,
are increasingly employed for tracking transmissibility during epidemics and guiding public health responses.

The instantaneous growth rate, r;, has been used less frequently to assess transmissibility over time but has
recently gained attention as an alternative to R; (Pellis et al.;|2020; |Dushoff and Park}|2021) and is among the met-
rics that COVID-19 advisory bodies track. The quantity 7; can be derived from {I;, I, ..., I+ } without additional
epidemiological knowledge or assumptions e.g., no estimated generation time distribution is required. Instead, the
logarithmic derivative of some smoothed version of the incidence, S[I;], is used, as in the left side of Eq. .

(m-1)2
dlog S[I¢]
re=——-", St = Itijaj (2)
de j=(;")/2

Here S[I;] refers to any smoothing, which at time ¢t may depend on any subset of the incidence curve (and not just

I;). There are various ways of deriving S[I;] curves (e.g. using splines or moving average filters (Pellis et al.,[2020)).

We can unify many of these approaches to smoothing within the framework of Savitzky-Golay (SG) filters (Savitzky
and Golay,|1964). SG filters, with dimension m and coefficients a;, perform local least-squares polynomial smoothing
via the discrete convolution or kernel in the right side of Eq. . We denote the resulting smoothed incidence as
S[I;] = S: and we may optimise the a; coefficients via least squares or select their values to confer some desired
properties (for example to maintain certain waveform or frequency characteristics of the original data). We can realise
a standard moving average filter within the SG framework by setting each a; = 1/m, for example. The SG framework

has broad applications and further information on its uses and properties can be found in (Schafer}|2011).

The reproduction numbers and growth rates we consider should not be confused with the basic reproduction
number, Ry, and the intrinsic growth rate, r, which can be estimated using numerous methods (e.g., via compartmental
or Richards’ growth models (Yan and Chowell,[2019)) from various data sources (e.g., prevalence or cumulative case
data). While these are related to our R; and r; during the earliest phases of an epidemic, Ry and r cannot track time-
varying changes in transmissibility. Instead they provide insight into initial epidemic growth upon invasion (Anderson:
et al.,|2020). The methods above do not consider spatial, contact or other heterogeneities. However, including these

may not always improve transmissibility estimates (Liu et al.};|2018). Next, we clarify how R; and r; are related.
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2.2 | Connecting reproduction numbers and growth rates

Eqg. (1) and Eq. {2) describe simple and general approaches to estimating R; and r; from an incidence curve. While a
known generation time distribution or serial interval is assumed in Eq. (1) when determining R;, Eq. {2) neither makes
mechanistic assumptions nor requires additional data for calculating 7;. However, if the assumptions in Eq. (1) are
made then it is possible to derive a model-dependent #; from R;. The generalised method for connecting these two
summary statistics is given in the left side of Eq. (Wallinga and Lipsitch| [2007), with My, denoting the moment
generating function about the generation time distribution (defined by the set of w; from Eq. ).

ReMy, (=f) =1,  F = b(/%:E -1) (3)

The left side of Eq. (3) states that the relationship between #; and R; depends strongly on the parametric form of
the generation time (or in practice, the serial interval) distribution. The set of w; is most commonly parametrised from
the gamma family of distributions with shape and scale parameters a and b. This leads to the analytic expression on the
right side of Eq. . Although the moment generating approach suggests a general way of connecting #; and R;, there
is an implicit exponential growth or decay assumption within this formula (Wallinga and Lipsitch,|2007). While Eq.
is developed for a general renewal model framework, we can also specialise this method to popular compartmental
models. For example, under a linearised compartmental Susceptible-Infectious-Recovered (SIR) model, we obtain
7t = (Re=1)/E[w], with E[w] as the mean generation time (Bettencourt and Ribeiro}|2008).

3 | RESULTS

We examine how the model-based #; relates to R; under a given generation time distribution (see Methods). The
gamma and SIR simplifications of Eq. (3) provide key insights into the relative informativeness of these statistics. First,
we see that the sign of R; — 1 and 7, are equivalent, making either equally good for inferring the transitions between
growing and declining epidemics. We illustrate this for a simulated epidemic in Fig. which has been constructed to
model seasonal transmission dynamics. The example we provide is representative of the range of possible epidemic
trajectories (and estimates) that would result from our chosen true sinusoidal R; profile.

We compute R; using the EpiFilter method (Parag et al.,|2020) (red, A), which provides minimum mean squared
error Bayesian estimates. We assume knowledge of the true generation time distribution and validate our estimates
with one-step-ahead incidence predictions (red, B) as in (Parag and Donnelly,[2020). The intersections of R; (red, A)
with 1 and those of the model-based #; (red, C) with O coincide, as expected from Eq. . Both provide consistent
assessments of time-varying transmission, correctly signalling rising and falling seasons.

We next compute the model-agnostic, log-derivative-based #; using an SG filter as in Eq. (2), which effectively
fits local splines to the incidence curve. This estimate (grey, C) correlates well with our model-based one (red, C),
with some overshoot in periods where incidence is small (and estimation known to be more difficult (Parag et al.,
2020)). The only assumptions made in obtaining this estimate relate to how we smooth the data to obtain stable
log-derivatives (e.g., we have to make choices about the order of our splines or the dimension of our moving filters).
Current approaches to deriving model-agnostic 7; values must all ultimately make similar assumptions and choices
(Pellis et al.}|2020). Having made these key observations, our main result emerges.

Comparing Eq. {1) and Eq. , we see that the total infectiousness, A, is an implicit SG filter, with the value of
m determined by the support of the generation time distribution. Hence, we construct another growth rate estimate,

P =~ % as shown in Fig.|1|(blue, C). This estimate matches the other two growth rate estimates well but with
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FIGURE 1 Instantaneous reproduction numbers and growth rates. We simulate a seasonally varying epidemic with
incidence I, according to the renewal model with true transmissibility R; and serial interval distribution estimated
for Ebola virus from (Van Kerkhove et al}[2015). In panels A and B, we estimate the instantaneous reproduction
number R; (with 95% credible intervals) using EpiFilter (see ) and provide one-step-ahead predictions I,
using R;. In panels C and D we derive three growth rate estimates, 7; using: R; (via the (Wallinga and Lipsitch|[2007)
approach), a smoothed-shifted version of the incidence curve S;_. (via SG filters) and a shifted version of the total
infectiousness of the epidemic A;_; by treating it as a type of SG filter.

a decreased overshoot. This correspondence is novel and, importantly, clarifies how time-varying model-agnostic
growth rates and instantaneous reproduction numbers relate by exposing that the generation time distribution is
effectively an epidemiologically informed smoothing filter.

We confirm this by comparing A; and S; (grey and blue, D), which are effectively two possible realisations of S[I;]
from Eq. (2). These are written A;_; and S;_; to indicate that they have been shifted to remove lags, r, which naturally
result from applying smoothing filters. Generally, 7 is related to the mean generation time. We do not provide credible
intervals for the two SG-based 7; here as we simply intend these results to demonstrate proof-of-concept. Note that

all Bayesian credible intervals we present are equal tailed (based on relevant quantiles).

Last, in Fig.|2|we examine robustness to misspecification of the generation time distribution. We use the same
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inference procedures as above but now the mean generation time assumed in estimation has a mean that is 33% smaller
than that of the true Ebola virus distribution (under which the data is generated). Misspecification could occur due to
interventions or other epidemiological changes (Ali et al.}[2020). We find that R; is sensitive to this change (compare
the red and blue estimates in A). However, the 7; computed from the misspecified R; is mostly stable, although there
is increased uncertainty (compare the red and blue estimates in B). Correspondence between model-based and model
agnostic 7 is also maintained but not shown.
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FIGURE 2 Misspecified estimates of reproduction numbers and growth rates. We repeat the simulation of Fig.|1|but
our estimates now assume a misspecified Ebola virus generation time distribution. This distribution has a mean that
is 33% smaller than the one used to generate the epidemic data (which is from (Van Kerkhove et al}|2015)). Panel A
provides estimates of instantaneous reproduction numbers, R;, under the true and misspecified distributions (with
95% credible intervals) using EpiFilter (Parag,|2020). Panel B presents corresponding growth rate estimates (and 95%
credible intervals), 7¢, which are derived from the various R; in A (Wallinga and Lipsitchl|[2007).

4 | DISCUSSION

Evaluating time-varying changes in pathogen transmissibility is an important challenge, allowing the impact of public
health interventions to be assessed and providing indicators that can inform policymaking during epidemics. We have
focussed on two key metrics for tracking transmissibility: the instantaneous reproduction number R; (with estimate
R:) and the instantaneous growth rate r; (with estimate 7;). Both metrics provide key insights into the dynamics of
epidemics as demonstrated by their use during the COVID-19 pandemic (Anderson et al.,|2020; |Abbott et al.,|2020).

However, their relative merits and demerits have been increasingly debated. Recent work has suggested that the
benefits of inferring 7 might have been underappreciated, and that this quantity may be particularly useful because
of its apparent independence from modelling assumptions and its explicit consideration of the epidemic speed (i.e. it

more naturally includes temporal information) (Pellis et al.,|2020; Dushoff and Park;|2021).

Here, we have investigated and exposed the relationship between R; and 7. The relative informativeness of these

two quantities during epidemics rests on the reliability of their smoothing and epidemiological assumptions. We found
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that both R; and 7; extract signals of changing pathogen transmission by smoothing noise from the incidence curve.
As shown in Fig. |1} their key difference lies in the kernel (i.e., the set of weights in the SG filter of Eq. ) used
for this smoothing. Specifically, computing 7; in a model-agnostic way corresponds to selecting an arbitrary kernel,
whereas calculating R; (and, correspondingly, model-based 7; values) involves implicitly treating the generation time
distribution as an epidemiological kernel (see Results and the right sides of Eq. (1) and Eq. ).

As aresult, if the generation time distribution is estimated accurately and underlying assumptions about pathogen
transmission hold, then not only are both measures closely related, with the commonly cited R; = 1 threshold corre-
sponding to an r; = 0 threshold, but R; is also theoretically more informative. This follows because R; can be used
to derive correct model-based 7; values, while also providing additional insights into the mechanism of transmission
underlying the observed incidence (Yan and Chowell}2019). In contrast, starting from the model-agnostic #;, it does
not seem possible to derive R; without epidemiological assumptions. Should the generation time distribution be
misspecified as in Fig. then R; could be biased, and the model-agnostic 7; would be more informative.

When constructing R;, the generation time distribution is often approximated by the serial interval distribution.
Misspecification of the generation time as described above might arise due to the often limited number of observed
serial intervals used to estimate the serial interval distribution. Observed serial intervals are commonly obtained from
household or contact tracing studies, where it is possible to identify source-recipient transmission pairs (Cowling et al.}
2009; |Li et al.;|2020). However, as case numbers increase, identifying known source-recipient pairs becomes more
challenging since there is less certainty about the source of a given transmitted infection and as the risk of infection
from an unknown source in the community cannot be ignored.

Moreover, even if sufficient source-recipient pairs are reliably known, the generation time may still be misspecified.
Non-pharmaceutical interventions and public health measures, such as case isolation after symptom onset, may curtail
observed serial intervals (Ali et al.;,|2020) or increase the proportion of cases caused by pre-symptomatic transmission
(Sun et al.}|[2021). In both scenarios it becomes difficult to reliably approximate the generation time distribution with
the serial interval distribution, which is also now time-varying and may even have negative values. While recent
approaches try to compensate for some of these issues (Ganyani et al.||2020) or allow the inclusion of up-to-date
distributions (Thompson et al.}[2019), accurately relating 7; to R; may not always be simple in practice.

Despite potential issues when obtaining R;, we have made clear that inferring the model-agnostic #; also requires
assumptions related to smoothing of the incidence curve (or log incidence curve) and specification of the time interval
over which to estimate a particular 7;. Furthermore, when case numbers are increasing, 7; does not give an indication
of the proportion of current transmissions that must be blocked to prevent an epidemic from continuing to grow. This
proportion relative to Ry is known as the herd immunity threshold. This threshold is used to determine the vaccine
coverage required in order to control transmission, accounting for vaccine effectiveness and any infection-acquired
immunity (Hethcote}|2000; Thompson et al.,|2020). On the other hand, it is 7; that naturally gives estimated doubling
times (or halving times), which may be important for intervention planning purposes.

There are also a number of factors that limit the informativeness of both R; and #;. First, reporting errors and de-
lays can lead to imprecise case counts, affecting summary statistics derived from incidence curves (Azmon et al.;|2014).
Second, both of the statistics discussed here relate to averages, but heterogeneous systems with superspreading in-
dividuals or events (LIoyd-Smith et al.;|2005) require more than a measure of central tendency to be well understood.
Inferring pathogen transmissibility and the potential impacts of interventions therefore often requires more complex
modelling approaches. Last, it is not only 7 that requires time windows to be chosen for estimation. Values of R;
are often calculated over shifting time windows. Short windows may lead to fluctuating R; values that potentially
reflect randomness in contacts between hosts rather than variations in transmissibility, while long windows may blur

detection of key variations (Cori et al.}|2013; |Parag and Donnelly}|2020).
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The above problems relate to fundamental bias-variance tradeoffs in the inference of r; and R;, and emphasise
that neither measure should be used naively. As highlighted in (LIoyd}|2009) and illustrated in Fig. sensitivity analyses
of the structure of the epidemiological model or statistical procedure used are crucial for drawing reliable inferences
from noisy data. It should also be noted that even if these problems do not exist, other contextual information is still
often required to obtain a full picture of an ongoing epidemic. For example, while R; = 1 or, equivalently, r, = 0 may
indicate a stable epidemic, the policy response may be very different depending on whether incidence is high or low.
The first of these scenarios may not be acceptable to policymakers, as it involves large numbers of infections in the
near future. Both R; and r; only provide information about the changes in state of an epidemic.

Nonetheless, despite some of the challenges in estimation and the need for contextual information, we contend
that both R; and #; are valuable. Estimates of R; (widely referred to as the "R number") are particularly useful as an
intuitive measure for public communication, allowing the effects of current interventions to be assessed and commu-
nicated straightforwardly. However, estimates of r;, expressed as doubling times, are great for expressing the speed
at which cases are increasing. Given the risks of depending on either R; or r; that we have explored in this paper and
the complementary roles they can play in raising public awareness, we support current efforts to generate estimates
of both summary statistics. These quantities in combination and together with contextual measures such as current

incidence or prevalence, allow epidemic dynamics to be understood more clearly and completely.
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