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Summary. We propose a new framework to model the COVID-19 epidemic of the United
Kingdom at the local authority level. The model fits within a general framework for semi-
mechanistic Bayesian models of the epidemic based on renewal equations, with some
important innovations, including a random walk modelling the reproduction number, incor-
porating information from different sources, including surveys to estimate the time-varying
proportion of infections that lead to reported cases or deaths, and modelling the underly-
ing infections as latent random variables. The model is designed to be updated daily using
publicly available data. We envisage the model to be useful for now-casting and short-term
projections of the epidemic as well as estimating historical trends. The model fits are avail-
able on a public website, https://imperialcollegelondon.github.io/covidi9local.
The model is currently being used by the Scottish government to inform their interven-
tions.

1. Introduction

Surveillance systems are vital to combat the spread of the SARS-CoV-2 epidemic. In the
UK, publicly available estimates of current infections and the reproduction number (i.e.
the number of secondary infections per infection) are primarily available at national and
regional level (9 geographic regions of England) (Department of Health and Social Care ,
2020). However, with an evolving epidemic localised trends at subnational level are very
important. To identify trends and facilitate monitoring at a local level, we implement
a semi-mechanistic Bayesian transmission model for SARS-CoV-2 at the local authority
(LA) level for the UK. The model assesses and projects the evolution of the epidemic and
estimates the time-varying reproduction number for local areas. We apply our analysis
to the UK, although our approach is applicable to any country where local data on cases
and deaths are available.

We have extended the Flaxman et al. (2020) model for each local authority by incor-
porating four innovations. First, the model incorporates reported cases in addition to
deaths. Second, survey data from the (Office for National Statistics, 2020al) and from
the Real-time Assessment of Community Transmission study (REACT Study, 2020) is
used to calibrate estimates of the (unobserved) number of true infections. Third, the
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model incorporates a time-varying infection fatality rate (IFR), the fraction of infections
that leads to deaths, and a time-varying infection ascertainment rate (IAR), the fraction
of infections identified as positive cases. Fourth, infections are modelled as a random
process, and not merely a deterministic function of Ry, previous infections, and a given
serial-interval (generation distribution), which better accounts for variability in areas
with low infection numbers.

Regularly updated results from the model are presented at covid19locallf] The model
is currently being used by the Scottish government in their response to their epidemic (Scat-
tish Government, 2020, issue 24 to now).

2. Data

We combine data from national statistics and public health bodies across the UK. Re-
ported cases for England are taken from the UK Coronavirus dashboard (Public Health
England, 2020)), for Wales from (Public Health Wales, 2020). For England and Wales,
information about deaths are from (Office for National Statistics, 2020b). Cases and
deaths for Northern Ireland are from (Department of Health, Northern Ireland, 2020
and for Scotland are from (| Scottish Health and Social Care Open Data, 2020)).

For reported cases, the model uses the date of specimen collection. To account
for reporting variations within a given week, we aggregate daily case and death data
by week. We omit the last three days of data while fitting our model to account for
reporting delays. ONS and REACT survey data are used to calibrate estimates of
infections produced by our model.

Our model works at the local authority level - in England, where there are upper
and lower tier local authorities, we work with lower tier local authorities (LTLAs). The
other nations of the UK do not have this subdivision. In total we fit to 391 different
areas, that consists of the UK, nations in the UK, geographic regions of England and all
local areas in the UK.

3. Model

Flaxman et al. (2020) introduced a Bayesian semi-mechanistic framework for estimating
the transmission intensity of SARS-CoV-2. The model is based on the renewal equa-
tion (Mishra et al., 2020), and uses R; to generate new infections. We modify this
framework for use with local authorities. In this section, we outline the model; more
details are in Section [S1] of the supplementary materials. Section [6] discusses the reasons
for our modelling choices.

Let 4; be the number of infections on a given day ¢ in a given area. The basic model
in (Flaxman et al., 2020) uses the following renewal equation:

t—1
i =R Y irgi s, (1)
7=0

where R; is the real-time reproduction number (i.e. the number of secondary infections
per infection), and gx, k = 1,... is the generation distribution, i.e. a probability mass

thttps://imperialcollegelondon.github.io/covidi9local
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function determining the time between two infections. R; is random and can be flexibly
modelled.

Eq can be modified to allow infections to be a latent process and account for
population effects (decreasing susceptible population over time) as follows (Scott et al.,
2020; Bhatt et al., 2020):

t—1

Z;f ~ LN(Rt Z lrGt—rs d)v
=0

=-S5 (1o (). .

J

where the first equation makes infections latent and the second is an adjustment for
population effects. In the above, N is the population size of that area, LN (i},d) is a
lognormal distribution with mean i; and a standard deviation of d\/Z, with d being
assigned a prior. The number of infections that would have occured if everyone in the
population was susceptible is zt

The formula for i; is derived from a continuous time model on [t—1, ¢]. This is to avoid
discrete time effects such as infections going above the total population N. Specifically,
we assume that the infections i(s) in [t —1,¢—1+s] are given by the differential equation
0i(s)/0s =iy (1 — (Z;;%) ij +1(s))/N), which has the solution i(1) = i; as above. When
we report reproduction numbers we adjust these for the population effect and report
Ri(1 = (X024 i5)/N).

The model contains different observation types (cases, deaths, survey data), each of
which will only be present at some time points (e.g. once per week). For an observation
of type [ at time ¢, we model the expected observation OfS as a weighted sum of past
infections:

t—1
o = a(t)d irm . (3)
7=0

The observed data O} are then noisy versions of this, i.e. Of ~ F' (o}, ¢), where F is a
distribution (e.g. Poission, negative binomial) parameterised by its mean o} and possibly
an auxiliary parameter ¢.

Typical examples for observations include case or death counts. «(t) represents an
ascertainment rate and m;_, represents the distribution that provides the weighting for
past infections. For case or death data, a(t) would be the infection ascertainment rate
(TAR) or the infection fatality rate (IFR) respectively, and m;_, would be the infection
to case or the infection to death distribution respectively.

In our specific case, we parameterise F as negative-binomial distribution for modelling
weekly deaths and cases data. To model seroprevalence data we parametrise F as a
normal distribution. The exact details on how each different observation is modelled is
given in supplementary information Section

Interventions are not explicitly included in local models. Instead, we parameterise
R, with a random effect for each week of the epidemic, and for each LA separately (no
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Fig. 1. Model diagram for first stage when we have all four different observations(deaths, cases,
ONS infections, REACT infections) available for England and we use this to estimate time vary-
ing IFR and IAR. Dark blue nodes are observed.
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Fig. 2. Time varying estimates of the infection fatality ratio (IFR), figure (a), and the infection
ascertainment rate (IAR), figure (b), for England. The solid line is the mean estimate and the
filled area denotes 90% pointwise credible intervals.

joint inference of parameters across different local authorities). Weekly random effects
are encoded as a random walk with normally distributed updates. Thus, under the
prior, each successive step the random effect has an equal chance of moving upwards or
downwards from its current value. Our model is implemented using epidemi
, a general purpose R/ package for semi-mechanistic Bayesian modelling of
epidemics built on top of RStan (Carpenter et al., 2017)) and using an interface based
on rstanarm (Goodrich et al., 2020)).

We take a three-stage, top-down approach to fitting LA models.

We first calibrate the infection fatality ratio (IFR) and infection ascertainment rate
(IAR) by fitting the model at national level (i.e. not broken down by region) to weekly
deaths and cases in England, as well as to survey data from ONS and REACT. Figure

ihttps://imperialcollegelondon.github.io/epidemia
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Fig. 3. Probability of epidemic growth by local area. We consider infections within a local
area to be increasing if R; > 1 with probability > 90% (dark green), and likely increasing if
R; > 1 with probability between 75% and 90% (light green). Decreasing (dark pink) and likely
decreasing (light pink) are defined symmetrically with R, < 1.

gives an overview of this stage. For all subsequent individual models, we use these
estimated IFR and IAR values (Figure [2) as priors.

In the second stage, we fit individual models to Northern Ireland, Scotland and Wales
and to the 9 regions of England using death and case data aggregated to regional level
from local authority level, using the priors estimated for the IFR and TAR in the first
stage. The estimates from these 12 regions provide underlying trends of R; for local
areas within a particular region. We report the results of these regions, together with
estimates for England and the UK as a whole. A diagram for this stage is in Figure
of the supplementary material.

Third, we fit individual models for each local area. Local values of R; are parame-
terised as a sum of a weekly random walk and the estimated value of R; from the region
each local area is located in (multiplied by a tight prior around 1). There are three
broad components to the model likelihood, arising from cases, deaths and seropreva-
lence. All model code is available at https://github.com/ImperialCollegeLondon/
covidi9uklocal, and detailed description of the model and fitting procedure are given
in first the supplementary information Section [S1|and in Bhatt et al. (2020); Scott et al.|
((2020). A diagram for this stage is in Figure f the supplementary material.
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(a) Threshold 100 cases  (b) Threshold 200 cases  (c) Threshold 500 cases

Fig. 4. P(hotspot x) for different thresholds. Probability of local authority areas exceeding
100, 200 or 500 cases per 100K population for the period 27" Dec 2020 to 2"¢ Jan 2021 as
projected on 25" Dec 2020.

4. Results

In this section we give some example outputs from the model.

Figure [3| shows the posterior probability that R; is greater than 1 by local area for
three different periods of epidemics, 25" Dec 2020, immediately before England was put
into a national lockdown, 21 Jan 2021 just after the third lockdown, and 30** May
2021 three weeks before the planned removal of all restrictions. We include estimates
of Ry and infections over time for each local area on our (websitdf] (Gandy and Mishra,
, which is updated daily.

On our website, we have used the term “hotspot x” (e.g. “hotspot 50”, “hotspot 100”)
which we define as a local authority, whose weekly reported cases per 100k population
exceed x. We specifically project the probability of an area being a ”hotspot x” in the
next 3 weeks and report maps of these probabilities. Examples of such maps are shown
in Figure [4] for the period 27" Dec 2020 to 2@ Jan 2021 as projected on 25" Dec 2020.
As on our website, we have chosen different colours for different thresholds to set the
plot for different thresholds clearly apart.

A monitoring system could use these probability projections to identify areas of con-
cerns. They offer a combined view of both the current infections as well as the current
growth of the epidemic (R:) in a single number. A simplistic view that looks at ei-
ther value in isolation can be misleading: for example, a low case count with high Ry,

Shttps://imperialcollegelondon.github.io/covid19local/
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Fig. 5. Median projections versus observed weekly case numbers per 100k by month in which
the projection was made

through exponential growth, can lead to a sudden increase in infections which can be
more concerning than a high case count with (very) low R;.

The tier monitoring system in Scotland used output from our model from 22 October
2020 onwards, specifically the hotspot probabilities (Scottish Government, 2020). Ini-
tially, our model was used on its own, from 25 Feb 2021 the outputs of this model were
combined with the output from two other models.

5. Model Evaluation

The model has been run regularly, mostly daily, since September 2020 and results were
made publicly available. Projections were made for the upcoming three weeks. Figure
shows a comparison of the projections made by the model and the reported weekly case
numbers per 100k population. The comparison is by month in which the projection was
made. This is an out-of-sample test, as all of these projections were made before the
case numbers were available.

Figure [5| shows a reasonable correspondence between projections and reported case
numbers, in the sense that they seem to be correctly centered. Exceptions are par-
tiuclarly in December 2020 and in January 2021. In December 2020, projections were
generally lower than reality - this is most likely due to the emergence of the Kent variant
of the virus, which has a substantially increased transmissibility (Volz et al., 2021)). In
January 2021 the projections were higher than the reported case counts - due to inter-
ventions being put into place nationwide. This is expected behaviour from the model -
it projects the current state of the epidemic forward - it does not attempt to estimate
the effect of policy changes or the emergence of a new variant of the virus.
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6. Discussion

Our modelling approach has some underlying limitations. We have assumed homoge-
neous mixing of the population within local authorities and various age groups. All
of our probability distributions for the delay between infection and symptom onset, be-
tween symptom onset and death, time between a person’s infection and their subsequent
transmission are assumed to be constant throughout.

Projections from the model assume no change in governmental interventions and
human behaviour. Furthermore, interventions are not explicitly included in our models.
Hence, the effect of a measure may not appear for 1-2 weeks after its implementation,
once the random walk in R, starts picking up a signal in the data. There are several
reasons for this approach. First, reliable data on interventions and mobility is typically
not immediately available. Even if it were available, the effects on transmission may only
be identifiable over time. The random walk in R; can pick up these effects automatically.
Second, including interventions in the model would require frequent adjustments to the
model, and would make providing daily updates difficult. A side effect of not including
interventions is that potentially sharp transitions in R; due to measures may be smoothed
over time by the random walk.

An alternative formulation to the model would have the reproduction number R in
and/or the ascertainment rates « in depending on the time of infection 7 instead
of the current time ¢t. We chose the dependence on the current time ¢, as this allows the
model to adapt to changes such as increased testing or non-pharmaceutical interventions
that affect all infected individuals.

Apart from the estimates used from previous steps (e.g. IFR, IAR), we deliberately
did not construct a joint model of all regions (e.g. using partial pooling in the spirit of
Gelman (2006)). One reason is the computational demand for running such a model. A
second reason is that we wanted the projections for one area to be not strongly affected
by neighbouring areas, ensuring that decisions for an areas can be justified mostly by
information from the same area.

The three stage modeling approach helps to robustly estimate the epidemic. The
estimates of IFR and ITAR from the first stage are reliable for England as they are
inferred using serosurveys from both the ONS and REACT. In all remaining models,
the individual IFR and IAR are specified by tight priors with the mean equal to the
IFR and IAR for the whole of England. This step permits variation between individual
models while also calibrating IFR/IAR against serosurveys. Recall that in the second
stage we fit models for all regions in England, as well as for all nations in the UK. The
LA models are then fit using the regional R; (region for LTLAs in England and nations
for local authorities in other nations) as a covariate for the local R; in addition to the
weekly random walk. The regional R; trend helps to stabilise inference for local areas.
Background regional R; values are not used for the last 45 days to ensure that recent
trends in local R; are driven primarily by the data from the local area.

The renewal equation propagates infections deterministically. This is generally
suitable as infections become large, but in low incidence settings, estimation of R; can
be sensitive to random fluctuations and noise. This is why we treat infections as latent
parameters which must be sampled. Infections are assigned a distribution with mean
given by and coefficient of variation d, which is assigned a prior. This extension
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reflects a belief that changes in the number of infections at low infection counts provide
limited evidence to ascertain R;, and must be treated with caution. Supplementary
information Eq gives exact details of the formulation.

An important aspect of our framework is the projection of hotspots for all local areas.
We argue that for understanding the true state of an epidemic in an area, only specifying
R; or current incidence is not enough. Summarising areas with R; can be misleading as
areas with low incidence might still be controlled with moderate measures. Similarly,
high incidence areas that have R; < 1 show signs of control and are not in an exponential
growth phase. For these reasons, we believe that projections of future cases provide a
more relevant indicator. Case projections combine the rate of change and the absolute
values of infections into a single actionable number. Moreover, it is key to measure not
just projected case counts but also the confidence the model has that those projections
will be above a given threshold. Hence, in our framework we define hotspots based on
the probability of a projection being greater than a specific threshold.
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Supplementary Material

S1. Model details

We provide a compact description of the the model. More details are available in [Bhatt
et al. (2020).

Both deaths and cases are observed in our model. We define weekly deaths, D,,, for
weeks w € {1,...,w(n)}, where n is the total number of days in the data. These weekly
deaths are modelled using a positive real-valued function d,, = E[D,,] that represents
the expected number of deaths attributed to COVID-19. The weekly deaths D, are
assumed to follow a negative binomial distribution with mean d,, and variance d., 44 =
where 1 follows a positive half normal distribution, i.e.

d2
D,, ~ Negative Binomial <dw, dy + w) t=1,...,n (S1)
1

1 ~ NT(0,40). (S2)

Here, N(u,0) denotes a normal distribution with mean p and standard deviation o.
We say that X follows a positive half normal distribution Nt (0,0) if X ~ |Y|, where
Y ~N(0,0).

We link our observed deaths mechanistically to transmission as in |Flaxman et al.
(2020). We use a previously estimated COVID-19 specific distribution of times from
infection to death 7, as detailed in [Verity et al. (2020)); Walker et al. (2020). We assume
the distribution of times from infection to death 7 (infection-to-death) to be the convolu-
tion of an infection-to-onset distribution (7’) (Walker et al., 2020) and an onset-to-death
distribution (Verity et al., 2020):

m ~ Gamma(5.1,0.86) + Gamma(17.8,0.45). (S3)

Similar to generation distribution, 7 is further discretized via 73 = f;fg '55 m(T)dr for
s=2,3,...,and m = fo 7)dr, where 7(7) is the density of 7.

For estimating time varymg infection fatality ratio (IFR, probability of death given
infection) we use the estimates from Riley et al. (2020) as a starting point and then a
bi-weekly change is estimated using the infections survey data from |Office for National
Statistics (2020a) and REACT Study (2020).

The expected number of deaths d,,, in a given week w, is given by the following
discrete sum:

dy = ZIFR w)ipmy ., (S4)

where t is the total number of days tlll Week w, 1 is the number of new infections on
day 7 and where 7" is the transformation of discretized 7 to a weekly lag.

We also observe weekly cases Cy, from 15¢ June 2020 w € {w(t = 2020-06-01), ..., w(n)}.
Similar to weekly deaths, weekly cases are modelled using a positive real-valued func-
tion ¢,, = E[C,,] that represents the expected number of cases identified in testing for
COVID-19. Again, the weekly cases C,, are assumed to follow a negative binomial dis-

tribution but with mean ¢, and variance c¢,, + f/%, where 1o follows a positive half normal
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distribution, i.e.

2

C ~ Negative Binomial (cw, Cw + ;}t> , t=te...,n, (S5)
2

Wy ~ N(0,40). (S6)

We assume the lag between an infection to be identified as a case, 7°2¢, is zero for

first three days and then has an equal chance over next 10 days, i.e.

i2¢c 1

¢ =c|0,0,0, repeat(ﬁ, 10) ) . (S7)

We link the observed weekly cases and estimated daily infections using an estimated
parameter infection ascertainment ratio (IAR), which is defined as the number of re-
ported cases divided by the true number of infections (including both symtomatic and
asymptomatic infections).

The expected number of cases ¢, in a given week w is given by the following discrete

sum:
t—1

Cow = Z TAR (w)i w2, (S8)

T=t—13

where, again, where ¢ is the total number of days till week w, and i, is the number of
new infections on day 7.

We also observe daily infections from ONS I?"¢ in our model. ONS infections are
modelled using a positive real-valued function i{"* = E[I"*] that represents the expected
number of infections given by the ONS infection survey. Daily infections from ONS I7™*
are assumed to follow a normal distribution but with mean ¢¢"® and standard deviation
given by the 95% CI in ONS infection survey, i.e.

o o N <z’§”5, 95nCt ) b=t (S9)
(S10)

The expected number of ONS infections 7", on a given day ¢ is given :
i =1y, (S11)

We also observe total infections from REACT It’: igfcfl in our model. REACT infections

are modelled using a positive real-valued function ;<% = E[I7¢%" ] that represents the

expected total number of infections given by the REACT. Total infections from REACT
I f‘oltcél are assumed to follow a normal distribution but with mean z;‘iﬁfgl and standard

deviation given by the 95% CI in REACT survey, i.e.

. 95%C1
rgy~ N (e ) bt s12)

(S13)
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The expected number of total infections z{i‘é%l, on a given day t is given :

t
ihom = Y i, (514)

7=0
We parametrise Ry ,, with a random effect for each week of the epidemic as follows

Ri=Ro-f (_ew(t)) ) (815)

where f(z) = 2exp(z)/(1+exp(x)) is twice the inverse logit function and €, is a weekly
random walk (RW) process, that captures variation between R; in each subsequent week.
Following |Liu et al. (2020)), the prior distribution for Ry was chosen to be

Ry ~ N (3.28,0.5) (S16)

We assume that seeding of new infections begins 30 days before the day after a
state has cumulatively observed 10 deaths. From this date, we seed our model with 6
sequential days of an equal number of infections: i1 = -+ = ig ~ Exponential(%), where
7 ~ Exponential(0.03). These seed infections are inferred in our Bayesian posterior
distribution.

The weekly effect is modelled as a weekly random walk process, centred around 0
with variance o, that, starts on the first day of its seeding of infections, i.e. 30 days
before a total of 10 cumulative deaths have been observed in this state. The RW process
starts with e¢; =0,

Eraw ~ N(0,1) (S17)
[Era]

o) = | D €rawli] | *oc for w(t) =2,3,4,... (S18)
=1

The prior for o, the variance of RW process e, is chosen as 0. ~ N(0,.2). The
conversion from days to weeks is encoded in w(t). Every 7 days, w is incremented, i.e.
we set w(t) = [(t — t5¥) /7| + 1, where %" is the first day of seeding.

We estimated parameters independently for each local authority. Fitting was per-
formed with the R package epidemia (Scott et al., 2020), written in the probabilistic
programming language Stan (Carpenter et al., 2017) using an adaptive Hamiltonian
Monte Carlo (HMC) sampler.

Now for running our model not all observations are available at all levels. Hence we
take a three stage approach to estimate the parameters as robustly as possible.

In first stage, Figure [T[jwe fit a model to entire of Engalnd, where we have all observa-
tions available, i.e., cases, deaths, ONS infections, REACT attack rate (total cumulative
population infected). This means while fitting all four observations are used for inferring
parameters namely via the observation process defined in Eq , Eq , Eq , and
Eq . This step is very crucial as it is the only place we have an observation for
infections. Hence, we estimate i fr(w) and iar(w) only in this step, in all other steps we
use provide tight priors around the estimates from this step.
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Fig. S1. Model diagram for second stage for regions of England, as well as all nations of the
UK. Dark blue nodes are observed.

In second stage, Figure[S1] we fit individual models to all regions in England, as well
as to all nations in the UK. The observations used in this stage are deaths and cases,
hence the likelihood of model in this stage is calculated by adding Eq and Eq .
As stated earlier the i fr(w) and iar(w) used in Eq and Eq are provided strong
priors centred around the values estimated in first stage.

Finally, in our last stage, Figure we fit individual models to all local authorities
(LTLAs in England, local authorities in all other nations of the UK). As in second stage
the likelihood of model is only composed of Eq and Eq . Additionally in this
stage we use the R; of the region (region for LTLAs in England and nations for local
authorities in other nations) as a covariate for R; of the local area in addition to the
weekly random walk.
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Fig. S2. Model diagram for local authorities epidemics modelling. Dark blue nodes are

observed.
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