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ABSTRACT 
 
The basic reproduction number, R0, and its real-time analogue, Rt, are summary 
measures that reflect the ability of an infectious disease to spread through a population. 
Estimation methods for Rt have a long history, have been widely developed, and now 
enhanced by application to the COVID-19 pandemic. While retrospective analyses of Rt 
have provided insight into epidemic dynamics and the effects of control strategies in 
prior outbreaks, misconceptions around the interpretation of Rt have arisen with broader 
recognition and near real-time monitoring of this parameter alongside reported case 
data during the COVID-19 pandemic. Here we discuss some widespread 
misunderstandings regarding the use of Rt as a barometer for population risk and its 
related use as an "on/off" switch for policy decisions regarding relaxation of non-
pharmaceutical interventions. Computation of Rt from downstream data (e.g. 
hospitalizations) when infection counts are unreliable exacerbates lags between when 
transmission happens and when events are recorded., We also discuss analyses that 
have shown various relationships between Rt and measures of mobility, vaccination 
coverage, and a test-trace-isolation intervention in different settings. 
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Section 1. INTRODUCTION 
 
Quantification of local transmission patterns is a necessary tool in assessing spread and 
determining appropriate intervention strategies during an infectious disease outbreak. 
During the current COVID-19 pandemic, reproduction number (R) estimates have been 
widely used to summarize transmission dynamics in a community. Generally speaking, 
reproduction numbers aim to define the expected number of new infections generated 
from a single infected individual under various conditions or assumptions. The basic 
reproduction number (R0)—likely the most familiar to scientific and popular audiences 
alike—is typically taken to indicate the expected number of infections resulting from an 
infectious individual encountering a fully-susceptible population; this definition is 
sometimes further extended to represent conditions at the beginning of an outbreak 
before specifically enacted interventions are in play. 
 
However, various other reproductive number parameters are also of value for describing 
transmission. In some instances, R0 is defined as a mean of individual-specific 
reproductive numbers Ri for members of a population, the distribution of which has 
importance to transmission dynamics and the ease of control but is rarely 
characterized.1–3 A value which has gained particular interest is the time-varying 
effective reproductive number (Rt),4 or instantaneous reproductive number, which tracks 
changes over time in the number of secondary infections caused by each case owing to 
buildup of immunity in the population, changes in behavior, and implementation of new 
interventions.   
 
Real time estimates of Rt have been widely reported and often used to compare regions 
within countries with regard to progress in stopping or slowing growth in infections. In 
various settings, such values have also been prioritized as a criterion for the lifting and 
reintroduction of nonpharmaceutical interventions. Here we briefly review the 
interpretation and estimation of various reproductive number parameters, and highlight 
experience with the use of such measures during the COVID-19 pandemic to inform 
public health decision-making. 
 
 
Section 2. REPRODUCTION NUMBERS, THEIR INTERPRETATION, AND 
FACTORS INFLUENCING THEM 
 
Reproduction numbers depend on several factors, most prominently (i) the intensity of 
contacts between susceptible and infectious persons in the population, together with 
mixing patterns, (ii) the infectivity associated with a contact (that is, the probability of 
transmission per contact between a susceptible and infectious persons), and (iii) the 
duration of the infectiousness period. In fact, these multiple components underly the 
varied strategies used to reduce transmission (and thus Rt) in a community. For 
example, (i) shelter-in-place policies reduce contact rates, (ii) vaccination, masks, and 
avoidance of close or physical contact reduce infectivity, and (iii) contact tracing, 
quarantining and isolation all potentially reduce the time of exposure between infectious 
and susceptible individuals.  
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Thus, R (defined as either R0 or Rt) summarizes many social and biological effects in a 
single measure and thus—while useful—may be subject to overly simplistic 
interpretations and limited in its value in driving policy decisions. The simplest such 
decision for which R estimates may provide insight is whether current levels of public 
health intervention are sufficient to prevent uncontrolled growth of an epidemic, which 
may be expected under any scenario resulting in R > 1. This assessment may be of 
greatest importance at early stages of an outbreak, especially when the agent involved 
is a novel pathogen with unknown transmissibility. 
 
Second, quantitative estimates of R provide an indication of the level—and possibly, by 
extensions, pathways—of intervention required to bring transmission under control by 
achieving R < 1. During the COVID-19 pandemic, analyses have made assessments of  
the impacts of various non-pharmaceutical interventions aiming to reduce interactions in 
particular settings, both through analyses of the next-generation matrix5,6 and 
empirically, based on ecological studies.7 Estimates of the proportion of the population 
that must be protected from infection to achieve R < 1, through natural immunity in 
response to infection or vaccination, are among the most valuable insights of this 
nature. Issues relating to such “herd immunity thresholds” have become a flashpoint of 
controversy during the COVID-19 pandemic, initially focused on levels of natural 
immunity but now including population vaccination coverage targets. Whereas early 
modeling work demonstrated the potential for severe and protracted outbreaks in the 
absence of effective vaccination,8,9 subsequent theoretical studies suggested that 
heterogeneity in individual risk of acquiring or transmitting infection could lower such 
thresholds,10 including to implausibly low values in the range of 10-20%.11 The validity 
of these conclusions that transmission could be brought under control with low 
population immunity have ultimately been brought into question by the persistence of 
severe epidemics with R > 1 even amid high population seroprevalence and aggressive 
vaccine rollout.12–14 Related debate has surrounded the interpretation of early R0 
estimates in light of the possibility for immunological cross-recognition of SARS-CoV-2 
among individuals with recent exposure to endemic coronaviruses.15 However, it is 
crucial to note that empirical estimates of reproduction numbers in the setting of SARS-
CoV-2-naïve populations implicitly account for the impact of such immunity on 
transmission dynamics. This definitional ambiguity is a limitation of R0, and underscores 
the need for authors to provide clear descriptions of the interpretation of reproduction 
numbers they report.  
 
Among the most closely monitored parameters of SARS-CoV-2 spread has been Rt. 
The need to determine the impact and effectiveness of nonpharmaceutical interventions 
has resulted in great interest in monitoring changes over time in Rt in various settings. 
Some jurisdictions, including the United Kingdom, have gone so far as to suggest 
changes in Rt as a basis for lifting or reimplementation of interventions.16 However, this 
approach conveys undue confidence in the validity of real-time Rt  estimates, for which 
reliable public health data collection and quantitative estimation strategies present 
continuing challenges17 (see Section 3), and belies a more fundamental 
misunderstanding in the epidemiologic meaning of this parameter. Inherent in its 
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definition, Rt conveys information about growth in the number of infected and does not 
therefore carry information about the current level or prevalence of infection. With that in 
mind, estimates of Rt are not sufficient as an "on/off" switch regarding relaxation of 
social distancing and other measures to restrict contacts such as shuttering certain 
kinds of businesses and events. For example, policy makers may be keenly interested 
in the impact of indoor restaurant dining depending on epidemiological attributes of what 
is going on at that time in the community. What will happen if restrictions are lifted to 
some degree and what degree should that be? Naturally, the most important issue at 
hand is the prevalence of infection in the community (as that would determine whether 
going to a restaurant results in a lower or higher risk of exposure), and not Rt. The 
social conditions in place in Taiwan or New Zealand, where infection prevalence is low, 
could possibly support an Rt ≈ 3 as these populations are mixing relatively freely; this 
matters little, however, when there is little or no infection to circulate.  
 
To be fair, the reliance on Rt  as a trigger for policy interventions may be a result of 
overly simplistic interpretation of what is often complex and nuanced decision making. 
For example, Mahase16 stated that  the UK Prime Minister Boris Johnson “told the public 
on 10 May [2020] that easing lockdown in England would depend on whether the 
reproduction number could be kept down.” While Rt  was emphasized in the transcript of 
his remarks, he specifically stated that “the Covert Alert Level will be determined 
primarily by R and the number of coronavirus cases (emphasis added), and that “we will 
be monitoring the R and the number of new infections and the progress we are making” 
(emphasis added).18  
 
This raises a second issue regarding over-reliance on Rt as a summary measure, 
namely that it is necessarily estimated in a delayed fashion by all available methods. 
We discuss this briefly below and, as noted above, the complexity that transmission 
depends differently on the distinct factors that influence Rt  . The need to implement 
appropriate policies with considerable speed (to the extent possible), and often before 
many cases have been detected by surveillance systems, is counter-intuitive to many 
policymakers and the media, but critical to stop spread during an exponential growth 
phase. Using a mathematical transmission model, Pei et al.19 estimate that 56% (95% 
CI: 44-64%) of reported deaths in the United States (US) as of May 3, 2020 could have 
been avoided had observed control measures been implemented one week earlier, 
reinforcing the earlier and simpler calculations of Jewell and Jewell20 that estimated an 
approximately 60% reduction in US COVID-19 deaths associated with a similar one 
week advance in mitigation measures in early spring 2020. This significantly limits the 
value of a necessarily time-delayed estimate of Rt as a trigger for intervention even 
when supplemented by estimates of population prevalence of active infection. The 
combination of exponential growth and considerable levels of asymptomatic 
transmission allowed the rapid growth of SARS-CoV-2 infections before action was 
taken even on second or subsequent waves of infection; a similar problem occurred 
with the rapid asymptomatic spread of HIV infections in the 1980s albeit on a quite 
different time scale.21 
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Given this lag in estimation of Rt and difficulties associated with obtaining data of 
sufficient quality to support accurate and timely calculations, it is natural to seek 
precursors of Rt using more available and reliable information, “predictive correlates,” or 
“surrogates,” for Rt  if you will. We discuss some examples briefly in Section 3, again 
with cautions about interpretation.  
 
 
Section 3. ESTIMATION OF Rt 
 
We do not discuss here detailed estimation strategies for reproduction numbers, and 
the necessary underlying data requirements and assumptions, but refer to recent 
reviews by Gostic et al.17 and O’Driscoll et al.22  Both analyses consider various 
statistical approaches to estimation of Rt and discuss comparative performance on 
simulated epidemics with due attention paid to practical considerations for implementing 
differing estimation strategies. 
 
It goes without saying that estimates of R critically depend on the nature of available 
data on infection counts and their sequelae. As is widely acknowledged, a critical issue 
at the beginning of an epidemic is the paucity of high-quality information that allows 
precise statistical estimation under any approach. An intuitive approach, direct counting 
of secondary cases linked to each index infected, is especially prone to undercounting 
in such circumstances, especially before investigations can be informed by detailed 
understanding of transmission pathways and the clinical spectrum of infection. 
Ecological methods for analysis of time series of case numbers are therefore a 
mainstay of estimation approaches.4,17,23,24 While incomplete ascertainment will not 
introduce bias if the proportion of infections ascertained (and the clinical stage at which 
they are ascertained) remains constant from one generation of infection to the next,25 
this circumstance is unlikely to be met as enhanced clinical awareness, testing effort, 
and public health surveillance capacity contribute to improvements in ascertainment 
over time.26 
 
Using observed infection numbers may be highly misleading as a basis for estimating Rt 
when infection testing has been so variable not only over time but also geographically 
and demographically. Given the inadequacy of surveillance for monitoring population 
prevalence of infection, it is attractive to exploit data that may be less subject to 
inaccurate and unreliable reporting, such as deaths or hospitalizations due to COVID-
19. Unfortunately, deaths are also subject to inaccuracies with considerable evidence of 
both underreporting and variable reporting delays;27 while clinical criteria for 
hospitalization may change as hospitals approach capacity limits or as clinical 
management strategies improve in ambulatory and other care settings. Further, the use 
of COVID-19 deaths or hospitalizations inevitably introduces a longer lag after infection 
so that “real time estimation” reflects transmission patterns as long as a month 
previously. Differentiating genuine reductions in transmission intensity from biases 
similar to censoring, due to the delayed presentation of cases that were recently 
infected, poses further difficulty for which statistical deconvolution approaches remain 
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underdeveloped.28 As discussed below, this challenge limits the value of transmission 
intensity estimates in informing real-time public health policy changes. 
 
Gostic et al.17 provide a detailed discussion of additional sources of bias in estimation of 
Rt. Reconstructing ‘true’ infection counts over time requires an accurate description of 
the delay distribution between infection and detection and an allowance for (right) 
truncation at time t, Further, Rt fundamentally depends on the generation interval 
distribution that describes the time between infection of an index case and a 
subsequent transmission event to a susceptible. This is often approximated by the serial 
distribution, which measures the time between onset of symptoms of the index case and 
infected susceptible. The latter is observable, in principle, whereas the former is usually 
not directly calculable. While these two distributions have the same mean, their variance 
(and form) is different, and this misspecification introduces bias in estimation of Rt 
(typically away from the null value of Rt = 1, and increasing with more extreme values of 
Rt). Smoothing of observed infection counts is usually needed to accommodate 
stochasticity in surveillance patterns and this introduces further potential for bias. We 
emphasize that the best estimation strategy in the world cannot overcome inadequate 
infection surveillance systems whose sampling and delay characteristics vary over 
space and time.  
 
 
Section 4. CORRELATES FOR CHANGES IN Rt 
 
A major complexity in understanding the association between population 
characteristics/policies and changes in Rt is the multifactorial nature of the measure, as 
noted in Section 1. Quite different “correlates” may exist that reflect their impact on (i) 
mixing patterns, (ii) susceptibility measures, and (iii) the duration of infectiousness, in 
some instances in near-real time. We consider each of these potential associations 
here. Note that there has been significant work done on each of these questions by 
exploiting various dynamic mathematical models of disease spread. Here, however, we 
focus on the effect of correlate changes in the field, where it is much harder to obtain 
high quality evidence, and interpret what is observed causally. There is insufficient 
space to comment on each of these illustrations in detail and each has their individual 
strengths and weaknesses. We make some brief remarks regarding inference 
associated with each approach. 
 
The first association is illustrated by analyses that exploit Apple Maps routing-based 
mobility data to show quite varied relationships between Rt and mobility measures in 
different locales. As one example, Miller et al.29 examined the association of mobility 
with estimates of Rt  across various states in the US during the early stages of the 
pandemic in early 2020. Here, mobility was captured through a measure of Relative 
Routing Volume (RRV) that captures relative changes in requests for directions in Apple 
Maps as compared to a baseline date of January 13, 2020, prior to the onset of the 
pandemic in the US.  
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Miller et al.’s Figure 229 is a version of a ubiquitous plot--seen in many sources--of  
changes in estimated Rt  over time in various US states in the early stages of the 
pandemic. Of more interest, their Figure 3 (reproduced here, in part, as Figure 1) 
compares these Rt  estimates with RRV for four specific states.  The association 
between estimated Rt and reduction in RRV varies considerably across the states, with 
the estimated Rt falling below one at different levels of RRV depending on the state. For 
Louisiana, Rt is reduced to one when RRV falls to 65% (58-75%) of baseline levels. On 
the other hand, New York’s Rt falls below one only when RRV is reduced to 48% (43-
56%) of baseline. Reductions in RRV below 80% of baseline delivered diminishing 
returns in reducing Rt in Louisiana, while the slope in New York was maximized at RRV 
around 50% of baseline. 
 
In chronological time, Figure 1 should be read from right to left as March 2020 was a 
period of decreasing mobility over that month. The observed relationships may not be a 
reasonable description of what may happen to Rt “in reverse,” that is, in periods where 
mobility increases as social restrictions are lifted. Clearly, an important goal is to 
understand the “left to right” relationship sufficiently well to develop strategies for easing 
restrictions that increase mobility while at the same time minimizing increases in Rt. 
 

 
 
 
 
 
 
 
It goes without saying that Figure 1 represents associations rather than establishing a 
formal causal relationship. It is important not to ignore cautionary lessons learned 
regarding the difficulty of causal inference from observational, indeed here ecological, 
associations. There have been other analogous efforts to establish links between 
various population mixing factors associated with transmission and estimates of Rt. For 
example, Unwin et al.30 model a relationship between infection transmission and 
mobility measures in the US from Google’s COVID-19 Mobility Report using both 
COVID-19 infection and mortality counts. Here, mobility is similarly measured as a 
percentage change (from an appropriate baseline) in the number of visits to various 
venues including grocery markets, retailers, parks, transit stations, work sites, etc. Both 
mobility, infection and mortality data were aggregated at the US state-level. The authors 
ultimately claim, for example, that “if mobility stopped entirely (100% reduction in 

Figure 1. Miller et al. (2020). Left: Inferred relationship between the reproduction number 
and mobility volume change, for four US states. Right: the multiplier effect on initial 
reproductive number estimates as a function of relative change in mobility from baseline for 
the same four US states. 
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average mobility then Rt would be reduced by 55.1% [26.5%-77.0%].” However, such an 
estimate cannot be interpreted causally due to the role of other factors. Any such 
estimate, and related uncertainty in inference, are sensitive to model selection in a 
variety of ways.  
 
Several researchers have provided more sophisticated analyses of this kind that use 
similar proxies for population mobility. Specifically, Brooks-Pollock et al. use data from 
the 2010 UK Social Contact Survey, coupled with Google community mobility reports, to 
estimate Rt, exploiting UK death data in March 2020 for calibration.31 This approach is 
then used to quantify the impact of various social distancing policies by allowing the 
latter to modify the rate of social contacts. These kinds of analyses are essentially 
retrospective in nature and remain subject to causal inference challenges.  
 
The second kind of correlate relationship is illustrated by examining the impact of 
vaccination programs on transmission. Figure 2 reproduces a graphic of Segal32 that 
compares the trajectory of Rt for forty days in two distinct periods in Israel. The second 
wave reflects the changes in Rt  after October 2020 when shelter-in-place restrictions 
were lifted, a period that saw Rt increase from about 0.7 to 1.2 in about six weeks. The 
third wave curves shows analogous changes in Rt  after exiting “lockdown” in early 
Spring 2021. A critical difference between these two periods is that vaccinations were 
being administered around and after the peak of the third wave whereas there were no 
available vaccines in October and November 2020. Of course, vaccine administration 
did not occur overnight to the same extent as easing restrictions did; other data (from 
the Israel Ministry of Health website, not shown here) indicates that about 5% of the 
Israeli population had received one vaccination dose by the beginning of January 2021, 
rising to between 50-60% by mid-March (for two doses the analogous figures are close 
to 0% at the beginning of 2021, rising to about 45% by mid-March), with both increases 
relatively linear in time; during this period about 65% of the population was eligible for 
vaccination due to age and prior SARS-CoV-2 restrictions. This period essentially 
covers the 40-day period associated with the third wave in Figure 3. In principle, one 
can attempt to quantify the pattern of reduction in Rt  corresponding to increases in 
population vaccination percentages, in a manner analogous to Figure 1 for a mobility 
measure. However, such a strategy is fraught with difficulty, at least when applied to a 
single example: (i) the levels of natural immunity were naturally higher as the third wave 
progressed as compared to the second wave, (ii) policy and population responses to 
lockdown easing may have differed across the two waves (particularly given the 
experience of the second wave leading to large outbreaks), and (iii) the possibility that 
mixing grew faster after the third wave as compared to the second because of 
awareness of increasing vaccine administration. Nevertheless, the impact of increasing 
vaccination coverage, essentially by reducing susceptibles, appears dramatic and 
encouraging, but quantifying the “vaccination effect” on Rt  remains challenging. 
 
There have been fewer field investigations of the third influence on Rt, namely 
interventions that shorten the effective period of infectiousness. One such approach is 
evidenced by attempts to capture the impact of imposing contact tracing, community 
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testing and case isolation on transmission. For example, Kendall et al.33 examine the 
effect of the roll out of the National Health Service Test and Trace programme on the  

 
 
 
 
 
 
 
Isle of Wight in May 2020. Their analysis estimated a greater than 50% reduction in Rt 
which may be attributable, in part at least, to the intervention effort. However, this differs 
from the two previous examples in that the intervention, or putative correlate for 
changes in Rt, is binary—it is a comparison of a Test and Trace programme versus the 
status quo. There is no continuous ‘dial’ of how levels of contact tracing and  
testing modulate the value of Rt in a community quantitatively, and thus no information 
on what might be important targets for community test and trace efforts.    
 
The Isle of Wight example further reflects significant challenges to attempts to ascertain 
markers for Rt  and changes thereof. First, quantification of the association between 
community measures and estimates of Rt is rarely simple, as reflected by both the 
mobility and vaccination examples. Relationships are unlikely to be linear and are 
potentially influenced by other local characteristics, making it difficult to isolate the 
impact of a single putative marker for disease transmission. Second, as noted above, 
associations are often made ecologically in large groups, thereby making causal 
inferences much harder to support, and transportability of effects likely less successful. 
Effect modification of relationships between a community marker and Rt  may be even 
harder to quantify but are no less important for policy decisions.   
 
 
Section 5. SUMMARY 
 

Figure 2. Israel reproductive number estimates per Segal (2021) for two periods where lockdown 
restrictions were eased: October 2020 forward (second wave) and mid-January 2021 forward (third 
wave). 
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A primary lesson of the pandemic has been the need to move extremely rapidly in times 
of early exponential growth—even a few days can make a substantial difference in 
averting infections. This raises a concern as to whether calculation of Rt , which at best 
reflects infection patterns some weeks in the past, is of value to policymakers who may 
find themselves always chasing the curve. In addition, outbreaks are often 
geographically variable and the locality of an Rt  estimate may not match the area where 
interventions are targeted.  Perhaps, it is the detection and quantification of local 
changes in Rt instead of, or at least in addition to, absolute levels, that may be more 
useful in influencing policy decisions. Many comparisons of locations with apparently 
similar levels of estimated Rt exhibit different transmission patterns subsequently. In 
many cases, attempts to infer signals from such comparisons often do not allow for the 
role of chance in epidemic spread.  
 
Despite valiant attempts, estimation of Rt based on observed case numbers is always 
likely to be subject to substantial error, particularly in situations where asymptomatic 
transmission plays a major role. To be fair, the reservations expressed in these 
paragraphs apply similarly to the use of other quantitative measures of transmission--
based on inadequate, and likely inaccurate, epidemiologic data—to respond to rapidly 
changing conditions. A fundamental lesson from almost all infectious disease outbreaks 
is that public health responses must be mounted before any significant evidence of 
transmission is evident. It is unclear whether policymakers, and the public, are willing to 
accept such actions in the absence of immediate evidence of overt disease spread, but 
the consequences of inaction have been demonstrated time and again.   
 
With the strong emphasis on Rt among policymakers and the public, valid and direct 
epidemiologic measures of  community SARS-CoV-2 infection rates received less 
emphasis than might be ideal, at least early in the epidemic. Estimates of community 
transmission and seroprevalence were often initially based on convenience sampling 
rather than population-based strategies. It is challenging to interpret estimates of 
infection intensity when the latter necessarily were based on testing data in 
circumstances where testing strategies varied significantly over time and locale 
depending on a host of factors, not the least the availability of tests in the early stages 
of the pandemic. Similar considerations affected ad hoc approaches to seroprevalence. 
The use of population sampling methods has been the exception rather than the norm.  
It is remarkable that this was not necessarily the case in earlier pandemics when 
resources, technology and understanding of survey methodology were much less 
advanced, and the nature of the infectious agent was less well characterized. For 
example, in the winter of 1918/1919, the US Public Health Service carried out a large 
door-to-door survey, with a sample size that exceeded 145,000, to measure the 
morbidity and mortality of the 1918/1919 influenza pandemic.34 With the exception of 
the UK REACT study,35 few countries have launched comprehensive, systematic 
surveillance of SARS-CoV-2 active infection (or seroprevalence) to obtain an unbiased 
view of transmission intensity, and thus the need for non-pharmaceutical interventions 
to mitigate risk. Of note, provided study procedures achieve a fast turnaround in 
processing specimens, changes in infection prevalence can be detected in near real-
time, affording an earlier view into transmission dynamics than Rt estimates that must 
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inherently be delayed by at least one generation of infection; downward changes in 
prevalence of active infection necessarily indicate R < 1, whereas increases necessarily 
indicate R > 1. Information on seroprevalence is also of great importance to other 
aspects of epidemiologic studies and public health response, for instance providing a 
denominator to enable estimation of infection-to-hospitalization and infection-to-fatality 
ratios.36 A fundamental approach to future outbreak responses must surely stress the 
enormous value of basic—but high quality—epidemiological surveillance data that 
effectively captures “how, when, and why” infections are occurring, rather than 
remaining “blind” and overly dependent on predictive models.   
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