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Abstract

We propose a general Bayesian approach to modeling epidemics such as COVID-19. The approach grew out of

specific analyses conducted during the pandemic, in particular an analysis concerning the effects of non-pharmaceutical

interventions (NPIs) in reducing COVID-19 transmission in 11 European countries (Flaxman et al., 2020b). The model

parameterizes the time varying reproduction number Rt through a multilevel regression framework in which covariates

can be governmental interventions, changes in mobility patterns, or other behavioural measures. Bayesian multilevel

modelling allows a joint fit across regions, with partial pooling to share strength. This innovation was critical to our

timely estimates of the impact of lockdown and other NPIs in the European epidemics: estimates from countries at later

stages in their epidemics informed those of countries at earlier stages. Originally released as Imperial College Report

13 Flaxman et al. (2020a) on 30 March 2020, the validity of this approach was borne out by the subsequent course of

the epidemic. Our framework provides a fully generative model for latent infections and derived observations, including

deaths, cases, hospitalizations, ICU admissions and seroprevalence surveys. One issue surrounding our model’s use

during the COVID-19 pandemic is the confounded nature of NPIs and mobility. We explore this issue using our R

package epidemia which implements the approach in Stan. Versions of our model were used in an ongoing way by

New York State, Tennessee and Scotland to estimate the current epidemic situation and make policy decisions.

1 Introduction

This article presents a general framework for semi-mechanistic Bayesian modeling of infectious diseases using renewal
processes. The term semi-mechanistic relates to statistical estimation within some constrained mechanism. Variants of this
general model have been used in specific analyses of Covid-19 (Flaxman et al., 2020b; Vollmer et al., 2020; Mellan et al.,
2020; Unwin et al., 2020a; NYS Press Office, 2020; Olney et al., 2020; The Scottish Government, 2020; Mishra et al.,
2020), and continue to be used in ongoing work to make policy decisions. The present article motivates and discusses the
key statistical and epidemiological features of this framework, starting from a counting process setup. Various extensions
of the basic model are considered, including a latent infection process. We discuss limitations and applications of the
modelling framework to stimulate further research.

The model uses a flexible regression-based framework for parameterising transmission and ascertainment rates. This
allows the fitting of multilevel models (Gelman and Hill, 2006; Hox et al., 2010; Kreft and de Leeuw, 2011) for several
regions simultaneously. Such partial pooling of parameters has specific advantages in the context of infectious diseases.
Suppose we wish to estimate the effect of NPIs (Cowling et al., 2020; Flaxman et al., 2020b; Islam et al., 2020) or
mobility (Badr et al., 2020; Miller et al., 2020) on transmission rates. Estimating separate models for each region could
lead to a set of noisy estimates for at least two reasons. There is typically little high quality data at the early stages of
an epidemic, and such data is generally correlated, reducing the information content that can be used to infer such an
effect. In addition, NPIs often occur in quick succession and their effects are confounded (of HKSAR, 2003; WHO,
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2003). This is exacerbated by the random times between infections (the generation distribution) and between infections
and observations, which smooths the observed data, making it more difficult to attribute changes in transmission rates to a
particular NPI. Alternatively, one could fit a single model, pooling the effect across all regions. This ignores region-level
variation and can lead to poor predictive performance, in particular underestimating variance for previously unmodeled
regions. One could augment such a model with group-level indicators, but this results in a large number of parameters,
which are difficult to estimate and leads to overfitting with classical estimation techniques. The Bayesian multilevel
regression approach of partial pooling provides a natural solution to these problems.

Sometimes the inferential goal is not to assess the effect of a covariate on outcomes, but rather to infer latent transmis-
sion rates and their effect on outcomes. Previous studies have focused on estimating reproduction numbers from case data
(Ferguson et al., 2001; Riley et al., 2003; Bettencourt and Ribeiro, 2008; Fraser et al., 2009; Kelly et al., 2010; Cori et al.,
2013), sometimes directly substituting observed case counts for the unknown number of infected individuals (Wallinga
and Teunis, 2004). However, the emergence of SARS-CoV-2 has highlighted shortcomings of methods that rely on just
case data. Limited testing capacity at the early stages of the pandemic led to only a small proportion of infections being
detected and reported (Li et al., 2020). Those tested were typically more likely to have been hospitalised or were at higher
risk of infection or death. In particular this proportion, referred to as the infection ascertainment rate (IAR) is country-
specific and likely to have changed over time due to changes in testing policies and capacity. If unaccounted for, it will
lead to biases in the inferred transmission rates.

The problem of varying case ascertainment highlights the need for more flexible observation models to rigorously
incorporate various types of data, from hospitalizations to seroprevalence surveys. Daily death data has been used in
(Flaxman et al., 2020b) to recover reproduction numbers in the early stages of the SARS-CoV-2 pandemic, and has been
seen as more reliable than case data. However, there have been clear variations in case and mortality definitions as well
as reporting across time and countries. It is therefore important to appropriately model noise within the the observational
models. Our framework allows for multiple types of data including deaths, cases, hospitalizations, ICU admissions and
the results of seroprevalence surveys. This improves robustness of inferred parameters to biases in any one type of data.

Our model uses discrete renewal processes to propagate infections within modeled populations. These have been used
in a number of previous studies (Fraser, 2007; Cori et al., 2013; Nouvellet et al., 2018; Cauchemez et al., 2008), and are
linked to other popular approaches to infectious disease modeling. (Champredon et al., 2018) show that the renewal equa-
tion leads to identical dynamics as Erlang-Distributed Susceptible-Exposed-Infected-Recovered (SEIR) compartmental
models, when a particular form is used for the generation distribution. A special case of this is the standard Susceptible-
Infected-Recovered (SIR) model (Kermack, William Ogilvy and McKendrick, 1927). The approach is also connected
to counting processes such as the general branching processes(Bellman and Harris, 1948; Kimmel, 1983; Jagers, 1969;
Crump and Mode, 1969; Pakkanen et al., 2022). Self exciting Hawkes processes are also related to renewal processes,
with the expectation of the Hawkes intensity function resulting in a renewal equation (Rizoiu et al., 2017).

We describe the general model in detail, and start by considering the simplest version in Section 2. The motivation
for the model lies in continuous-time counting processes, and this connection is discussed in Section 3. Sections 4 and
5 present the infection and observation processes in more detail, and consider important extensions of the basic model.
Section 6 considers how to use the framework for multilevel modeling. Section 7 compares our approach to standard time
series models, and outlines the key challenges involved in modeling with our framework. Section 8 considers the specific
aspect of confounding and causality when estimating the effects of variables on transmission rates. Section 8.4 considers a
simple simulation analysis and a discussion of when our approach is expected to fail, and Section 9 has a brief discussion.

2 Model Overview

We now formulate a basic version of the model for one homogeneous population. The same model can be used for
multiple regions or groups jointly. In what follows we will consider discrete time, t ∈ Z, but continuous analogues are
similar (Pakkanen et al., 2022). Let Rt > 0 be the time-varying reproduction number at time t > 0, determining the
average number of secondary infections caused by an infected person. The number of seeded infections iv, . . . , i−1, i0
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for some integer-valued timepoint v ≤ 0 are given a prior distribution. For t > 0, we let new infections it be defined by

it = Rt

∑
s<t

isgt−s, (1)

where the generation time, the lag between infections, is given through a probability mass function g, i.e. gt ≥ 0 and∑∞
t=1 gt = 1.
We never observe the exact time at which a person becomes infected; rather we observe events reported by health

care systems, introducing bias due to under/over ascertainment and reporting lags. Recorded observations occur at certain
times t > 0. In general, there may be multiple types; cases, hospitalisations and death counts for example. Each such
type is driven by its own time-varying ascertainment rate αt > 0. The predictions of the recorded observation at time t is
linked to past infections by

ŷt = αt

∑
s≤t

isπt−s, (2)

where π is a distribution for the lag between an infection and when it gives rise to a recorded observation. The sam-
pling distribution of the observations with these means is typically nonegative and discrete, and may depend on auxiliary
parameters. When multiple types are observed, we can superscript the quantities as ŷ(l)t , α

(l)
t and π(l) and assign indepen-

dent sampling distributions for each type. We can connect ŷ to a likelihood for true observations y with, e.g. Poisson or
Negative Binomial likelihoods.

Transmission rates Rt and ascertainment rates αt can be modeled flexibly using Bayesian regression models. Multi-
level modeling allows us to share parameters between regions, borrowing strength from regions with advanced epidemics
to inform estimates in regions with earlier epidemics. One can, for example, model transmission rates as depending on a
binary covariate for an NPI, say full lockdown. The coefficient for this can be partially pooled between these groups. The
effect is to share information between groups, while still permitting between group variation.

3 Motivation from continuous time

Our model can be motivated from a continuous time perspective as follows. Infections give rise to additional infections in
the future, referred to as offspring. Letting N I(t) denote the number of infections occurring up to time t, defined by its
intensity

λ(t) = R(t)

∫
s<t

g(t− s)N I(ds), t > 0, (3)

where g is the density of a probability distribution on R+ defining the time between infections, and where {R(t) : t > 0}
is a non-negative stochastic process. The process can be initialised by assuming values for N I(t) for t in the seeding
period [v, 0].

Equation (3) is similar to the Hawkes intensity, however the memory kernel g is scaled by a time-specific factor R(t).
The integrand g allows the intensity to increase due to previous infection events, while R(t) tempers the intensity for
other time-specific considerations. Under this assumption, since g integrates to unity, the expected number of offspring
is simply R(t), and so this is the instantaneous reproduction number or alternatively the branching factor of the Hawkes
process. The generation time, defined as the time from an infection to a secondary infection, is distributed according to g
and so g is the generation distribution.

Recorded observations are caused by infections that occurred in the past - that is, a given infection may lead to
observation events (cases or deaths) in the future. Letting NY (t) be the count of some observation type over time defined
by the intensity

λy(t) = α(t)

∫
s<t

π(t− s)N I(ds), (4)

for t > 0, where π : R+ → R+ is a function and {α(t) : t ≥ 0} is a non-negative stochastic process. This is similar to
Equation (3), however the intensity increases due to past infections, rather than past observations.
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Consider the special case where π is a probability density and where α(t′) = α(t) for all t′. The average number
of observation events attributable to a single infection is then α(t), and so this is an instantaneous ascertainment rate.
π is then interpreted as the distribution for the time from an infection to an observation, and therefore we call it the
infection-to-observation distribution.

4 Infection Process

Starting from the continuous model, we now describe a discrete model, which results in the formulation of Section 2. This
discrete model is more amenable to inference. Let It be the number of new infections at time t; this is the equivalent of
N I

t −N I
t−1 in the continuous model. As a basic modelling block we use the following discrete version of (3):

E[It|R1:t, Iv:t−1] = RtLt, (5)

where Lt :=
∑

s<t Isgt−s is the case load or total infectiousness by time t > 0. Moreover, letting it := E[It|R1:t, Iv:0]

and taking the conditional expectation given reproduction numbers R1:t and seeded infections Iv:0 on both sides of (5)
gives

it = Rt E[Lt|R1:t, Iv:0] = Rt

∑
s<t

E[Is|R1:s, Iv:0]gt−s = Rt

∑
s<t

isgt−s,

which is Equation (1). This is a discrete renewal equation, which can alternatively be interpreted as an AR(t)-process with
known coefficients gk. From this point of view, the basic model in Section 2 uses it as synonymous with actual infections.
Since infections are simply a deterministic function of other parameters, there is no need to treat them as unknown latent
parameters to sample. This can lead to lower sampling times and faster convergence when performing Bayesian inference.

4.1 Modeling Latent Infections

The model of Section 2 can be extended by replacing each it with the actual infections from the counting process It,
and then assigning a prior to It. Although sampling can be slower, this has certain advantages. When past infection
counts are low, significant variance in the offspring distribution can imply that the number of new infections It has high
variance. This is not explicitly accounted for in the basic model. In addition, this approach cleanly separates infections
and observations; the latter being modeled conditional on actual infections. The sampling distribution can then focus on
idiosyncrasies relating to the observation process.

We assign a prior to It conditional on previous infections and current transmission Rt. The expected value for this is
given by Equation (5). Appendix 10.1 shows that assuming the variance of the prior to be a constant proportion d of this
mean is equivalent to letting d be the coefficient of dispersion for the offspring distribution. d > 1 implies overdispersion,
and can be used to account for super-spreading events, which has been shown to be an important aspect for modeling
Covid-19 (Lloyd-Smith et al., 2005). The parameter d can be assigned a prior.

Any two parameter family can be used to match these first two moments. Letting this be continuous rather than discrete
allows inference to proceed using Hamiltonian Monte Carlo, whereby new values for It are proposed simultaneously
with all other parameters. Possible candidates include log-normal, gamma and the Weibull distributions. If an explicit
distribution for the offspring distribution is desired, one can show that assuming a Gamma distribution with rate λ for this
results in a Gamma distribution for It with rate λ. The coefficient of dispersion is then simply d = λ−1.

4.2 Population Adjustments

If Rt remains above unity over time, infections grow exponentially without limit (in branching processes literature this is
referred to as super-critical). In practice, infections should be bounded from above by S0, the initial susceptible population.
All else being equal, transmission rates are expected to fall as the susceptible population is depleted.
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Consider first the model using It, which was described in Section 4.1. Equation 5 can be replaced with

E[It|R1:t, Iv:t−1] = (S0 − It−1)

(
1− exp

(
−Ru,tLt

S0

))
, (6)

where Ru,t is an unadjusted reproduction number, which does not account for the susceptible population. This satisfies
intuitive properties. As the unadjusted expected infections Ru,tLt approaches infinity, the adjusted expected value ap-
proaches the remaining susceptible population. The motivation for and derivation of Equation (6) is provided in Appendix
10.2. In short, this is the solution to a continuous time model whose intensity is a simplification of Equation (3). We must
also ensure that the distribution of It cannot put positive mass above S0 − It−1. A simple solution is to use truncated
distributions. Of course, this adjusts the mean value from Equation (6), however this is unlikely to be significant unless
the susceptible population is close to zero.

In the basic model, one can apply the adjustment to it by replacing Lt in Equation (6) with

E(Lt|R1:t, Iv:0) =
∑
s<t

isgt−s. (7)

5 Observations

Observations are modeled in discrete time, analogous to how we treated infections in Section 4. Letting π : N→ R+ and
Yt := NY

t −NY
t−1, the discrete analogue to Equation (4) is

E[Yt|αt, Iv:t] = αt

∑
s≤t

Isπt−s. (8)

Taking the expected value of the above given seeded infections, transmission rates and the current ascertainment rate gives

E[Yt|αt, R1:t, Iv:0] = αt

∑
s≤t

isπt−s, (9)

which is recognisable as Equation (2). Thus we have two possible expressions for the mean of Yt, one given actual
infections, and the other given expected infections it. The basic model of Section 2 uses the latter, while the extension in
Section 4.1 uses the former.

We assume that Yt ∼ F (yt, φ), whereF is a non-negative discrete family parameterised by its mean yt and potentially
an auxiliary parameter φ. This could be a Poisson distribution, where there is no auxiliary parameter. Using a quasi-
Poisson or negative binomial instead allows for overdispersion. This can be useful to capture, for example, day-to-day
variation in ascertainment rates when infection counts are low. The mean yt can be taken to be either (8) or (9), the latter
being used in the basic version of the model. Hidden in this formulation is the assumption that the Yt’s are conditionally
independent given yt. Using multiple observation series Y (l)

t can help to improve the model inferences and identifiability
of certain parameters. We simply assume that each such series is conditionally independent given the underlying infection
process.

6 Multilevel Models

Transmission rates can be modeled quite generally within the framework. If the aim is simply to estimate transmission
in a single region over time, one approach could be to let Rt = ψ−1(γt), where ψ is a link function and γt is some
autocorrelation process, for example a random walk. If the goal is to estimate the effect of NPIs in M regions on
transmission, we can let R(m)

t denote the time-varying reproduction number in region m at time t, specifying

R
(m)
t = ψ−1

(
β
(m)
0 +

p∑
l=1

x
(m)
t β

(m)
k

)
, (10)
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where x(m)
t are binary encodings of NPIs, and β

(m)
0 and β

(m)
k are region-specific intercepts and effects respectively.

The intercepts are used to allow regions to have their own baseline transmission rates (and can be interpreted as R0).
Collecting these group specific parameters into β(m), we can partially pool them by letting β(m) ∼ N (0,Σ), for each
group m, and then assigning a prior to the covariance matrix Σ. This could be an inverse-Wishart prior, or alternatively,
Σ can be decomposed into variances and a correlation matrix, which are each given separate priors (Tokuda et al., 2011).

One possible option forψ is the log-link. This provides easily interpretable effect sizes; a one unit change in a covariate
multiplies transmission by a constant factor. However, this can lead to prior mass on unreasonably high transmission rates.
With this in mind, an alternative is to use a generalisation of the logit link for which

ψ−1(x) =
K

1 + e−x
, (11)

and where K is the maximum possible value for transmission rates. This serves a similar purpose to the carrying capacity
in a logistic growth model.

The ascertainment rate αt can also be modeled with similar considerations to the above. This flexibility is useful,
particularly because these quantities are likely to change as an epidemic progresses. This has been clearly seen during
the Covid-19 epidemic, where the infection ascertainment rate changed over time due to increased testing capacity and
improved contact tracing systems. Multilevel modeling approaches are equal applicable to the specification of αt.

7 Forecasting, epidemiological constants, and seeding

A key benefit of using a semi-mechanistic approach is that forecasts are constrained by plausible epidemiological mech-
anisms. For example, in the absence of any further interventions or behavioural changes, and looking at a medium term
forecast of just incidence (daily new cases/infections), a traditional time series forecasting approach may predict a con-
stant function based on observing broadly constant incidence, but a semi-mechanistic approach would expect a monotonic
decrease based on a constant rate of transmission and the depletion of the susceptible population. The performance of
epidemiologically constrained models is generally good (Carias et al., 2019); this is perhaps not surprising as examining
the discrete renewal equation shows that these models correspond to autoregressive filters with a convex combination of
coefficients specified by the generation distribution. However, similar to financial forecasting, the predictive capability
of epidemic models are likely to be better interpreted as scenarios rather than actual predictions due rapidly changing
policies and the unpredictable behavioural responses of human populations.

A second benefit of epidemic models is to provide a plausible mechanism to explain (non causally) the changes
observed in noisy data. For example, in estimating the effect of an intervention on observed death data, we need to
consider what that intervention affects, i.e. the time-varying reproduction number Rt. As we have described above, we
link the reproduction number to the number of latent infections to an observed quantity (cases, hospitalisations, or deaths)
with an epidemiologically motivated mechanism. While we can statistically estimate parameters for how the intervention
affects Rt, certain important parameters will be entirely unidentifiable and need to be fixed as constants or with very
tight priors. For example, to reliably estimate the number of infections, an infection fatality ratio needs to be chosen.
A failure to choose an appropriate infection fatality ratio can result in a bimodal posterior where changes can either be
attributed to rapid depletion of the susceptible population (so-called “herd immunity”) or to the effect of interventions.
From a statistical perspective, it is difficult to disentangle which mode of the posterior best represents reality. When
properly interpreted, this can be an informative finding, but to obtain epidemiologically plausible estimates from the
semi-mechanistic model requires fixing the infection fatality ratio using estimates obtained from the literature. A second
example is the fact that Covid-19 deaths occur, on average 3 weeks after infection. Omitting the infection-to-symptom
and symptom-to-death distributions will bias effect estimates. This point was proved over and over when rising cases at
the beginning of an epidemic wave were dismissed by the claim that hospitalisations and deaths were not rising, forgetting
about the inherent lag in these measures.

Infection seeding is another fundamentally challenging aspect of epidemic modelling. Estimating the initial effect of
seeding is crucial to understanding a baseline reproduction number (R0) which is modified by behaviour, interventions,
and population depletion. This seeding is heavily confounded by importation and underascertainment. Both these factors
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can influence estimates of the initial growth rates, and this in turn can affect the impact of changes in transmission as
time progresses. We have proposed heuristic approaches to mitigate issues with early seeding, but principled statistical
approaches need to be developed. In particular, Bayesian pair plots show strong correlation between seeding parameters
and R0, which can potentially lead again to a bimodal posterior where initial growth dynamics can be explained through
R0 or via initial seed infections.

8 Confounding and Causality: Estimating the Effect of Interventions

Section 6 showed that changes in the reproduction number over time can be explained by parameterising it in terms of
covariates, such as NPIs or mobility. Clarifying the effects of interventions on disease transmission is important to guide
policy and because NPIs have large economic and human consequences. In practice, effect sizes may not be identifiable
for various reasons. NPIs often occurred in quick succession or simultaneously, leading to collinearity. They could be
confounded with unobserved behavioural changes. Finally, the random distribution for the time between an infection and
its recording as a case or death adds a large amount of variance to the observed data—one should not expect to see sharp
or immediate changes, especially in reported deaths.

Flaxman et al. (2020b) estimated the effectiveness of NPIs across 11 European countries, and used partial pooling of
effect sizes to address the identification problem. At that time, little data existed other than information on deaths and the
timing of interventions. NPIs, which were coded as a binary set of mandatory government measures (e.g. school closures,
ban on public events, lockdown), could not fully explain the patterns seen in some countries (e.g. Sweden), and especially
at the subnational level. Mobility data became available in April and was used to model the epidemic in Italy, Brazil and
the USA (Vollmer et al., 2020; Mellan et al., 2020; Unwin et al., 2020b). Such data is useful as it may help account
for behavioral changes that confound the effects of NPIs. However since mobility affects transmission, is linked to the
introduction of NPIs and potentially also to voluntary behavioural measures, we expect it to be a confounder. Sharma
et al. (2021) further allow for a residual stochastic process (a random walk) to be included alongside the fixed NPI effects
and perform estimation at a subnational level using a randomised study design.

Section 8.2 extends the model in Flaxman et al. (2020b) to further investigate this issue of confounding, and models
both NPIs and mobility jointly. This is in keeping with standard practice in regression/ANOVA: expanding a model to
take into account more explanatory variables. Nonetheless, NPIs may partially affect transmission via a pathway through

mobility. A joint model of mobility and NPIs does not account for this. Therefore, in Section 8.3 we take a first and
basic step in assessing causal considerations through a simple mediation analysis. We begin however by exploring the
relationship between interventions and mobility.

8.1 Interventions and Mobility

Here we study the first epidemic wave in 2020, the same period considered by Flaxman et al. (2020b). We consider the
simple case of regressing average mobility on the NPIs defined in Flaxman et al. (2020b), asking whether the changes in
mobility can be explained by the timing of NPIs? Regressing average mobility on NPIs in a Bayesian linear model (no
intercept or partial pooling) we find a correlation (Pearson’s) of over 85% with a mean absolute error of 0.1%. Given
mobility generally ranges from -1 to 1, this is a good overall fit. Figure 1a shows that visually, these fits correspond well
with changes in average mobility. One could conjecture that mobility and NPIs are lagged, but lagging NPI dates either
forwards or backwards in time does not result in a better fitting model, see Figure 1(b). Indeed, Figure 1(b) supports
the hypothesis that the timing of NPIs and changes in mobility are coupled. The coefficient sizes from this regression
are consistent with the (Flaxman et al., 2020b) finding that the NPI with the largest effect size is lockdown, see Figure
1(c). We note that the definition of lockdown encompasses a number of specific interventions including closing work
places and stores, banning gatherings of various sizes, stay-at-home orders, and more. A more thorough analysis would
included fine-grained intervention definitions as in Sharma et al. (2021). While this regression analysis does not model
transmission or the trajectory of the epidemic, it provides evidence for the consistency of mobility and NPIs, and the
potential for confounding. For regularisation we used a hierarchical shrinkage prior (Piironen and Vehtari, 2017) that
performs both shrinkage and variable selection simultaneously.
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Figure 1: Simple regression of mobility against NPIs. (a) Regression prediction for the United Kingdom with mobility
in black and the fit for NPIs in red. (b) The effect on mean absolute error from lagging the NPIs 10 days forward and
backwards. (c) The coefficient effect sizes from the regression, with NPIs on the y-axis and regression effect sizes on the
x-axis.

8.2 Controlling for Mobility

Section 8.1 found a correlation between interventions and mobility, demonstrating that mobility is a potential confounder.
Here we control for this by jointly modeling NPIs and mobility. This is done using the same 11 European countries, sets
of NPIs and death data as used in Flaxman et al. (2020b).

A two-stage approach (Haug et al., 2020) is used, whereby latent Rt is first estimated through a non-parametric
daily random walk, i.e. independent of NPIs. We first nonparametrically estimate Rt to account for the various lags and
biases in the observed data. In the second stage, Rt is regressed on NPIs and mobility. The random walk can in theory
select any arbitrary function for Rt that best describes the data without any prior information on which interventions
happened, when, or how well they worked. Given these estimates of Rt for all 11 European countries, we run a simple
partial pooling model to see if interventions and/or mobility can reproduce the trends in Rt. The model used is a linear
regression with country level intercepts (to account for variation in R0), and both joint and country specific effect sizes
for interventions/mobility. As with the earlier analysis we use a hierarchical shrinkage prior on the coefficients (Piironen
and Vehtari, 2017).

Three variations of the model are considered: NPIs only, mobility only, and NPIs and mobility together. MCMC
convergence diagnostics in all cases did not indicate fitting problems. We found the best fitting models (via PSIS-LOO
(Vehtari et al., 2017)) to be NPIs alone or NPIs and mobility together. Relative to the NPIs and mobility together model
the expected log posterior difference (± standard error) in WAIC of the model with only NPIs is−5.2±4 (not significant),
and −565.6± 49.2 (significant) with only mobility. Therefore, in fits to the estimated Rt, the model with mobility alone
is substantially worse than the models with NPIs. Controlling for mobility does not appear to significantly change the
relative ranking of the estimated NPI effects. As in Flaxman et al. (2020b), the largest effect size is attributed to lockdown,
as seen in Figure 2. This is true with and without the inclusion of the mobility variable.
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Figure 2: Regression of NPIs and/or mobility against nonparametric Rt. (a) NPIs only. (b) mobility only. (c) NPIs and
mobility together. Mobility only was not significantly preferred by WAIC. Y axis are covariates and X axis the regression
effect sizes

An advantage of the two-stage approach is that it is scaleable to a large number of regions (e.g. Laydon et al. (2021);
Nouvellet et al. (2021)). Rt can be estimated in each region in parallel using separate models. Partial pooling can still
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be leveraged to estimate effects in the second stage. Once Rt has been estimated, any number of interesting statistical
analyses can be conducted. Nonetheless the estimated Rt is not entirely non-parametric; it is clearly influenced by the
choice of using a first order random walk in the first stage. This analysis could be extended by considering a range of
alternative priors for Rt, such as Gaussian processes. More importantly, however, this approach has not considered causal
relationships between NPIs and mobility. This is the focus of the next example.

8.3 Causal Mediation

We would expect that part of the effect of NPIs on transmission occurs indirectly through its effect on mobility. If we a

priori hypothesise that changes in mobility are both an effect of NPIs and a cause of reductions in transmission, causal
mediation analysis (Pearl (2009)) provides a simple means to disentangle the total effect of a variable into a direct and
indirect effect. The indirect effect occurs via some mediator, which in this case is hypothesised to be mobility.

Here we consider lockdown on its own, because performing causal mediation with all NPIs is challenging and lock-
down is consistently the NPI with the largest effect size as shown above and in Flaxman et al. (2020b). As previously
mentioned, the definition of lockdown represents an aggregate of policies, varying between countries. This analysis is
therefore simply illustrative rather than being fully exhaustive. Briefly, to perform causal mediation we consider two
transmission models

R
(m)
t = R̃1

m exp
((
β1
1 + β1

1,m

)
Lt,m + ε1t,m

)
, (12)

R
(m)
t = R̃2

m exp
((
β2
1 + β2

1,m

)
Lt,m +

(
β2
2 + β2

2,m

)
Mt,m + ε2t,m

)
, (13)

where Lt,m is a binary indicator for lockdown and Mt,m is mobility in country m respectively. R̃i
m and εit,m are country

specific parameters modeling baseline transmission and a weekly random walk respectively. All other aspects of both
models are the same as in Flaxman et al. (2020b). Model (12) includes effects for lockdown, while (13) additionally
considers mobility. β1

1 is the total effect for lockdown, while β2
1 is the partial effect when controlling for mobility. The

mediated effect is therefore β1
1−β2

1 . This quantifies the effect of lockdown via the pathway through mobility. We find this
mediated effect reduces Rt by 18.3% with a 95% credible interval of [12.2%, 44.4%]. Individual coefficients are shown
in Figure 3.

lockdown

0%
(no effect 
on transmissibility)

25% 50% 75% 100%
(ends 
transmissibility)Relative % reduction 

(a)

Lockdown

Average 
Mobility

0% 25% 50% 75% 100%
(no effect 
on transmissibility)

(ends 
transmissibility)

Relative % reduction 

(b)

Figure 3: Mediation analysis. (a) The effect of lockdown from Model (12) (b) The effect of lockdown and mobility from
Model (13)

These mediation results suggest a causal link between a lockdown policy and mobility that eventually leads to reduced
transmission rates. They also suggest that the mediated effect is far less than the total effect of lockdown, suggesting
lockdown will have other causal pathways. Of course, mobility is also mediated through other pathways, and a more
extensive causal analysis is beyond the scope of this article. The exclusion of other NPIs may introduce omitted variable
bias.
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8.4 Simulation

We perform a simple simulation analysis to demonstrate the utility of our modelling framework. In these simulations we
create artificial data with properties resembling the real data (e.g. intervention timings) but with hypothetical NPI effect
sizes. We fitted our modelling framework to this simulated data to see if we could recover the hypothetical NPI effect
sizes. We perform three simulation experiments where, to ensure consistency, the NPI dates are selected as those that
actually happened in reality (Flaxman et al., 2020b). In selecting NPI timings from real data, we could create a more
plausible representation of reality with the same orderings and collinearity. For all three simulations, R0 and the initial
epidemic seeding were set as those previously used (Flaxman et al., 2020b). The model used for estimating the effect
sizes for all three simulations is the partial pooling model as described in (Flaxman et al., 2020c). The three simulation
scenarios were as follows: (a) All 5 NPIs effect sizes were set to 20% - corresponding to the case where all interventions
work equally well. (b) All 5 effect sizes were set to 18%, except there was an unobserved NPI which had an effect size of
10% and was applied at a random time at least 7 days before the last NPI occurred. This scenario corresponds to the case
where there is an NPI that we did not account for in our model but which has an effect on transmission. (c) A single NPI
was highly effective with an effect size of 70% and the remaining 30% were uniformly distributed among the remaining
4 NPIs. This scenario corresponds to a single important NPI that has the main effect in reducing transmission.

0 5 10 15 20 25 30 35 40
Percentage reduction in Rt

School
Closure

Self
Isolation

Public
Events

Lockdown

Social
distancing

NPI Effectiveness

(a)
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Lockdown

Social
distancing

NPI Effectiveness

(b)

0 20 40 60 80 100
Percentage reduction in Rt
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Lockdown

Social
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NPI Effectiveness

(c)

Figure 4: Simulation scenarios. (a) All NPIs have an effect size of 20%. (b) All NPIs have an effect size of 18% but
there is an unobserved NPI with an effect size of 10%. (c) One NPI has an effect size of 70% and the remaining 30% is
distributed to the 4 other NPIs

In Figure 4 we show that our model can recover the true effect sizes in all scenarios and, to a degree, motivates the
appropriateness of our framework for modelling the effect of NPIs. However, our simulation experiments do not mean
there are not significant shortcomings to our approach. A number of well known problems with statistical estimation apply
to our model. Residual confounding from unobserved covariates (e.g. passive NPIs, behavioural changes) as in scenario
(b) can be mitigated, but in general we recommend the inclusion of a stochastic process to model residual variation
not captured by fixed effects (Sharma et al., 2021). Effect size estimates can be biased, even when residual variation
is modelled. We recommend using debiasing techniques popular in statistics and machine learning (van der Laan and
Rubin, 2006; Chernozhukov et al., 2017). Generalisation to different countries and times is not expected to be guaranteed
(Sharma et al., 2021) and care should be taken when applying effect sizes to other countries and different time periods.
Our modelling framework will inevitably be sensitive to decisions about fundamental epidemiological parameters, and
these need to be regularly updated based on the best current evidence.

In summary, these simulation results show our framework is empirically motivated, and is a useful approach to esti-
mating the effect of interventions on infectious disease epidemics. However, our approach does not surmount the common
statistical problems affecting regression models in general. Care must be taken with critical decisions regarding data and
modelling. . We believe our approach serves as a basic framework from which further development is needed (Sharma
et al., 2021).

8.5 Code and Software

All analysis was run using the programming language R and the software package Stan (Carpenter et al., 2017). Code for
transmission modelling is available from previously published studies (Scott et al., 2020; Flaxman et al., 2020b) and an on-
line repository at https://github.com/ImperialCollegeLondon/semi_mechanistic_renewal_processes.
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9 Discussion

This article has discussed a class of Bayesian semi-mechanistic statistical models for epidemics such as Covid-19 which
are able to capture key epidemiological mechanisms. The model has appeared in various forms for specific analyses during
the Covid-19 crisis and, at the time of writing, continues to be used to inform public policy. By presenting it in a general
form and discussing key modelling difficulties we hope to stimulate discussion around it. As is constantly the predominant
factor in empirical statistical approaches, the model is limited by data quality and availability. In this analysis we use a
coarse definition of interventions that are likely to miss important details driving transmission. A key recommendation
of future pandemic preparedness is to establish data pipelines that can quickly facilitate statistical modelling of the type
outlined in this paper.

One key difficulty within the framework is dealing with confounded variables, particularly those used to explain
changes in transmission during the early stages of an epidemic. The analyses in Section 8 make a first step in dealing with
these. A number of model enhancements have not been included here and are an important area for further research. These
include explicitly accounting for importations, allowing for uncertainty in the generation and infection-to-observation dis-
tributions, more expressive causal model, and the inclusion of residual effects using stochastic processes. The presented
model can readily be fit using probabilistic programming languages such as Stan (Stan Development Team, 2018), though
we note that the adaptive Hamiltonian Monte Carlo algorithm can at times face convergence problems when latent in-
fections are modeled directly, or when multiple regions are jointly modeled. We conjecture that convergence may be
improved by carefully choosing initial parameters for the sampler. Future research could explore whether alternative
samplers can be developed to fit these models more pragmatically.
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10 Appendix

10.1 Offspring Dispersion

Define the offspring distribution of any given infection to be the distribution of the random number of offspring attributable
to that infection. We show that assuming the variance of these distributions are a constant proportion of the mean implies,
under suitable independence assumptions, the same result for new infections It for all time points.

Assume some ordering over infections at each period, and let O(i)
t denote the number of offspring of the ith infection

at time t. This can be decomposed as

O
(i)
t =

∞∑
s=t+1

O
(i)
ts , (14)

whereO(i)
ts are the number of offspring of i birthed at time s. The branching process behind Equation (5) implies thatO(i)

ts

has mean Rsgs−t. Assume that {O(i)
ts : s ≥ t} are mutually independent and have variance which is a fixed proportion d

of the mean. By Equation (14), this implies the same variance relationship for O(i)
t . In particular, if Rs = Rt for s > t

then O(i)
t has mean Rt and variance dRt. New infections at time t can be expressed as

It =

t−1∑
s=1

Is∑
i=1

O
(i)
st . (15)

Assume that all O(i)
st appearing in Equation (15) are mutually independent conditional on everything occurring up to time

t− 1, the result clearly follows by taking the variance of both sides of Equation 15 given Rt and Iv:t−1.

10.2 Population Adjustment

Here we motivate Equation (6), which is used to adjust transmission rates for the size of the infectable population. The
most obvious starting point for such an adjustment would be to let

E[It|Rt, Iv:t−1] =

(
S0 − It−1

S0

)
Ru,tLt, (16)

where Rut is defined as in Section 4.2. This is similar in form to a discrete logistic growth model. Such models are
well known as examples of simple models that exhibit chaotic dynamics (May, 1976). In particular, it is possible that
the expected value on the left hand side exceeds the remaining susceptible population. Intuitively, this issue occurs
because multiple infections can occur simultaneously in the discrete model. We therefore propose solving this by using a
population adjustment motivated by the solution to a continuous time model whose intensity is a simplification of Equation
(3).
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Suppose we observe Iv:t−1 and current transmission Rt. We evolve infections from time t− 1 to t continuously, and
hence avoid overshooting. Define a continuous time counting Ĩ(s) process starting at time t− 1 by the intensity

λ̃(s) =

(
S0 − Ĩ(s)

S0

)
Ru,tLt, (17)

for s ≥ t− 1, and with initial condition Ĩ(t− 1) = It−1. Supplementary 11.1 shows that

E[Ĩ(t)] = It−1 + (S0 − It−1)

(
1− exp

(
−Ru,tLt

S0

))
, (18)

which is the motivation for Equation (6).
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11 Online Supplement

11.1 Proof of Equation (18)

Without loss of generality, we prove the result for time t = 1. The argument remains the same for all t > 1.
From (Thompson et al., 1984, Lemma 5.5), we have

E[Ĩ(s)] = Ĩ(0) +

∫ s

0

E[λ̃(l)]dl for s ≥ 0.

The following lemma derives an expression for the the expected intensity on the right hand side.

Lemma 11.1. The expected intensity takes the form

E[λ̃(s)] = λ̃(0) exp

(
−Ru,1L1

S0
s

)
,

for all s ≥ 0.

Proof of Lemma 11.1. Fix s ≥ 0, some small ∆ > 0 and let h(s) := E[λ̃(s)]. We have from Equation (17) that

h(s+ ∆) =

(
S0 − E[Ĩ(s+ ∆)]

S0

)
Ru,1L1. (19)

We can write
E[Ĩ(s+ ∆)|λ̃(s)] = E[Ĩ(s)|λ̃(s)] + λ̃(s)∆ +O(∆),

and taking expectations on both sides,

E[Ĩ(s+ ∆)] = E[Ĩ(s)] + h(s)∆ +O(∆).

Substituting this into (19) and rearranging gives

h(s+ ∆) =

(
S0 − E[Ĩ(s+ ∆)]

S0

)
Ru,1L1 −

Ru,1L1

S0
(h(s)∆ +O(∆)) ,

= h(s)− Ru,1L1

S0
(h(s)∆ +O(∆)) .

Rearranging gives
h(s+ ∆)− h(s)

∆
= −Ru,1L1

S0

(
h(s) +

O(∆)

∆

)
.

Taking the limit as ∆→ 0 and rearranging gives the differential equation

h′(s)

h(s)
= −Ru,1L1

S0
.

Integrating both sides gives

log(h(s)) = −Ru,1L1

S0
s+ C.

Using that h(0) = λ̃(0) gives the constant C = log(λ̃(0)). Plugging in yields the required result.
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Hence,

E[Ĩ(s)] = I0 + λ̃(0)

∫ s

0

exp

(
−Ru,1L1

S0
l

)
dl

= I0 + λ̃(0)
S0

Ru,1L1

(
1− exp

(
−Ru,1L1

S0
s

))
= I0 + (S0 − Ĩ(s))

(
1− exp

(
−Ru,1L1

S0
s

))
.

Letting s = 1 gives the required result.
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