Efficient Bayesian Inference of Instantaneous Re-
production Numbers at Fine Spatial Scales, with
an Application to Mapping and Nowcasting the
Covid-19 Epidemic in British Local Authorities

Yee Whye Teh(!), Avishkar Bhoopchand®, Peter Diggle®), Bryn
Elesedy"), Bobby He(), Michael Hutchinson™, Ulrich Paquet(?,
Jonathan Read®, Nenad Tomasev(?), Sheheryar Zaidi(")

(1)Dept Statistics, University of Oxford

(2)Dept Statistics, University of Oxford, seconded from DeepMind
(3)Lancaster Medical School, University of Lancaster

1. Introduction

The spatio-temporal pattern of Covid-19 infections, as for most infec-
tious disease epidemics, is highly heterogenous as a consequence of lo-
cal variations in risk factors and exposures. Consequently, the widely
quoted national-level estimates of reproduction numbers are of limited
value in guiding local interventions and monitoring their effectiveness. It
is crucial for national and local policy makers as well as health protection
teams that accurate, well-calibrated and timely predictions of Covid-19
incidences and transmission rates are available at fine spatial scales. Ob-
taining such estimates is challenging, not least due to the prevalence of
asymptomatic Covid-19 transmissions, as well as difficulties of obtaining
high resolution and high frequency data. In addition, low case counts
at a local level further confounds the inference for Covid-19 transmission
rates, adding unwelcome uncertainty.

In this paper we develop a hierarchical Bayesian method for inference
of transmission rates at fine spatial scales. Our model incorporates both
temporal and spatial dependencies of local transmission rates in order to
share statistical strength and reduce uncertainty. It also incorporates in-
formation about population flows to model potential transmissions across
local areas. A simple approach to posterior simulation quickly becomes
computationally infeasible, which is problematic if the system is required
to provide timely predictions. We describe how to make posterior simu-
lation for the model efficient, so that we are able to provide daily updates
on epidemic developments.



The results can be found at our website https://localcovid.info
which is updated daily to display estimated instantaneous reproduction
numbers and predicted case counts for the next weeks, across local au-
thorities in Great Britain. We hope that our methodology and website
will be of interest to researchers, policy makers and the public alike, to
help identify upcoming local outbreaks and to aid in the containment of
Covid-19 through both public health measures as well as personal deci-
sions taken by the general public.

2. Data

Our model is applied to publicly available daily counts of positive test
results reported under the combined Pillars 1 (NHS and PHE) and 2
(commercial partners) of the UK’s Covid-19 testing strategy®. The data is
available for 312 lower-tier local authorities (LTLAs) in England, 14 NHS
Health Boards in Scotland (each covering multiple local authorities), and
22 unitary local authorities in Wales, for a total of n = 348 local areas.
The data are daily counts of lab-confirmed (PCR swab) cases presented by
specimen date, starting from January 30, 2020. The original data are from
the respective national public health authorities of England?, Scotland?
and Wales? and we access them through the DELVE Global Covid-19
Dataset® (Bhoopchand et al., 2020). Due to delays in processing tests,
we ignore the last 7 days of case counts.

3. Method

Our method is based on an approach to infectious disease modelling using
discrete renewal processes. These have a long history, and have served
as the basis for a number of recent studies estimating instantaneous re-
production numbers, most notably (Wallinga and Teunis, 2004} Fraser,
2007; |Cori et al., 2013} [Flaxman et al., 2020). See Bhatt et al. (2020) and
references therein for historical and mathematical background, as well
as |Gostic et al. (2020]) for important practical considerations.

Following Flaxman et al. (2020), we model latent time series of inci-
dence rates via renewal processes, and separate observations of reported
cases using negative binomial distributions, to account for uncertainties
in case reporting, outliers in case counts, and delays between infection
and testing. We introduce a number of extensions and differences ad-
dressing issues that arise for applications to modelling epidemics at lo-
cal authority level rather than regional or national levels. Firstly, we
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introduce dependencies between reproduction numbers across neighbour-
ing localities, in order to smooth estimates of reproduction numbers and
share statistical strength across localities and time. We do this using a
spatiotemporal Gaussian process (GP) prior for the log-transformed re-
production numbers. Secondly, we model transmissions across localities
using a spatial metapopulation model. Our metapopulation model incor-
porates commuter flow data from the UK 2011 Census in order to capture
heterogenous cross-infection rates among local authorities. Human mo-
bility patterns may also reflect the introduction of non-pharmaceutical
interventions (NPIs), though our model does not explicitly use real-time
mobility data so cannot estimate the direct or indirect effects of NPIs.

The model is implemented in the Stan probabilistic programming
language (Carpenter et al., 2017)), which uses the No-U-Turn Sampler
(NUTS) (Hoffman and Gelman, 2014)) for posterior simulation. A num-
ber of modelling design choices as well as inference approximations are
made to improving mixing and computational efficiency. These are de-
scribed in Appendix

3.1.  Model Overview

In this section we give an overview of our model, which we refer to as
EpiMap. The model consists of three layers: a latent Gaussian process
over the log reproduction numbers, a metapopulation model for the epi-
demics across local areas, and an observation model relating the size of
the epidemic with the observed number of positive tests in each day and
area.

We first introduce some notations. We are interested in estimating the
instantaneous reproduction numbers, R;;, across local areas in the UK
(indexed by i) and across time (indexed by ¢). For each local area i and
day ¢, the observed daily Pillars 142 case counts are denoted C;;. Let
the unobserved daily infection (incidence) counts be Xj ;.

Starting with the observation model, we model the number of reported
cases using a delay distribution and an over-dispersed negative binomial
observation model:

t
Ci,t‘Xi,lzh ¢7, ~ NegBin(Vday,of,week(t)Ei,t7 ¢Z)7 Ei,t = Z Xi,t—sD& (1)
s=1

where Dy is the probability that an infected person gets tested and tests
positive s days after infection and E;; is the expected number of posi-
tive test cases on day t in area i. NegBin(u, ¢) is the negative binomial



distribution with mean p and dispersion parameter ¢, while Viay of week(1)
models day-of-week variations in reported cases. Section [3.1.2] gives more
details.

Assuming a homogeneously mixing population in each area, and in-
teractions across areas modelled using a cross-coupled metapopulation
model, we model the number of new infections in each area as follows.
Conditioned on the history of infections, let

t
Zig =Y Xis oW, (2)
s=1

be the infection load on day ¢ caused by previous infections in area ¢, if
each primary case produces one secondary case. Wy describes the genera-
tion distribution, and is the probability that a secondary infection occurs
s days after the primary infection. See Section for more details on
how we parameterise Ws. These secondary infections can occur in area
i, or in another area, e.g. due to individuals working in an area different
from where they live. We model this with a time dependent flux matrix
F](f ), which is interpreted as the probability that a primary case living in
area j infects a secondary case living in area ¢ on day t. The resulting
cross-coupled infection load in area 17 is:

Zie=Y F7;. (3)
j=1

We describe the metapopulation model in further detail in Section [3.1.3
including how the flux matrices are parameterised. We model the number
of new infections on day t as,

Xit|Rity X1m1:t—1 ~ NegBin(R; 1 Z; 4,1)) (4)

where Ri,tZi,t is the force of infection in area ¢ and day ¢, and ¢ is a
dispersion parameter which allows for over-dispersion. We expect this to
be a better model for Covid-19 than using a Poisson distribution in (4]
due to super-spreading events. Note that if we used a Poisson then the
secondary infections resulting from a primary infection would have been
modelled as conditionally iid given the primary infection. The use of a
negative binomial distribution instead introduces a positive correlation
among the secondary infections.

In order to make the posterior simulation computationally efficient us-
ing Stan, we approximated this with a positivised Gaussian distribution;

see Appendix



3.1.1. Latent Gaussian Process

With low case counts, inferring R; ; over small local areas can lead to high
uncertainty. A standard Bayesian hierarchical modelling approach is to
share statistical strengths across the inferences of different local areas and
across different time points. We use Gaussian processes (GPs) to do so;
namely, for area i and time ¢ we model:

Riy = exp(Si¢ + Uit) (5)
where S. . is a GP with a separable Matern(1/2) kernel:
Cov(Sis, Sje) = () 2exp(—|ly; — g5l /o™= — ||s — t]|/p"™) ~ (6)
and U; . are independent copies of a GP with Matern(1/2) kernels:
Cov(Uis, Ure) = (07°)? exp(—||s — t]|/p"™) (7)

Here, y; and y; are the geographical centres of areas ¢ and j respectively,
s and t are weekly time indices, as we assume that the instantaneous
reproduction numbers are constant within each week. Note that our prior
covariances in Equations [6] & [7] enjoy a Kronecker structure across the
space and time dimensions, which allows for efficient computations (see
Appendix . In the temporal case, which is one-dimensional, the GP
prior with the Matern(1/2) kernel is equivalent to an AR(1) process with
0 mean. We also considered Matern(3/2), Matern(5/2) and squared-
exponential covariance kernels, which produced similar inferences.

The hyperparameters of the spatiotemporal GP are: scale parameters
ospatial g glocal and length scale parameters p*Patial and ptime. We place
independent truncated normal priors Ny (0,0.5) over the scale parame-
ters. For the length scale parameters, we have found that if we inferred
these along with the rest of the random variables in the model, the pos-
terior distribution places mass on large spatial length scales and short
temporal length scales. This has an undesirable over-generalisation ef-
fect, and we believe this behaviour is due to model misspecification with
respect to the length scale parameters. Instead we selected these using
an initial cross validation run optimising for performance of forecasted
case counts three weeks into the future, and selected p*P*8 = 10km and
ptemporal = 200 days.

3.1.2. Observation and Infection Model

Weekly variations are modelled using multiplicative factors in , with
a uniform prior over positive vectors of length 7 and sums to 7. Fol-
lowing |[Flaxman et al. (2020) we use an over-dispersed negative binomial



observation model , with a broad half normal prior for the dispersion
parameters, ¢; ~ N, (0,5) iid. However, we use a different parameterisa-
tion of the negative binomial, rather than the neg_binomial 2 parameteri-
sation in Stan, with a mean parameter i, an inverse-dispersion parameter
¢, and variance p+ u?/c. Instead we use a different parameterisation, and
set ¢ = u/¢p, where ¢ is a dispersion parameter. This gives a variance of
(14 ¢)u and probability mass function:

s = (N (Y ()T e

This parameterisation is the natural one which emphasises the infinite di-
visibility of the negative binomial, i.e. if Y7,...,Y}, are independent neg-
ative binomial random variables with means p1, ..., t,, and the same dis-
persion parameter ¢, then )", Y; is also negative binomially distributed
with mean ) ;" 41; and dispersion ¢, a sensible choice in cases where we
believe counts are sums of independent random events.

The infection-to-test delay distribution Dy is a convolution of two delay
distributions: an incubation period distribution, and a symptom-onset-to-
test distribution. Following [Bi et al. (2020), we use a LogNormal(y, o?)
distribution for the incubation period, where p has a 95% confidence
interval (CI) of (1.44, 1.69) and mode 1.57, and ¢ has 95% CI of (0.56,
0.75) with mode 0.65. This results in a median of 4.8 days and a 90%
confidence interval of (1.64,14.04) days for the incubation period, and we
assume an additional two day delay to get tested.

Similarly, we parameterise the generation distribution Wy as a Gamma
distribution where shape parameter has mode 2.29 with (1.77, 3.34) 95%
CI, and rate parameter has mode 0.36 with (0.26, 0.57) 95% CI. This
corresponds to the serial interval parameter distributions from [Bi et al.
(2020)); we note that the serial interval is often used as an accessible
proxy for the unobserved generation distribution (Cori et al., 2013). For
both D, and Wy, we aggregate predictions and inferences from 10 boot-
strapped runs of our model, each with independently sampled LogNormal
and Gamma parameters respectively. This is equivalent to a nested Monte
Carlo approximation to a cut or modular model (Plummer, 2015} lJacob
et al., 2017; |Carmona and Nicholls, 2020|). We found this to be crucial to
avoiding overconfident predictions for R; estimates.

For the dispersion paramter ¢, we use a weakly informative prior ¢ ~

N (0,2.5).



3.1.3. Metapopulation Model

Our final extension relaxes the assumption in many infectious disease
models, that the epidemic is evolving in a homogeneously mixing popula-
tion in an area, with no significant transmissions from other areas. While
this might be sensible in large regions or countries, it is not a sensible
assumption for modelling multiple small areas with likely a significant
number of cross-area transmissions. To address these transmissions, we
describe a simple cross-coupled metapopulation extension, given by equa-
tions —.

In the following we describe how to parameterise the flux F};, which
describes the chance that a primary case living in area j, if they infect
a secondary case, that the secondary case lives in area i. One sensible
choice, if the data were available, would be to use real-time data on
the actual volume of travel between each pair of areas. Such data is
unfortunately not publicly available, and in any case the relationship
between the volume of travel and the number of transmissions is not
straightforward due to heterogeneity in the population.

We use commuting flow data from the 2011 Census®. The data gives,
after some preprocessing, a matrix M such that for each pair of areas i
and j the number of individuals who live in area j and commute to work
in area i is Mj;. Let P; be the population of area j. We take M;; to
be the population who commute within their own area or who do not
commute, so ), M;; = P;. We consider three types of transmissions:
an individual living in area j infecting another individual in area j (e.g.
household transmissions), an individual living in area j working in area
1 infecting one living in area ¢, and an individual living in area ¢ being
infected while working in area j. These three types of transmissions can
be described using three flux matrices:
F;? =4 ijzwd - My Frev = My

>k M ! >k Mij
where ¢;; = 1 if j = 4 and 0 otherwise. We parameterise the overall flux
matrix during week ¢ using a convex combination of Fid, Ffwvd and Frev,

(9)

F(t) — Othid + (1 _ Ozt)(,@Fde + (1 _ B)FTGV) (10)

with a; € (0,1) governing the amount of mixing across areas on week
t (roughly the proportion of the population working from home), and
B € (0,1) governing the amount of home-to-work versus work-to-home
transmissions. We use a uniform prior over 8 and a weekly AR(1) prior
for the log-odds, specifically a; = 1/(1 + exp(—pq + 04A¢)) where the



AR(1) process is given by A; ~ N(0,1), A¢|Ar—1 ~ N (0qA1—1, /1 — d2),
with weakly informative hyperpriors u, ~ N(0,0.5), oo ~ N1(0,0.5),
while the hyperprior do ~ Njg1)(1,1 — e~ 925) is a weakly informative
prior on the time scale of the AR(1) process centred around 4 weeks.

4. Empirical Evaluations

In this section, we report some empirical evaluations of our model, which
we call EpiMap. We compared two variants of EpiMap: one which models
each local area separately from the rest (hence no metapopulation model
nor spatial component of GP), and one the full model. For the full model
we have found that the inferences are sensitive to the length scale of
the spatial GP, and so we compared the full model with varying spatial
length scales and with no spatial GP component. We also compared
against EpiEstim (Cori et al., 2013) and EpiNow2 (Abbott et al., 2020)).
We compared these methods on simulated data and on predicting future
case counts in British local authorities. We also report estimates of R; at
regional and national levels.

4.1. Simulation data

One sanity check of our method is to fit the models to simulated data for
which we know the underlying R;, and check how well our models can
recover this. In this section we do just this, and compare the results with
a number of other common methods.

The simulation model we use is exactly the generative model we de-
scribed. The data is simulated by taking intial real cases data from Ox-
ford and the 4 surrounding LTLAs up to 2020-03-14, and from that point
simulating new cases using the model. The main unspecified parameter
is the R; in each region over time. An R; curve was manually designed
in order to give a double peak epidemic similar in nature to the pattern
seen accross the UK, with case numbers in the regions roughly similar.
The same R; curve was shared accross the LTLAs. Additionally we use
50:50 flux proportions of the forward and reverse commuter flow data,
with a constant a; of 0.45. These choices of parameters are somewhat
arbitrary and were chosen to give qualitatively sensible looking epidemic
curves. To these simulated data we fit the two variations of our model,
with the full model using a temporal length scale of 200 days and a range
of spatial length scales between 1 km and 100 km. The results can be
seen in Figure[ll Plots showing the full sweep of spatial length scales for
EpiMap can be found in Appendix Appendix
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Fig. 1. Upper: Estimated median, 50% (inner) and 95% (outer) credible inter-
vals of the posterior predictive distributions for C; ;, along with observed case
counts. Credible intervals to the right of the vertical line are future predictions.
For EpiMap, we include the weekly variation in expected cases in the model,
but plot the predictive distributions without this variation for clarity. EpiNow2
returns the distribution of the mean number of cases so under-estimates the
uncertainty. EpiEstim does not model dependence of R, over time, so we used
the last inferred R, distribution for future predictions. Lower: Estimated median,
50% (inner) and 95% (outer) credible intervals of R, for the methods, along with
the true R, used to create the simulated epidemic. Plots shown only for Oxford,
those for the four surrounding local authorities are given in the Appendix. Epi-
Estim does not model dependence of R; over time, so we used the last inferred
R; distribution for future predictions.
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Fig. 2. A comparison of models for predicting future case counts over a 3-week
unseen period. Each model is fitted on 15 weeks of data and makes predictions
for the following 3 weeks.

The three methods produce qualitatively different estimates of Rj.
EpiEstim struggles to estimate R; well when case numbers are low, pro-
ducing high variance estimates with poorly calibrated uncertainty. This
is likely because EpiEstim does not account for noise in the observation
of cases, or the weekly variation in reporting. Additionally these R; lag
by about a week as EpiEstim does not account for delays in the reporting
of cases. EpiNow2 produces overconfident predctions which appear over-
smoothed. Single area EpiMap recovers R; reasonably well, with good
uncertainty calibration. The full regional EpiMap model provides a small
gain on top of the single area model, with slightly tighter credible intervals
and reasonable median accuracy. Section produces more quantitative
comparisons of the methods.

4.2. Predicting future case counts

Next, we evaluate the methods’ predictions of future case counts by com-
paring them to true case counts. In addition to measuring predictive
performance, we also assess the model’s uncertainty calibration by com-
paring the coverage probability of its prediction intervals with the actual,
achieved (empirical) coverage. We first picked four spread out dates:
2020-10-12, 2020-11-23, 2020-12-21 and 2021-01-18. For each date, we use
the 15 preceding weeks of data for inference and evaluated predictions of
case counts for the following 3 weeks. Note that since the methods do
not model drastic changes arising from NPIs changing, we expect them
to perform poorly during such periods. Therefore, we include 2020-12-21
as an example of such a period, because there are drastic changes to the
NPIs, whereas the remaining three dates involve periods without sub-
stantial changes to the spread dynamics. In addition to the variants of
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Fig. 3. Reliability curves assessing the uncertainty estimates produced by mod-
els. Each model yields percentiles of its case count posterior predictive distri-
bution. The curves show the portion p of predictions (across dates and LTLAs)
for which the true case count is less than the p-th percentile ¢, of the model
(y-axis) vs. p (z-axis).

EpiMap, EpiEstim and EpiNow?2, we also included two simple baselines:
“zero” which predicts zero cases for all dates and LTLAs, and “last case
count” which predicts using the case count on the last day of the 15-week
inference period for each LTLA.

Figure 2| shows log(RMSE+1) between predicted and true case counts.
More precisely, the RMSE is separately computed for each LTLA’s pre-
dictions over the test period, then we average the resulting log(RMSE+1)
across LTLAs. The log transformation is so that results are not domi-
nated by areas with much higher case counts. EpiMap variants typically
perform best at predicting the true case counts. The positive impact of
modelling cross-area dependencies is observed, since EpiMap (single area)
tends to slightly underperform the other variants of EpiMap. Morever,
the predictive performance of EpiMap is dependent on, though not very
sensitive to, the choice of pP*12l Note that for the start date 2020-12-21,
all models perform worse relative to other dates. This is because of signif-
icant changes in the dynamics of Covid-19 spread due to changing NPIs
over the Christmas period, information that is not incorporated into any
of these models.

Figure [3 assesses the quality of the uncertainty estimates produced by
the models using reliability curves. Each model outputs percentiles of
the posterior predictive distribution of case counts. Let ¢, be the p-th
percentile produced by a model for a given date and LTLA. Ideally, we
expect that the percentage of dates and LTLAs for which the true case
count c is less than or equal to ¢,, is approximately p. In other words,
the actual, empirical coverage of the p-th percentile (y-axis of Figure [3])
will ideally be equal to the target coverage p (z-axis of Figure , yielding

11
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Fig. 4. Regional estimates of cases and R;. Our model inferences are plotted
in dark blue on both cases and R; plots, and additionally for case plots the true
cases are plotted in light blue. Our model projections for cases and R;, as well
as 50% & 95% credible intervals, are plotted in grey.

a reliability curve close to y = . We observe that EpiMap’s uncertainty
estimates generally capture the underlying case counts distribution well,
though with some variation across start dates and model configurations.
EpiEstim’s uncertainty estimates are overconfident as indicated by the
flatter shaped curves. For the first three start dates, EpiMap (single
area) and models with small p%P#%2l yield better uncertainty estimates.
For 2020-12-21, the concave shape of the reliability curves indicates mod-
els are overestimating case counts, which is consistent with the fact that
stricter NPIs curbed case counts while the models predicted case counts
would increase assuming no changes in spread dynamics. For 2021-01-18,
larger p®P*tal perform best, likely because the prevailing national lock-
down in that period meant that spread dynamics were more uniform
across areas. Additional results are in Appendix including loss and
reliability curves stratified by week during the 3-week prediction period
and individual LTLA losses.

4.3. Regional estimates
While our model operates at the level of local authorities, we can estimate
Ry’s at coarser spatial scales by aggregating inferences across multiple
local areas. Figure [f] shows the inferences produced by the full EpiMap
model with spatial length scale of 20km for London, England, Scotland
and Wales, using data available on 10th April 2021. Corresponding plots
for other English NHS regions can be found in Appendix

Figure [4] shows sensible credible intervals both during the modelled
15-week time period and subsequent 3-week forecasts. In this example,
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we see that our model projects an increasingly uncertain size of epidemic
in Scotland in the near future, with a non-negligible probability of R
being above 1 in Scotland and London on 10th April 2021, whereas other
regions are projected to have stable or shrinking epidemics.

5. Discussion

We have proposed a hierarchical Bayesian approach to model epidemics
at fine spatial scales, which incorporates movement of populations across
local areas as well as spatiotemporal sharing of statistical strength. Em-
pirical results suggest that our model, along with others, can be a useful
tool for policy makers to locate future epidemic hotspots early, in order to
direct resources such as surge testing as well as targeted local transmission
reduction measures.

As with other methods that infer the extent of epidemics through
identified cases alone, the main limitations of this work are due to the
provenance of the Pillars 142 case data. Firstly, there can be substantial
selection bias in the population who get tested, leading to discrepancies
between reported cases and the true size of the epidemic. In addition, the
amount of testing may change over time, e.g. due to localized testing or
limited supplies of testing kits, potentially leading to spurious temporal
patterns (Omori et al., 2020). Finally, case data are only reported for the
combined Pillars 1 and 2 of the UK’s testing regime. These correspond to
different sectors of society at different points of an infection, with different
delay distributions between infection and getting tested. Moreover, the
proportion of tests under each pillar has been changing systematically
since Pillar 2 testing began.

Our model is the result of a number of modelling choices, and can be
improved in a number of ways. Firstly, our aim is to track local reproduc-
tion numbers and provide nowcasting of epidemic development in local
areas, rather than understanding how non-pharmaceutical interventions
(NPIs) affect transmission rates. This lead to our choice of a nonpara-
metric Gaussian process prior for the reproduction numbers, rather than
a generalised linear model relating transmission rates to NPIs. It is pos-
sible to extend our model to model effect of NPIs as in [Flaxman et al.
(2020)). It also lead to our choice not to explicitly model the suscepti-
ble population, since it impacts the model just via lowered transmission
rates.

Secondly, our model uses only Pillars 142 case data, which as noted
above have biases that are not well understood and affects our confidence
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in the inferred local transmission rates and forecasts. Further, in our
model we assumed that positive test cases correspond 1-1 to infections,
which in fact does not hold due to asymptomatic infections. We can
correct for these biases by incorporating less biased data like hospitali-
sation and death counts, as well as less granular but better understood
estimates of prevalence data obtained from randomised surveys such as
REACT (Riley et al., 2020)) and the ONS infection survey (Pouwels et al.,
2020)).

Finally, with the increasing importance of the roles of vaccines and
variants, it is interesting to consider how these can be incorporated into
our model. This will require a number of extensions, including separating
the population into age bands and modelling the susceptible population.
These extensions will incur significantly higher computational costs, and
additional work will have to be performed on the side of software and
implementational efficiency.

Our hierarchical Bayesian model is sensitive to a number of hyperpa-
rameters, particularly those specifying the generation interval and incu-
bation period distributions, and the spatial and temporal length scales of
the latent Gaussian process. These are hard to specify in a fully Bayesian
manner. For example, the posterior strongly prefers spatial length scales
that are too long due to model misspecification. Until there are good
fully Bayesian approaches to dealing with such situations, we have kept
to a more pragmatic approach of using cut models and cross validation.

Our hierarchical model introduces stochasticity at all three layers of
the model to capture different aspects of the unfolding epidemic. As a
reviewer noted, there can be complex interplays between these layers, for
example resulting in non-identifiable parameters. The various compo-
nents of the model have been chosen to avoid the worse of these, but we
have not performed a systematic study of the impacts of these choices.
This will be an illuminating piece of future research.
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'https://www.gov.uk/government/publications/coronavirus-covid-1
9-scaling-up-testing-programmes

’https://coronavirus.data.gov.uk

3https://publichealthscotland.scot/our-areas-of-work/sharing-ou
r-data-and-intelligence/coronavirus-covid-19-data-and-guidance/

‘https://phw.nhs.wales/topics/latest-information-on-novel-coron
avirus-covid-19/

Shttps://github.com/rs-delve/covid19 _datasets

Shttps://census.ukdataservice.ac.uk/use-data/guides/flow-data.a
SpX
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A. Additional Model Variations

In addition to the final model described in the main paper, we have also
considered a number of model variations which did not result in improved
performance so did not include them.

A.1. Global effects term in GP prior
We have also explored adding an additional global effects term to the
spatial part of the kernel in @:

Kis]pace _ (O_spatial)2 eXp(—Hyi —y; ||/pspatial) + (Ulocal)25ij + (O_global)Q
(11)

This has the effect of adding another GP term f58°°! ~ GP(0, g8lobal g time)
to that is shared across all areas ¢ = 1,...,n. However this has an
effect of over-generalising estimates of R;; from the high incidence areas
(for which the likelihooods constrain inference of R;; sufficiently) to the
low incidence areas (for which they do not).

A.2. Modelling infectiousness and susceptibility separately

We have also explored a somewhat more elaborate metapopulation model.
Note that in — the number of transmissions occurring in an area %
depends only on R;; and not on R;; of the areas j that are “sending”
infections to area i. We can extend this to a model where the predicted
mean count depends on properties of both the area that “receives” an
infection and the area that “sends” it:

n
Cit|Cia—1 ~ NegBin(u; 1, ¥) pir =Y Ri FuR},Z;, (12)

where R;t can be interpreted as an infectiousness level of area j, and
R;; a susceptibility of area 7, with the overall transmission rate being a
function of both, as well as of the fluxes. While this extension is more
complex and flexible, it is not clear whether both the infectiousness and
susceptibilities are well-identified from case count data. Empirically, we
have not found it to perform differently from the simpler metapopulation
model . . We used the same GP prior for both the infectivities R;,

and susceptibilities R;; in these experiments. As a result of the lack of
statistical gains and of computational costs, we decided to use the simpler

model —.
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B. Computational efficiency considerations

B.1. Kronecker structured GP kernel

The Kronecker structure of the GP kernel allows for efficient computa-
tions (Saatci, 2012 |[Flaxman et al., 2015). In particular, we never have
to explicitly form or factorise K*P2° @ K'™¢ which would have computa-
tional cost of O((nm)?). Instead, if f.. is represented as a n x m matrix,
a draw from its GP prior can be expressed as:

f:,: — LspaceE(Ltime)T (13)

where L3¢ and L%™¢ are Cholesky factors of KPa® and K'™e respec-
tively and E is an n X m matrix with iid standard normal distributed
entries. The computational cost of this procedure is O((n?+m?2)(n+m)),
which represents significant computational savings over O((nm)?).

B.2. Positivised Gaussian approximation for infection model

We used a negative binomial distribution for the number of new in-
fections on each day given infections in past days (). This is a dis-
crete distribution and makes posterior simulation, particular with the
Stan probabilistic programming system, challenging. Instead we consid-
ered a simple approximation of the negative binomial distribution us-
ing a positivised Gaussian distribution with matched mean and vari-
ance. Specifically, if Y ~ NegBin(u, ¢), we approximate Y ~ [Y|, where
Y ~ N(u,v/(1+ ¢)u). Note that |Y| has mean higher than p and vari-
ance lower than (14 ¢)u, but for u > 5 the difference is practically negli-
gible. However in cases where p < 10 this can lead to under-estimation of
R, but we believe this is not a serious concern since the epidemic would
then be of very small size anyway.

We chose this approximation as the computation for the infection
model can be “reparameterised” (Kingma and Welling, 2014) using the so-
called “non-centred” parameterisation and lead to a better mixing MCMC
sampler. Specifically, and assuming no metapopulation model for sim-
plicity, we can write the sampling statements for the positivised Gaussian
approximation of as:

Xt = ‘Ri,tZi,t + i\ (L+ ) RitZiy)| s nie ~ N(0,1) iid (14)

Note that the modelled epidemic sizes Xi,: can be written as a differen-
tiable and efficiently computed function of a sequence of iid standard nor-
mal random variables n; . (and the reproduction numbers). The gradients
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can be automatically computed by Stan, and the No-U-Turns Sampler
mixes more effectively since while X'Z-’; are highly correlated (which can
lead to slow mixing if not reparameterised), the reparameterised random
variables 7; . are independent a priori (hence faster mixing).

B.3. Regional inference
In order to track the daily evolution of the epidemic in real time it is
preferrable for the posterior simulations to run overnight. However, the
model described in [3] is quite complex, and full posterior simulation for
the whole of Great Britian using Markov chain Monte Carlo (MCMC) has
significant computational costs. In this section we describe a two stage
procedure to reduce the computational costs to a manageable level.
During the first stage the epidemic time courses of individual local
areas are approximately inferred first by ignoring cross-area dependencies
in both the metapopulation infection model and the GP prior. This first
stage can be easily parallelised across the 348 areas and completed quickly.
In the second stage, we split Great Britain into 9 regions (7 NHS
regions in England, plus Wales and Scotland), and modelled each region
independently using the model described in Section |3} In order to account
for transmissions to and from other regions, we fix the latent epidemic
process for areas in other regions to the posterior median inferred during
the first stage. To reduce the approximation error due to only modelling
each region rather than the whole of Great Britian, we include in each
region model a number of areas outside the region, such that for all ar-
eas within that region at least 80% of the off-diagonl flux probabilities
(corresponding rows in F™4 and F') are included in the model.
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C. Additional Figures

C.1. Simulation data
Figures [f] and [6] show case count and R; predictions for all models and
variants of EpiMap.

C.2. Predicting future case counts

Figures[7]and [§append the results in Figures[2]and [B|respectively, showing
losses and uncertainty calibration stratified by week during the 3-week
prediction period. Figure @] shows the log(RMSE + 1) for individual
LTLAs which are stratified by week and compared between models.

C.3. Regional estimates
Figure shows the regional estimates for cases and R; on remaining
NHS regions in England, in the same setting as Figure
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Positive test cases
-]

Fig. 5. Estimated median, 50% (inner) and 95% (outer) credible intervals of
the posterior predictive distributions for daily case counts plotted against the
observed case counts used to infer R;. Values to the left of the vertical line are
inferred from data, and those to the right are future predictions. For EpiMap,
we include the weekly variation in expected cases in the model, but plot the
distribution without this variation for clarity. The EpiMap methods report the full
distribution of expected cases. EpiNow2 returns the distribution of the mean
number of cases. EpiEstim does not provide estimated case distributions, so
future predictions are stochastic rollouts of the epidemic based on the last in-
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Fig. 6. Estimated median, 50% (inner) and 95% (outer) credible intervals of R,
for the methods plotted against the R; used to create the simulated epidemic.
EpiEstim does not provide future estimates of R;, and so the final R; posterior
is used as a prediction.
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Fig. 7. A comparison of predictive performance similar to Figure [2| but stratified
by week over the 3-week prediction period. As expected, the predictions made
for later weeks, such as W3, are worse than those made for earlier weeks,
such as W1, across models. The relative ordering of EpiMap variants typically
remains unchanged for different weeks.
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Fig. 8. An evaluation of the uncertainty estimates produced by methods sim-
ilar to Figure |2 but stratified by week over the 3-week prediction period. As
expected, the quality of uncertainty estimates degrades in the later weeks com-
pared to earlier weeks, as indicated by reliability curves that are further from
the ideal diagonal. Once again, the relative ordering of EpiMap variants typi-
cally remains unchanged for different weeks, however differences in uncertainty
calibration between models tend to exacerbate.
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log(RMSE + 1) of individual LTLAs. Start date of 3-week prediction period: 2020-10-12
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Fig. 9. We plot the log(RMSE + 1) for individual LTLAs (each dot is an LTLA)
stratified by week. We observe variation in predictive performance for different
LTLAs for all models, with large correlation in LTLA losses between methods.
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Fig. 10. Additional regional estimates of cases and R, for NHS regions in Eng-
land, using case data available by the 10th April 2021.
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