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Abstract. The effect of school closure on the spread of COVID-19 has been discussed
intensively in the literature. To capture the interdependencies between children and adults
we consider daily age-stratified incidence data and contact patterns between age groups
which change over time based on social distancing policy indicators. We fit a multivariate
time-series endemic-epidemic model to such data from the Canton of Zurich, Switzerland
and use the model to predict the age-specific incidence in a counterfactual approach (with
and without school closures). The results indicate a 21% median increase of incidence
in the youngest age group (0-14), whereas the relative increase in the other age groups
drops to values between 10% (15-24) and 1% (80+). We argue that our approach is
more informative to policy makers than summarising the effect of school closures with
time-dependent effective reproductive numbers, which are difficult to estimate due to the
sparsity of incidence counts within the relevant age groups.

Keywords: COVID-19; endemic-epidemic modelling; surveillance data; social con-
tacts; school closure

1. Introduction

Public health legislation authorises officials to order disease control measures such as clos-
ing schools. The usefulness of school closures has been seen in certain infectious disease
outbreaks but not in others. School closure for infectious disease control may have ad-
ditional health and wider societal effects as school is not just education but also has an
important social function. Determining the usefulness of school closures is therefore of
great value to policy makers. We know school closures have an effect on social mixing
(Luca et al., 2018), though it would seem this effect might not be large for the early coro-
navirus outbreaks (European Centre for Disease Prevention and Control, 2020). For this
reason, we are interested in examining the counterfactual scenario where school closure to
combat coronavirus disease (COVID-19) was not introduced among school-aged children.

To examine true social distancing interventions implemented, we fit a multivariate
endemic-epidemic model to the observed case data from the Canton of Zurich, Switzer-
land incorporating social contact patterns. Our model includes an age structure, which
has been highlighted as important in models focusing on school closures (Jackson et al.,
2014). We then predict from the fitted model given data until 17th March 2020 (the
first day following declaration of state of emergency) with assumed time-varying contact
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weights implemented (Figure 1) and (the counterfactual scenario) with time-varying con-
tact weights ignoring changes to contacts due to school closures. This affects the youngest
age group (0-14 year olds) the age group that covers both compulsory and non-compulsory
education. We then investigated the difference in the number of expected cases to evaluate
the usefulness of school closures.
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Figure 1. Snapshots of the time-varying contact matrix to reflect social distancing policies (this
is the basis of our fitted model and prediction scenario A). Shown is the average number of
contacts per day for individuals in the different age groups

2. Methods

Finkenstädt and Grenfell (2000) showcased how to formulate a time series susceptible-
infected-recovered model through a case study of endemic measles infections and com-
pared their methodology with established results from compartmental modelling, linking
mathematical and statistical modelling. They highlighted a need to incorporate epidemic
dynamics in statistical models; a need which was addressed by the endemic-epidemic (EE)
modelling framework (introduced in Held et al., 2005).

2.1. Endemic-epidemic modelling

The EE framework is a time-series analysis-based method for infectious disease surveil-
lance data. It can be derived from a mechanistic model of disease transmission (Höhle,
2016; Bauer and Wakefield, 2018; Wakefield et al., 2020), linking it with other modelling
approaches. The multivariate formulation used in this work is the age-stratified EE model
(Meyer and Held, 2017) where COVID-19 cases Yat for age group a on day t are given by
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Yat | Ya,t−1, . . . , Ya,t−l ∼ NegBin(λat, ψa)

λat = νatea + ϕat
∑
a′

ca,a′,t

lmax∑
l=1

ulYa′,t−l

(1)

where λat is the mean and ψa > 0 the overdispersion parameter of a negative binomial
distribution, where the limiting case ψa → 0 represents the standard Poisson assumption.
Overdispersion is sometimes termed k in the infectious disease literature when using nega-
tive binomial distributions to examine superspreading (e.g. Endo et al., 2019; Lloyd-Smith
et al., 2020).

The mean λat is decomposed additively into an endemic (ν) and epidemic (ϕ) com-
ponent. Age-specific proportions of population ea enter as known offsets in the endemic
component, whereas the epidemic component depends on contact weights ca,a′,t represent-
ing transmission between age groups a and a′ on day t, and ul is the discrete-time serial
interval distribution (Bracher and Held, 2020). We use a shifted (normalised) Poisson dis-
tribution with weights ul ∝ κl−1/(l− 1)! exp(−κ), κ > 0 with a maximum lag of lmax = 7,
as this has shown to be useful in other analyses of daily COVID-19 data (Grimée et al.,
2021; Ssentongo et al., 2021). The transmission weights ca,a′,t (entries of the contact ma-
trix) are known but the serial interval lag distribution ul (represented by the parameter
κ) is not.

Various models were considered for the endemic and epidemic components of the model
(see the supporting information for an overview of all models considered) and the best
fitting model was determined based on the Bayesian information criterion (BIC). We
always considered information on public holidays (as contacts may differ on those days)
and daily testing rates to account for possible temporal changes in underascertainment.
In addition to this, we also included daily temperature, linear time trends, and sine-
cosine waves (a smooth non-linear trend not picked up by other parts of the model) as
potential covariates in both components. The final model has 40 parameters and log-
linear predictors given by:

log(νat) =βνa1{age group a}(a) + βνday of the week1{weekday t}(t) + βνpublic holiday1{t is a public holiday}(t)

+ βνtesting rateTt + βνsin
sin(2πt/365) + βνcos

cos(2πt/365)

and

log(ϕat) =βϕa1{age group a}(a) + βϕday of the week1{weekday t}(t) + βϕpublic holiday1{t is a public holiday}(t)

+ βϕtesting rateTt + βϕtimet+ βϕsin
sin(2πt/365) + βϕcos

cos(2πt/365)

where Tt is the testing rate at time t. We calculate the amplitude and phase shift of each
sinusoidal wave based on the sin/cos coefficients (Held and Paul, 2012), see the supporting
information for details.

2.2. Time-varying contact matrices
Total contact matrices are made up of setting-specific contacts. We chose to use the
Mistry et al. (2020) synthethic contact matrix compartments (Figure 2) in our work as
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Figure 2. Synthetic contact matrix compartments which make up the first matrix in Figure 1 (the
matrix before policy changes are applied)

they were the only ones we found provided with uncertainty estimates. Additionally, they
were created with the European setting in mind, providing additional realism. We create
Zurich-specific policy indicators following the methodology from Hale et al. (2020). As we
are interested in reductions of contacts, we incorporate the policy indicators such that they
take values between 0 and 1, where a higher value is a situation with less social distancing
policy in place (Figure 3). This ensures that no metric used to incorporate policy changes
increases contacts, thereby creating an artificially inflated baseline. See the supporting
information for indicator construction details. The results of applying these indicators
to the components of the contact matrix and combining using the Mistry et al. (2020)
weights are showcased in Figure 1. We additionally reduced contacts in school settings on
school holidays in both versions of the time-varying contact matrices as school holidays
are known to cause a drop in contacts (Eames et al., 2012).

2.3. Counterfactual analysis

To examine the effect of school closures, we used a version of the time-varying contact
matrix ca,a′,t which does not have reductions applied to contacts in the school setting
among the youngest age group, only regular school holidays. We predicted the course of
the epidemic under two scenarios (as was; scenario A and adjusted to not have school
closure; scenario B). The predictions are obtained using the methodology described in
Held et al. (2017, Appendix A). To analyse the counterfactual scenario, we adjust the
weights (time-varying contact matrix) in the EE model and calculate the predictive mean
vector for the adjusted path forecast. That is, after fitting our EE model (described above)
we predicted the epidemic from 17th March 2020 with the two options for time-varying
matrices. To compare the two scenarios, we considered the absolute and relative increases
in predicted cases between scenarios B and A. We expect both to be positive as scenario
B is a deviation from the true non-pharmaceutical measures which were implemented and
has a lower level of disease control in place.
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Figure 3. Policy indicators used to adjust contacts through the effect on the four components:
household (affected by requirements to stay at home), school (affected by school closure and
additional school holidays (not shown here)), work (affected by remove work), and other (af-
fected by restrictions on gatherings). A slight jitter has been applied to ease comparison of step
functions

2.4. Incorporating uncertainty
The importance of acknowledging uncertainty in COVID-19 modelling was highlighted by
Davey Smith et al. (2020). We take into account both external (contact matrix weights)
and internal (model coefficient estimates) parameter uncertainty in the counterfactual
analysis. We used the weights reported by Mistry et al. (2020) to estimate a set of
plausible values for the different contact matrix compartments to obtain total contacts
across settings. We sampled the weights from normal distributions with the estimated
means and standard errors of the reported weights used to create the time-varying contact
matrix, allowing us to incorporate the corresponding external uncertainty. In particular,
we simulated 1000 weights and created 1000 versions of the time-varying contact matrices.

Additionally, for each of n = 1000 versions of the EE model with those time-varying
contact matrices, we sampled all entries in Table 1 using a 40-dimensional multivariate
normal distribution based on the estimated parameter vector and the associated variance-
covariance matrix. While Figure 4 and Table 1 show the results for using the Mistry
et al. (2020) weights and the parameter estimates as given, our main results in Table 2
incorporate both external (contact matrices) and internal (model) uncertainties.

3. Results

The selected model has the lag distribution and fit shown in Figure 4. We see that the
model captures the patterns observed in the data well, apart from the youngest age group,
though this is likely an artefact of the low number of cases overall in that group. The
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Figure 4. Lag distribution ul (left) and model fit to observed case counts (right)

shape of the serial interval distribution (Figure 4, left) is right-skewed with a sharp peak
early on. The peak found in this work is earlier than expected based on the literature and
so we have conducted a sensitivity analysis with other estimates from EE models (Grimée
et al., 2021; Ssentongo et al., 2021), see supporting information for details. The model
coefficients are listed in Table 1 and the model fit is shown in Figure 4 (right). In Table 1,
ν and ϕ denote the endemic and epidemic components, respectively. The coefficients
(Table 1) show the expected pattern with a strong day of the week effect. We also see a
seasonal pattern in particular in the epidemic component (amplitude and phase) which is
counterbalanced by a positive time trend. There is considerable variation in the endemic
and epidemic intercepts between age groups. Testing rate has a positive and significant
effect in the epidemic component whereas the effect on the endemic component is less
pronounced.

The result of the counterfactual analysis is given in Table 2. The distributions of our
predicted counts are very skewed, which is why we provide median and percentiles as
point and interval estimates rather than means and standard deviations. We see that the
number of cases never increases more than 21 per cent and, as would be expected, that
most of the increase is found among the youngest age group. The largest increase in case
counts is found in the age group 25-44, who were not considered a vulnerable group at the
time. Based on the median we see 261 additional cases (a 6% increase) with 5 additional
cases in the oldest age group (which might be considered of most concern, those aged 80
and over). However the 90 per cent quantiles are considerably larger (1112 and 22 cases,
respectively). Similar patterns of burden (which age groups have the highest case counts
under the two scenarios) are seen in both scenarios. The large uncertainty seen is not so
surprising as the data from Zurich is rather sparse. If we had instead applied the method
to a larger population, such as the entire federation of Switzerland, precision would be
increased.

We also compared the temporal dynamic in scenario B vs. A. An increase in cases
is observed in age group 0-14 already in April but only later in the other age groups.
The next age group to experience an increase in cases is 25-44, the parents of age group
0-14. Thus, the dynamic follows the contact patterns and underlines the importance of
including both age-stratified data and contact matrices in models. See the supporting
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Table 1. Coefficients of model visualised in Figure 4

Coefficient Estimate Standard error Coefficient Estimate Standard error
βνday of the week Tuesday 0.421 0.099 βϕday of the week Saturday -0.484 0.073
βνday of the week Wednesday -0.065 0.094 βϕday of the week Sunday -0.330 0.093
βνday of the week Thursday 0.122 0.086 βϕpublic holiday -1.194 0.261
βνday of the week Friday 0.033 0.087 βϕtest rate 0.013 0.002
βνday of the week Saturday -0.899 0.124 βϕtime 0.222 0.028
βνday of the week Sunday -0.719 0.150 βϕamplitude 19.721 0.900
βνpublic holiday -0.031 0.432 βϕphase 1.799 0.088
βνtest rate -0.003 0.002 βϕ0−14 -4.307 0.946
βνamplitude 2.186 0.507 βϕ15−24 -2.268 0.872
βνphase -0.275 0.123 βϕ25−44 -0.973 0.858
βν0−14 -5.432 0.523 βϕ45−65 -0.707 0.853
βν15−24 -4.562 0.491 βϕ66−79 -1.725 0.857
βν25−44 -3.654 0.489 βϕ80+ -1.904 0.847
βν45−65 -4.754 0.495 ψ0−14 0.543 0.364
βν66−79 -4.649 0.504 ψ15−24 0.044 0.050
βν80+ -4.627 0.559 ψ25−44 0.063 0.024
βϕday of the week Tuesday 0.226 0.057 ψ45−65 0.004 0.013
βϕday of the week Wednesday -0.054 0.061 ψ66−79 0.022 0.030
βϕday of the week Thursday -0.128 0.063 ψ80+ 0.288 0.102
βϕday of the week Friday 0.208 0.059 log κ 0.083

Table 2. Distribution of predicted cases and comparative measures. P10 and P90 denote the
10 and 90 percentiles. Values are calculated based on the corresponding samples, including
the differences B-A and the ratios B/A

Scenario A Scenario B B - A B / A
Age P10 Median P90 P10 Median P90 P10 Median P90 P10 Median P90

0-14 57 78 134 66 95 189 7.3 16.2 55.8 1.12 1.21 1.44
15-24 340 410 628 355 449 800 11.8 40.1 176.3 1.03 1.10 1.28
25-44 1187 1364 1936 1230 1482 2427 40.6 119.3 508.3 1.03 1.09 1.27
45-65 1409 1523 1862 1432 1585 2121 17.8 62.0 269.8 1.01 1.04 1.15
66-79 477 521 602 487 538 670 6.1 17.0 68.6 1.01 1.03 1.12
80+ 312 353 405 317 360 420 1.6 4.8 21.7 1.00 1.01 1.06
Total (summed) 3844 4236 5530 3940 4504 6608 86.5 260.7 1112.1 1.02 1.06 1.21



8 Bekker-Nielsen Dunbar and Held on behalf of SUSPend

information for an illustration and description of the patterns.

4. Conclusion

Understanding the effect of disease control interventions is useful for preparedness for
future epidemics. We found it possible to utilise time-varying contact information in the
EE modelling framework and fit an appropriate model to COVID-19 case surveillance
data. We adjusted the contact matrix based on a timeline of COVID-19 events focused
on Zurich. Our focus was school-based social distancing measures, as these might be
considered a priority for policy makers when choosing exit strategies or phasing out of
measures. In our counterfactual analysis, we did not assume interventions were applied
equally to the entire population but we acknowledge that changes may affect other parts
of the population through contact patterns between age groups and so the effects of school
closure are not to be considered in isolation.

In this work we have assumed that the model parameters do not change when consid-
ering scenario B. However, some natural experiments are occurring where some schools
are closed and other schools are kept open during the same time period in the same school
district, see e.g. Berger et al. (2020) who examined whether increased testing can be used
in conjunction with keeping schools open. This may allow us to re-evaluate that assump-
tion in the future. Vlachos et al. (2021) have estimated the effect of school closures on the
spread of SARS-CoV-2 virus (the agent causing COVID-19) among parents and teachers
in Sweden, where lower-secondary schools (pupils aged 14-16) remained open during the
first wave. Their results indicate that keeping lower-secondary schools open had minor
consequences for the overall transmission, in line with our results. If information on mask
usage is available it could be included in our model as a different type of reduction to
contacts as a proxy for its effect on transmission events.

The estimation of age- and time-dependent multiplication factors to address additional
causes of underreporting (Noufaily, 2020), such as the presence of asymptomatic COVID-
19 infections are being considered in our ongoing work. We are examining the option of
using reporting rates as the basis of such multiplication factors. The rates are based on
adjusting case fatality rates for delays between hospitalisation and deaths in the vein of
Russell et al. (2020) and Nishiura et al. (2009). Such an approach allows us to address
underascertainment (capture asymptomatic cases which are not likely to be reported as
well as those symptomatic cases that are reported). We expect underreporting to likely
be more pronounced among children because they may have more asymptomatic cases
(causing them to have fewer cases in the data). Our model will need suitable amendments
once such multiplication factors are available.

Flaxman et al. (2020) studied the effect of non-pharmaceutical interventions on COVID-
19 in Europe based on overall time-varying reproduction numbers (Rt). School closures
are an intervention directly affecting only children and adolescents. Mortality in these age
groups is notably very low, so our study aimed to quantify the indirect effects of school
closures in other age groups based on age-stratified incidence data and appropriate con-
tact information. We argue that risk communication strategies regarding disease control
initiatives for COVID-19 should be based on age-specific (rather than overall) effective
reproduction numbers, but those are difficult to estimate if data are sparse. This seems of
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particular importance if the interventions being considered are specific to certain groups
of the population rather than overarching.

When a single summary indicator is reported to the public, uncertainty of its estima-
tion should be included. For this reason we believe our work to be particularly useful as
we capture a lot of the statistical uncertainty inherent to our work. While the effective re-
production number is an attractive summary measure due to the threshold property (> 1
indicates continued epidemic growth), some of the nuances behind its calculation will be
lost to summarisation. These include the fact that Rt can be approximated in different
ways depending on the data at hand and model considered. This echoes Becker (2015)
and recent comments made by the European Union’s Joint Research Centre (Annunziato
and Asikainen, 2020) and Gostic et al. (2020), as well as the aforementioned comment
on uncertainty by Davey Smith et al. (2020). Additional context should be provided as
setting-specific disease control challenges in which the estimate was obtained need to be
communicated as well as Rt, e.g. healthcare surge capacity, cases in nursing homes com-
pared to cases in schools, and the impact of superspreading events although community
transmission is low. We suggest other indicators, such as predicted case counts (as found
here) are used alongside Rt to provide broader context as it is not fully informative in
isolation. For additional discussion, see the supporting information.

Code and data

Code and publicly available data used in this manuscript can be accessed via https:
//gitlab.switch.ch/suspend/COVID-19-school-ZH. Project updates and associated
analyses are available via https://suspend.pages.switch.ch/project. For more in-
formation and extended descriptions of our work, see the supporting information.
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