Effective parameter inference for a mathematical model of the left ventricle

RSS Glasgow

Alan Lazarus

Joint with: Dirk Husmeier, Hao Gao and Xiaoyu Luo

February 9, 2021

University of Glasgow

Plan

Background

The mathematical model

Statistical emulation

Emulation for multiple geometries

Parameter inference for different geometries

Using ex-vivo information

Ongoing work

Diastole

Systole

Our interest: left ventricle in diastole

- Left ventricle function is guided by the myocardium.
- Relaxation of the muscle—passive behaviour— allows filling in diastole.
- With diastolic heart failure this filling reduces.
- Inferring the stiffness properties of the myocardium could help identify disease.

- Left ventricle function is guided by the myocardium.
- Relaxation of the muscle—passive behaviour— allows filling in diastole.
- With diastolic heart failure this filling reduces.
- Inferring the stiffness properties of the myocardium could help identify disease.

- Left ventricle function is guided by the myocardium.
- Relaxation of the muscle—passive behaviour— allows filling in diastole.
- With diastolic heart failure this filling reduces.
- Inferring the stiffness properties of the myocardium could help identify disease.

- Left ventricle function is guided by the myocardium.
- Relaxation of the muscle—passive behaviour— allows filling in diastole.
- With diastolic heart failure this filling reduces.
- Inferring the stiffness properties of the myocardium could help identify disease.

- Left ventricle function is guided by the myocardium.
- Relaxation of the muscle—passive behaviour— allows filling in diastole.
- With diastolic heart failure this filling reduces.
- Inferring the stiffness properties of the myocardium could help identify disease.

Describing material behaviour

$$F = kx$$

- Hooke's law is the stress-strain relation for linear materials.
- Describes the behaviour of the spring under external force.
- k is the material property—stiffness of the spring

Parameterized description of left ventricle passive behaviour

- Stress strain relation for myocardium provided by the Holzapfel Ogden law.
- A parameterized description of the myocardium.
- Parameters give us the stiffness properties!

$$\begin{split} \boldsymbol{\Psi} &= \frac{a}{2b} \left[\exp \left\{ b \left(\textit{I}_{1} - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \left\{ f, s \right\}} \frac{a_{i}}{2b_{i}} \left[\exp \left\{ b_{i} \left(\textit{I}_{4i} - 1 \right)^{2} \right\} - 1 \right] \\ &+ \frac{a_{fs}}{2b_{fs}} \left\{ \exp \left(b_{fs} \textit{I}_{8fs}^{2} \right) - 1 \right\} \end{split}$$

Parameterized description of left ventricle passive behaviour

- Stress strain relation for myocardium provided by the Holzapfel Ogden law.
- A parameterized description of the myocardium.
- Parameters give us the stiffness properties!

$$\begin{split} & \Psi = \frac{\textit{a}}{2\textit{b}} \left[\exp \left\{ \textit{b} \left(\textit{I}_1 - 3 \right) \right\} - 1 \right] \\ & + \sum_{i \in \left\{ f, s \right\}} \frac{\textit{a}_i}{2\textit{b}_i} \left[\exp \left\{ \textit{b}_i \left(\textit{I}_{4i} - 1 \right)^2 \right\} - 1 \right] \\ & + \frac{\textit{a}_{fs}}{2\textit{b}_{fs}} \left\{ \exp \left(\textit{b}_{fs} \textit{I}_{8fs}^2 \right) - 1 \right\} \end{split}$$

Parameterized description of left ventricle passive behaviour

- Stress strain relation for myocardium provided by the Holzapfel Ogden law.
- A parameterized description of the myocardium.
- Parameters give us the stiffness properties!

$$\begin{split} \boldsymbol{\Psi} &= \frac{\boldsymbol{a}}{2\boldsymbol{b}} \left[\exp \left\{ \boldsymbol{b} \left(I_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \{\mathrm{f,s}\}} \frac{\boldsymbol{a}_i}{2\boldsymbol{b}_i} \left[\exp \left\{ \boldsymbol{b}_i \left(I_{4i} - 1 \right)^2 \right\} - 1 \right] \\ &+ \frac{\boldsymbol{a}_{\mathrm{fs}}}{2\boldsymbol{b}_{\mathrm{fs}}} \left\{ \exp \left(\boldsymbol{b}_{\mathrm{fs}} I_{\mathrm{8fs}}^2 \right) - 1 \right\} \end{split}$$

Forward and inverse problems

Forward and inverse problems

Plan

Background

The mathematical model

Statistical emulation

Emulation for multiple geometries

Parameter inference for different geometries

Using ex-vivo information

Ongoing work

Material properties of myocardium

$$\begin{split} \Psi &= \frac{a}{2b} \left[\exp \left\{ b \left(l_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \left\{ \mathbf{f}, \mathbf{s} \right\}} \frac{a_i}{2b_i} \left[\exp \left\{ b_i \left(l_{4i} - 1 \right)^2 \right\} - 1 \right] \\ &+ \frac{a_{\mathrm{fs}}}{2b_{\mathrm{fs}}} \left\{ \exp \left(b_{\mathrm{fs}} l_{\mathrm{8fs}}^2 \right) - 1 \right\} \end{split}$$

Material properties of myocardium

$$\begin{split} \Psi &= \frac{a}{2b} \left[\exp \left\{ b \left(l_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \left\{ \mathbf{f}, \mathbf{s} \right\}} \frac{a_i}{2b_i} \left[\exp \left\{ b_i \left(l_{4i} - 1 \right)^2 \right\} - 1 \right] \\ &+ \frac{a_{\mathrm{fs}}}{2b_{\mathrm{fs}}} \left\{ \exp \left(b_{\mathrm{fs}} I_{\mathrm{8fs}}^2 \right) - 1 \right\} \end{split}$$

Currently, only circumferential strains can be accurately measured.

Currently, only circumferential strains can be accurately measured.

End diastolic volume of the cavity.

How are strains and volume measured?

Can we now solve the inverse problem?

Can we now solve the inverse problem?

Expensive!

Can we now solve the inverse problem?

Very expensive!

We can solve if the patient can wait 2 days and we ignore our uncertainty...

Plan

Background

The mathematical model

Statistical emulation

Emulation for multiple geometries

Parameter inference for different geometries

Using ex-vivo information

Ongoing work

Emulation

Move the expensive simulations to the pre-clinic phase.

Two questions: what is our input space and how do we obtain our emulator?

Emulation

Move the expensive simulations to the pre-clinic phase.

Two questions: what is our input space and how do we obtain our emulator?

Where do we run our simulator?

Where do we run our simulator?

$$\begin{split} \Psi &= \frac{a}{2b} \left[\exp \left\{ b \left(l_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \left\{ f, s \right\}} \frac{a_i}{2b_i} \left[\exp \left\{ b_i \left(l_{4i} - 1 \right)^2 \right\} - 1 \right] \quad \in \mathbb{R}^8 \\ &+ \frac{a_{fs}}{2b_{fs}} \left\{ \exp \left(b_{fs} \, l_{8fs}^2 \right) - 1 \right\} \end{split}$$

Where do we run our simulator?

Geometry at early diastole

End diastolic pressure

End of diastole

Material properties of myocardium

$$\begin{split} \Psi &= \frac{a}{2b} \left[\exp \left\{ b \left(l_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \left\{ f, s \right\}} \frac{a_i}{2b_i} \left[\exp \left\{ b_i \left(l_{4i} - 1 \right)^2 \right\} - 1 \right] \quad \in \mathbb{R}^8 \\ &+ \frac{a_{fs}}{2b_{fs}} \left\{ \exp \left(b_{fs} l_{8fs}^2 \right) - 1 \right\} \end{split}$$

Where do we run our simulator?

Geometry at early diastole

End diastolic pressure

End of diastole

Material properties of myocardium

$$\begin{aligned} \Psi &= \frac{a}{2b} \left[\exp \left\{ b \left(l_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \{f, s\}} \frac{a_i}{2b_i} \left[\exp \left\{ b_i \left(l_{4i} - 1 \right)^2 \right\} - 1 \right] \quad \in \mathbb{R}^8 \\ &+ \frac{a_{fs}}{2b_c} \left\{ \exp \left(b_{fs} l_{8fs}^2 \right) - 1 \right\} \end{aligned}$$

Need to fill a 17k+8 dimensional space...

Where do we run our simulator?

Geometry at early diastole

End diastolic pressure

End of diastole

Material properties of myocardium

$$\begin{split} \Psi &= \frac{a}{2b} \left[\exp \left\{ b \left(l_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \left\{ f, s \right\}} \frac{a_i}{2b_i} \left[\exp \left\{ b_i \left(l_{4i} - 1 \right)^2 \right\} - 1 \right] \quad \in \mathbb{R}^8 \\ &+ \frac{a_{fs}}{2b_c} \left\{ \exp \left(b_{fs} l_{8fs}^2 \right) - 1 \right\} \end{split}$$

Plan

Background

The mathematical model

Statistical emulation

Emulation for multiple geometries

Parameter inference for different geometries

Using ex-vivo information

Ongoing work

- Dimensionality reduction allows us to find a low dimensional representation of the LV geometry from n training left ventricles.
- Design in the low dimensional space and run the simulator on the reconstructed geometries
- These can be fully represented by the *m* dimensional projection.
- For our data (small n) PCA outperforms more sophisticated methods.

- Dimensionality reduction allows us to find a low dimensional representation of the LV geometry from n training left ventricles.
- Design in the low dimensional space and run the simulator on the reconstructed geometries
- These can be fully represented by the *m* dimensional projection.
- For our data (small n) PCA outperforms more sophisticated methods.

- Dimensionality reduction allows us to find a low dimensional representation of the LV geometry from n training left ventricles.
- Design in the low dimensional space and run the simulator on the reconstructed geometries
- These can be fully represented by the *m* dimensional projection.
- For our data (small n) PCA outperforms more sophisticated methods.

- Dimensionality reduction allows us to find a low dimensional representation of the LV geometry from n training left ventricles.
- Design in the low dimensional space and run the simulator on the reconstructed geometries
- These can be fully represented by the *m* dimensional projection.
- For our data (small n) PCA outperforms more sophisticated methods.

Two questions: what is our input space and how do we obtain our emulator?

The problem with GPs

- Gaussian processes are the standard models used for emulation.
- With large datasets they rely on approximations.
- Computational costs are only as low as the number of inducement points.
- Neural networks are parametric: prediction costs do not grow with training set size.

The problem with GPs

- Gaussian processes are the standard models used for emulation.
- With large datasets they rely on approximations.
- Computational costs are only as low as the number of inducement points.
- Neural networks are parametric: prediction costs do not grow with training set size.

Neural Networks

Standard network architecture.

Neural Networks

Standard network architecture.

Effect of activation function

Effect of activation function

Plan

Background

The mathematical model

Statistical emulation

Emulation for multiple geometries

Parameter inference for different geometries

Using ex-vivo information

Ongoing work

Geometry at early diastole

End diastolic pressure

End of diastole

Material properties of myocardium

$$\begin{split} \Psi &= \frac{a}{2b} \left[\exp \left\{ b \left(l_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \left\{ f, s \right\}} \frac{a_i}{2b_i} \left[\exp \left\{ b_i \left(l_{4i} - 1 \right)^2 \right\} - 1 \right] \quad \in \mathbb{R}^8 \\ &+ \frac{a_{fs}}{2b_{fs}} \left\{ \exp \left(b_{fs} l_{8fs}^2 \right) - 1 \right\} \end{split}$$

Geometry at early diastole

End diastolic pressure

End of diastole

Material properties of myocardium

$$\begin{split} \Psi &= \frac{a}{2b} \left[\exp \left\{ b \left(l_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \left\{ f, s \right\}} \frac{a_i}{2b_i} \left[\exp \left\{ b_i \left(l_{4i} - 1 \right)^2 \right\} - 1 \right] \quad \in \mathbb{R}^8 \\ &+ \frac{a_{fs}}{2b_{fs}} \left\{ \exp \left(b_{fs} l_{8fs}^2 \right) - 1 \right\} \end{split}$$

Geometry at early diastole

End diastolic pressure

End of diastole

Material properties of myocardium

$$\begin{split} \Psi &= \frac{a}{2b} \left[\exp \left\{ b \left(l_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \left\{ f, s \right\}} \frac{a_i}{2b_i} \left[\exp \left\{ b_i \left(l_{4i} - 1 \right)^2 \right\} - 1 \right] \quad \in \mathbb{R}^8 \\ &+ \frac{a_{fs}}{2b_{fs}} \left\{ \exp \left(b_{fs} l_{8fs}^2 \right) - 1 \right\} \end{split}$$

Need to fill an m + 8 dimensional space...

Geometry at early diastole

End diastolic pressure

End of diastole

Material properties of myocardium

$$\begin{split} \Psi &= \frac{a}{2b} \left[\exp \left\{ b \left(l_1 - 3 \right) \right\} - 1 \right] \\ &+ \sum_{i \in \left\{ f, s \right\}} \frac{a_i}{2b_i} \left[\exp \left\{ b_i \left(l_{4i} - 1 \right)^2 \right\} - 1 \right] \quad \in \mathbb{R}^8 \\ &+ \frac{a_{fs}}{2b_c} \left\{ \exp \left(b_{fs} l_{8fs}^2 \right) - 1 \right\} \end{split}$$

Tractable, but can we do better?

A further reduction in complexity

$$\begin{split} \Psi &= \frac{\textit{a}}{2\textit{b}} \{ \exp[\textit{b}(\textit{I}_1 - 3)] - 1 \} + \sum_{\textit{i} \in \{\textit{f}, \textit{s}\}} \frac{\textit{a}_\textit{i}}{2\textit{b}_\textit{i}} \{ \exp[\textit{b}_\textit{i}(\textit{I}_{4\textit{i}} - 1)^2] - 1 \} \\ &+ \frac{\textit{a}_{\mathsf{fs}}}{2\textit{b}_{\mathsf{fs}}} [\exp(\textit{b}_{\mathsf{fs}}\textit{I}_{\mathsf{8fs}}^2) - 1] + \frac{1}{2} \end{split}$$

$$a = \theta_1 a_0,$$
 $b = \theta_1 b_0$
 $a_f = \theta_2 a_{f0},$ $a_s = \theta_2 a_{s0}$
 $b_f = \theta_3 b_{f0},$ $b_s = \theta_3 b_{s0}$
 $a_{fs} = \theta_4 a_{fs0},$ $b_{fs} = \theta_4 b_{fs0}$

Infer $\theta_1, \theta_2, \theta_3$ and θ_4

Emulation problem is now m + 4 dimensional

Sampling with MCMC

- We will use MCMC to quantify our uncertainty about the parameters.
- Two properties of the statistical emulator allow sampling with more sophisticated MCMC procedures:
 - Efficiency: prediction in order of milliseconds instead of 8 minutes.
 - 2. Differentiability of the function
- However, we use an approximation (emulator) of the true function.
- Error is compounded by our approximation of the geometry.
- How does this affect our inference?

Inferring material parameters of a real geometry

Inference time: 15 seconds

Inferring material parameters of a real geometry

Circumferential strains and volume are not sensitive to θ_4

Inference time: 15 seconds

Inferring material parameters of a real geometry

Inference time: 15 seconds

- Myocardium is a complicated material.
- Different components in material take effect at different stretches.
- Parameters of HO law reflect this changing behaviour
- Observed data are only informative about small stretch regime.

- Myocardium is a complicated material.
- Different components in material take effect at different stretches.
- Parameters of HO law reflect this changing behaviour
- Observed data are only informative about small stretch regime.

- Myocardium is a complicated material.
- Different components in material take effect at different stretches
- Parameters of HO law reflect this changing behaviour.
- Observed data are only informative about small stretch regime.

- Myocardium is a complicated material.
- Different components in material take effect at different stretches.
- Parameters of HO law reflect this changing behaviour.
- Observed data are only informative about small stretch regime.

Plan

Background

The mathematical model

Statistical emulation

Emulation for multiple geometries

Parameter inference for different geometries

Using ex-vivo information

Ongoing work

The Klotz curve

- Klotz et al inflated left ventricles (ex vivo) from volume V_0 at pressure 0 to volume V_P and pressure P.
- Measuring also the volume at pressure 30, V_{30} , they found a relationship between normalized volume $\tilde{V} = \frac{V_P V_0}{V_{30} V_0}$ and pressure P:

$$ilde{V} = rac{\log rac{P}{lpha}}{eta}$$

Can we use this relationship to include the behaviour at high stretch?

Our likelihood: this comes from our model of the in vivo left ventricle.

This distribution, $\pi_E(\tilde{V}_{20})$, comes from emulators trained to predict volume at pressure 20 and pressure 30 (with associated uncertainty).

This distribution, $\pi_{KL}(\tilde{V}_{20})$, comes from enforcing the Klotz relationship on the left ventricle.

Match these with **product of experts**: $\mathcal{F} = \int \pi_E(\tilde{V}_{20}) \pi_{\mathsf{KL}}(\tilde{V}_{20}) d\tilde{V}_{20}$.

Problem with the non empirical Klotz prior

Let us try an alternative formulation...

Likelihood function for in vivo data comes from emulated cardiac model.

A prediction of V_{30} comes from a pressure 30 volume emulator.

A prediction of volume at pressure 30 from Klotz function, this time related to the in vivo volume measurement.

Match with product of experts: now we have an empirical Klotz prior (relies on the measured volume)

Assessing performance of the Klotz prior

Ridge in the prior is aligned with the θ_2 axis.

Does Empirical Klotz make a difference?

Yes, if our data are generated in line with the Klotz curve

But we do not know how closely the in vivo heart follows the Klotz curve

How about real data?

Summary so far

- The parameters from the reparameterized HO law are difficult to estimate
- Klotz is probably not the answer to the problem—do we really want to rely so heavily on ex vivo data?
- Instead, we should try new parameterizations
- Or accept lack of identifiability and try to use only those parameters we can learn

Plan

Background

The mathematical model

Statistical emulation

Emulation for multiple geometries

Parameter inference for different geometries

Using ex-vivo information

Ongoing work

Alternative parameterization

$$egin{aligned} \Psi &= rac{a}{2b} \left[\exp \left\{ b \left(I_1 - 3
ight) \right\} - 1
ight] \ &+ \sum_{i \in \left\{ \mathrm{f,s} \right\}} rac{a_i}{2b_i} \left[\exp \left\{ b_i \left(I_{4i} - 1
ight)^2 \right\} - 1
ight] \ &+ rac{a_{\mathrm{fs}}}{2b_{\mathrm{fs}}} \left\{ \exp \left(b_{\mathrm{fs}} I_{\mathrm{8fs}}^2
ight) - 1
ight\} \end{aligned}$$

 $a, b, a_{\rm f}, b_{\rm f}$ inferred, $a_{\rm s}, b_{\rm s}, a_{\rm fs}, b_{\rm fs}$ constant

a and a_f are more identifiable, can we use these for predicting tissue health?

Thank you!

PC performance

