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Left ventricle function
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• Left ventricle function is guided by the myocardium.

• Relaxation of the muscle—passive behaviour— allows filling in diastole.

• With diastolic heart failure this filling reduces.

• Inferring the stiffness properties of the myocardium could help identify

disease.
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Describing material behaviour
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F = kx
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• Hooke’s law is the stress-strain

relation for linear materials.

• Describes the behaviour of the spring

under external force.

• k is the material property—stiffness of

the spring



Parameterized description of left ventricle passive behaviour

6

• Stress strain relation for myocardium provided by the Holzapfel

Ogden law.

• A parameterized description of the myocardium.

• Parameters give us the stiffness properties!
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Model Observables

Forward problem

Inverse problem

We have two reference points:

Early diastole End of diastole

Currently, only circumferential strains

can be accurately measured.

End diastolic volume of the

cavity.



How are strains and volume measured?
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Can we now solve the inverse problem?
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Model Observables

Forward problem

Inverse problem

Very expensive!

We can solve if the patient can wait 2 days and we ignore our

uncertainty...
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Dimensionality reduction for statistical emulation
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• These can be fully represented by the m dimensional projection.

• For our data (small n) PCA outperforms more sophisticated methods.
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Two questions: what is our input space and how do we obtain our

emulator?
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• Computational costs are only as low as the number of inducement

points.

• Neural networks are parametric: prediction costs do not grow with

training set size.
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Effect of activation function
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A further reduction in complexity

Ψ =
a

2b
{exp[b(I1 − 3)]− 1}+

∑
i∈{f ,s}

ai
2bi
{exp[bi (I4i − 1)2]− 1}

+
afs

2bfs
[exp(bfsI

2
8fs)− 1] +

1

2

a = θ1 a0, b = θ1 b0

af = θ2 af0, as = θ2 as0

bf = θ3 bf0, bs = θ3 bs0

afs = θ4 afs0, bfs = θ4 bfs0

Infer θ1, θ2, θ3 and θ4

Emulation problem is now m + 4 dimensional 24



Sampling with MCMC

• We will use MCMC to quantify our uncertainty about the

parameters.

• Two properties of the statistical emulator allow sampling with
more sophisticated MCMC procedures:

1. Efficiency: prediction in order of milliseconds instead of 8

minutes.

2. Differentiability of the function

• However, we use an approximation (emulator) of the true

function.

• Error is compounded by our approximation of the geometry.

• How does this affect our inference?

25



Inferring material parameters of a real geometry
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Inference time: 15 seconds

Circumferential strains

and volume are not

sensitive to θ4



Inferring material parameters of a real geometry
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Inference time: 15 seconds
??



Problem with parameter identifiability

27

• Myocardium is a complicated material.

• Different components in material take effect at different stretches.

• Parameters of HO law reflect this changing behaviour.

• Observed data are only informative about small stretch regime.
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The Klotz curve

29

• Klotz et al inflated left ventricles (ex vivo) from volume V0 at pressure 0

to volume VP and pressure P.

• Measuring also the volume at pressure 30, V30, they found a relationship

between normalized volume Ṽ = VP−V0
V30−V0

and pressure P :

Ṽ =
log P

α
β

• Can we use this relationship to include the behaviour at high stretch?



A first attempt: the non empirical Klotz prior
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Our likelihood: this comes from our model of the in vivo left ventricle.
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This distribution, πE (Ṽ20), comes from emulators trained to predict

volume at pressure 20 and pressure 30 (with associated uncertainty).
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This distribution,πKL(Ṽ20), comes from enforcing the Klotz relationship on

the left ventricle.
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Match these with product of experts:F =
∫
πE (Ṽ20)πKL(Ṽ20)dṼ20.



Problem with the non empirical Klotz prior

31

Ridge in θ3 direction.

Let us try an alternative formulation...



A second attempt: the empirical Klotz prior
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Likelihood function for in vivo data comes from emulated cardiac model.
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A prediction of V30 comes from a pressure 30 volume emulator.
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A prediction of volume at pressure 30 from Klotz function, this time

related to the in vivo volume measurement.



A second attempt: the empirical Klotz prior
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Match with product of experts: now we have an empirical Klotz prior

(relies on the measured volume)



Assessing performance of the Klotz prior

33

Ridge in the prior is aligned with the θ2 axis.



Does Empirical Klotz make a difference?

34

Yes, if our data are generated in line with the Klotz curve

But we do not know how closely the in vivo heart follows the Klotz curve



How about real data?
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Summary so far

• The parameters from the reparameterized HO law are difficult

to estimate

• Klotz is probably not the answer to the problem—do we really

want to rely so heavily on ex vivo data?

• Instead, we should try new parameterizations

• Or accept lack of identifiability and try to use only those

parameters we can learn

36
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Alternative parameterization

Ψ =
a

2b
[exp {b (I1 − 3)} − 1]

+
∑

i∈{f,s}

ai
2bi

[
exp

{
bi (I4i − 1)2

}
− 1
]

+
afs

2bfs

{
exp

(
bfsI

2
8fs

)
− 1
}

a, b, af , bf inferred, as, bs, afs, bfs constant

a and af are more identifiable, can we use these for predicting

tissue health?

38



Thank you!
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