Cardiac mechanics	Applications	Discussion

Bayesian optimisation for improving accuracy and efficiency of cardio-mechanic parameter estimation

Agnieszka Borowska

School of Mathematics and Statistics, University of Glasgow

09.02.2021

Cardiac mechanics	Bayesian optimisation	Applications	Discussion
00000000		0000	000
Problem			

Joint with: Hao Gao, Alan Lazaru and Dirk Husmeier.

Overall goal: to develop an accurate and efficient (fast) method for parameter estimation in cardiac mechanic models of the left ventricle (LV).

Context: estimation of the heart tissue properties from in-vivo clinical measurements.

- Central problem in biomechanical studies of personalized LV modelling.
- Important properties they:
 - provide insight into heart function/dysfunction,
 - help to inform on the treatment effectiveness post myocardial infarction (heart attack).

Cardiac	
0000000	

Bayesian optimisation

Applications 0000 Discussion 000

Left ventricle

Left ventricular dysfunction

Cardiac	

Bayesian optimisation

Application 0000

Solution: Bayesian optimisation

Bayesian Optimisation: a method for optimising unknown "black box" objective functions which is

- sequential
- (statistical) model-based
- global

Particularly useful when function evaluations are expensive (Shahriari et al., 2016a).

Cardiac	

1 Optimisation for cardiac mechanics models

2 Bayesian optimisation

- BO: an overview
- BO: our extensions

3 Applications

Cardiac mechanics	Bayesian optimisation	Applications	Discussion
0000000			

Optimisation for cardiac mechanics models

Bayesian optimisation

Applications 0000 Discussion 000

Data: CMR images

Cardiovascular Magnetic Resonance images

Extracted:

- circumferential strains
- LV cavity volume

(Blue and red lines: LV segmentation)

6 / 38

Bayesian optimisation

Applications 0000 Discussion 000

Cardio-mechanic model

The **myocardium** of the heart can be described by differential equations represented by the Holzapfel and Ogden (2009) law.

Gives a detailed description of the **myocardium response** in diastole.

Bayesian optimisation

Applications

Discussion 000

Holzapfel-Ogden law

The strain energy function for the myocardium:

$$\Psi(I_1, I_{4f}, I_{4s}, I_{8fs}) = \frac{a}{2b} \{ \exp[b(I_1 - 3)] - 1 \} + \sum_{i \in \{f, s\}} \frac{a_i}{2b_i} \{ \exp[b_i(I_{4i} - 1)^2] - 1 \} + \frac{a_{fs}}{2b_{fs}} [\exp(b_{fs}I_{8fs}^2) - 1],$$

where: $I_i, i \in \{1, 4f, 4s, 8fs\}$ – quantities describing the deformation

 $\phi = (a, b, a_f, b_f, a_s, b_s, a_{fs}, b_{fs})^T - (\text{unknown}) \text{ constitutive}$ parameters of interest.

Cardiac	mechanics
0000000	00

Bayesian optimisation

Applications

Discussion 000

Constitutive parameters

 $\boldsymbol{\phi} = (a, b, a_f, b_f, a_s, b_s, a_{fs}, b_{fs})^T - (\text{unknown})$ constitutive parameters of interest.

 ϕ_0 – reference parameters from Wang et al. (2013):

$a [\mathrm{kPa}]$	b	a_f [kPa]	b_f	a_s [kPa]	b_s	a_{fs} [kPa]	b_{fs}
0.236	10.810	20.037	14.154	3.724	5.164	0.411	11.300

Cardiac mechanics	Bayesian optimisation	Applications	Discussion
00000000		0000	000

Statistical inference

Minimise the mismatch between the data and model predictions

- LV volume in diastole
- 24 circumferential strains

from CMR scans or outputs from the forward simulator.

Bayesian optimisation

Applications 0000 Discussion 000

Forward simulator

Solution to the equations associated with the LV model unavailable in a closed form

- \Rightarrow Numerical solutions required
- \Rightarrow Finite element method

Time consuming: one forward simulation takes ≈ 15 min!

 \Rightarrow Standard numerical optimisation or sampling prohibitively expensive.

Existing optimisation algorithm

State-of-the-art optimisation algorithm by Gao et al. (2015, 2018)

- Based on expert domain-specific knowledge
- Multi-step approach
- Each step optimises different subsets of parameters
- Each sub-optimisation using a gradient-based optimisation algorithm

Cardiac mechanics	Bayesian optimisation $\circ \circ \circ$	Applications	Discussion
00000000		0000	000

Bayesian optimisation

13 / 38

Cardiac mechanics	Bayesian optimisation	Applications	Discussion
00000000		0000	000

BO: an overview

Bayesian optimisation	Applications	Discussion
000000000000000000000000000000000000000		

Key ideas

Approximate the costly objective function by a cheaper surrogate function: typically a Gaussian process (GP), see (Rasmussen and Williams, 2006).

Quantify the **exploitation**—**exploration trade-off** using an acquisition function (to be discussed later).

Sequentially update our initial beliefs (prior distribution) about the function of interest after observing the data (likelihood).

A. Borowska

Bayesian optimisation

Bayesian optimisation

Applications 0000 Discussion 000

- Unknown objective function (expensive!)
- + Data points

Here: likelihood maximisation

Cardiac mechanics 00000000 Illustration Bayesian optimisation

Applications 0000 Discussion 000

- Surrogate function, typically a GP (cheap!)
- Uncertainty: affects the acquisition function
- Maximum of acquisition function: exploration-exploitation trade-off

Bayesian optimisation

Applications 0000 Discussion 000

Illustration

- Surrogate function, typically a GP (cheap!)
- Uncertainty: affects the acquisition function
- Maximise the acquisition function: exploration—exploitation trade-off

Cardiac mechanics 00000000 Illustration Bayesian optimisation

Applications 0000 Discussion 000

- + Query at the previous maximum \times \Rightarrow uncertainty gets reduced
- \times Find a new maximum of acquisition function

17 / 38

Bayesian optimisation

Applications 0000 Discussion 000

Illustration

- + Query at the previous maximum ×
 ⇒ uncertainty gets reduced
- \times Find a new maximum of acquisition function

18 / 38

Illustration

Applications 0000

Iterate:

- + Evaluate the objective at the current maximum × (expensive!)
- Update the surrogate model (cheap!)
- × Find a new maximum of the acquisition function (cheap!)

Illustration

Applications 0000

Iterate:

- + Evaluate the objective at the current maximum × (expensive!)
- Update the surrogate model (cheap!)
- × Find a new maximum of the acquisition function (cheap!)

Illustration

Applications 0000

Iterate:

- + Evaluate the objective at the current maximum × (expensive!)
- Update the surrogate model (cheap!)
- × Find a new maximum of the acquisition function (cheap!)

Bayesian optimisation

Applications 0000 Discussion 000

Illustration

Continue until: global maximum \Downarrow

22 / 38

Cardiac	
0000000	

Acquisition functions

- Dictate where to query next where to carry out the expensive evaluation step.
- Cheap: optimised instead of the true objective function (so-called "inner optimisation").
- Correspond to the exploration-exploitation trade-off.
- Several different AFs have been proposed:
 - probability of improvement
 - expected improvement
 - upper confidence bound
 - entropy search
 - portfolios acquisition functions
 - ...

Cardiac mechanics 00000000	Bayesian optimisation $\circ \circ \circ$	$\operatorname{Applications}_{0000}$	Discussion 000
Expected impro-	vement		

$$\operatorname{EI}(\mathbf{x}) = \mathbb{E}_{p(y|\mathbf{x},\mathcal{D})}[\min(f^* - f(\mathbf{x}), 0)],$$

 \mathcal{D} – the set of inputs and outputs recorded so far, f^* – incumbent value i.e. the lowest value of f found so far.

With a GP surrogate $\mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}))$ EI can be expressed as (Jones et al., 1998; Shahriari et al., 2016b)

$$\operatorname{EI}(\mathbf{x}) = (f^* - \mu(\mathbf{x}))\Phi(z) + \sqrt{k(\mathbf{x})}\phi(z),$$

 $z = (f^* - \mu(\mathbf{x}))/\sqrt{k(\mathbf{x})},$ Φ and ϕ are the CDF and PDF of the standard normal distribution, respectively.

Cardiac mechanics	Bayesian optimisation	Applications	Discussion
00000000		0000	000

BO: our extensions

Extensions

- Ex-vivo data extended objective function
- **2** Unknown constraints
- Output and the second secon

Cardiac mechanics 00000000	Bayesian optimisation $000000000000000000000000000000000000$	$\operatorname{Applications}_{0000}$	Discussion 000
Re 1° standard	objective function		

• Standard objective function for **minimisation**:

mismatch between the simulated values (depending on the constitutive parameter ϕ and LV geometry \mathcal{H}) and the measurements:

$$f(\phi, \mathcal{H}) = \underbrace{\frac{(V(\phi, \mathcal{H}) - V^*)^2}{V^*}}_{\text{LV volume}} + \sum_{i=1}^{24} \underbrace{(\varepsilon_i(\phi, \mathcal{H}) - \varepsilon_i^*)^2}_{i\text{th circumferential strain}}$$

- Measurements only for physiologically typical, low LV pressures (8 mmHg).
- Need for accurate predictions also for high LV pressures (30 mmHg): those may reveal LV stiffness with impaired relaxation (which characterises diastolic heart failure).

But: high pressure volume measurements unavailable in vivo.

We propose to **predict them** using the empirical law found by Klotz et al. (2006) based on **ex vivo data**:

Re 1: high-pressure volume predictions

Normalised end-diastolic volume:

$$\tilde{V}^* = \frac{V^* - V_0}{V_{30} - V_0},$$

where V^* – the measured unnormalised volume at P^* , V_0 – the zero-pressure volume (load-free volume).

Predicted high-pressure end-diastolic volume:

$$\hat{V}_{30}^{Kl} = V_0 + \frac{V^* - V_0}{\tilde{V}^*} = V_0 + \frac{V^* - V_0}{\left(\frac{P^*}{A}\right)^{1/B}}.$$

Bayesian optimisation

Application

Discussion 000

Re 1: extended objective function

$$\begin{split} f_{\text{Klotz}}(\boldsymbol{\phi}, \mathcal{H}) &= \left(\frac{V(\boldsymbol{\phi}, \mathcal{H}) - V^*}{V^*}\right)^2 + \sum_{i=1}^{24} \left(\varepsilon_i(\boldsymbol{\phi}, \mathcal{H}) - \varepsilon_i^*\right)^2 \\ &+ \left(\frac{V_{30}(\boldsymbol{\phi}, \mathcal{H}) - \hat{V}_{30}^{Kl}}{\hat{V}_{30}^{Kl}}\right)^2, \end{split}$$

D. 9	a an atrainta		
0000000	000000000000000000000000000000000000000	0000	000
Cardiac mechanics	Bayesian optimisation	Applications	Discussion

Re 2: unknown constraints

Why? Simulator crashing or failing to terminate for some ϕ .

Solution: weighting the AF, e.g. expected improvement (EI), by the probability of the constraint being satisfied (Snoek, 2013; Gelbart et al., 2014)

$$\mathrm{EI}_{con}(\phi, \mathcal{H}) = \mathrm{EI}(\phi, \mathcal{H})\mathbb{P}(\phi \in \mathcal{C}|\mathcal{H}),$$

where $\mathbb{P}(\phi \in \mathcal{C}|\mathcal{H})$ is the probability of ϕ being a valid point not leading to a crash of the forward simulator for the given LV geometry \mathcal{H} .

Cardiac mechanics	Bayesian optimisation $000000000000000000000000000000000000$	Applications	Discussion
00000000		0000	000
D 0 1 1			

Re 3: partial error surrogates

Why? The objective functions given as a sum of error terms:

$$f(\boldsymbol{\phi}, \mathcal{H}) = \sum_{i=1}^{K} f^{(i)}(\boldsymbol{\phi}, \mathcal{H}).$$

Standard approach: approximate $f(\mathbf{x})$ using a single surrogate.

Potential improvement: approximate the partial errors $f^{(i)}$ using K surrogates.

Adjusted EI: based on the conditional posterior mean and variance of the full target $f(\phi, \mathcal{H})$ – given as sums of partial means and variances.

Cardiac mechanics	Bayesian optimisation	Applications	Discussion
00000000		••••	000

Applications

Bayesian optimisation	Applications	Discussion
	0000	

Two studies:

- Klotz-curve study: with 4 healthy volunteers (HVs)
- PCA study: one HV + LV geometry reconstructed with different no. of PCA components

Comparison:

- Compare BO with full target and partial surrogates with the state-of-the-art algorithm of Gao et al. (2015, 2018).
- Evaluation based on:
 - speed of convergence (no. of simulator invocations),
 - the final value of the objective function.

Results: convergence of the objective function

Study 1: four HVs

Study 2: one subject + LV geometry reconstructed with different no. of PCA components.

Cardiac mechanics 00000000	Bayesian optimisation	Applications 0000	Discussion $\bullet \circ \circ$

Discussion

	Applications	Discussion
000000000000000000000000000000000000000	0000	000

Conclusions

- An accurate and efficient Bayesian optimisation–based framework for parameter inference in a cardiac mechanic model of the LV.
- BO converges to lower values of the objective function and requires less invocations of the associated forward simulator than the state-of-the-art multi-step algorithm of Gao et al. (2015, 2018).
- Partial error surrogates: a new approach to minimising a target function given as a sum of error terms.

Bayesian optimisation	Applications	Discussion
		000

Discussion

Cardiac mecha

- Better specifications for AF than EI?
 - Information-based policies, e.g. Entropy Search.
 - Portfolios of AFs.
- BO likely to still be too time-consuming to provide a viable tool for the clinical practice (optimisation independently for each subject).

Multi-task BO (Swersky et al., 2013) could address this issue: leveraging prior knowledge from optimisations for previous subjects.

References I

- Gao, H, W. G. Li, L. Cai, C. Berry, and X. Y. Luo (2015), "Parameter estimation in a Holzapfel–Ogden law for healthy myocardium." *Journal of Engineering Mathematics*, 95, 231–248.
- Gao, H., K. Mangion, C. Berry, and X. Y. Luo (2018), "Mathematical modelling acute myocardial infarction using in vivo magnetic resonance imaging." *Proceeding of virtual* physiological human conference, Zaragoza Spain.
- Gelbart, M. A., J. Snoek, and R. P. Adams (2014), "Bayesian optimization with unknown constraints." In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, 250-259.
- Holzapfel, G. A. and R. W. Ogden (2009), "Constitutive Modelling of Passive Myocardium: a Structurally Based Framework for Material Characterization." *Philosophical Transactions of* the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 367, 3445–3475.
- Jones, D. R., M. Schonlau, and W. J. Welch (1998), "Efficient global optimization of expensive black-box functions." Journal of Global optimization, 13, 455-492.
- Klotz, S., I. Hay, M. L. Dickstein, G. H. Yi, J. Wang, M. S. Maurer, D. A. Kass, and D. Burkhoff (2006), "Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application." *American Journal of Physiology-Heart and Circulatory Physiology*, 291.
- Rasmussen, C. E. and C. K. Williams (2006), Gaussian Processes for Machine Learning, volume 1. MIT press Cambridge.
- Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas (2016a), "Taking the Human Out of the Loop: A Review of Bayesian Optimization." *Proceedings of the IEEE*, 104.

References II

- Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas (2016b), "Taking the human out of the loop: a review of Bayesian optimization." *Proceedings IEEE*, 104, 148–175.
- Snoek, J. R. (2013), Bayesian otimization and semiparametric models with applications to assistive technology. Ph.D. thesis, University of Toronto, Toronto, Canada.
- Swersky, Kevin, Jasper Snoek, and Ryan P Adams (2013), "Multi-task Bayesian optimization." In Advances in Neural Information Processing Systems, 2004–2012.
- Wang, H. M., H. Gao, X. Y. Luo, C. Berry, B. E. Griffith, R. W. Ogden, and T. J. Wang (2013), "Structure Based Finite Strain Modelling of the Human Left Ventricle in Diastole." *International Journal for Numerical Methods in Biomedical Engineering*, 29, 83–103.