
A Network Analysis of the Volatility of
High-Dimensional Financial Series

Matteo Barigozzi
Alma Mater Studiorum - Università di Bologna

Marc Hallin
Université libre de Bruxelles

Royal Statistical Society
9 December 2020



In a nutshell - aim and methods

1 We study the network of S&P100 stocks’ volatilities;

2 for financial data no network structure pre-exists the observations
⇒ we consider Long Run Variance Decomposition Networks;
Diebold and Yılmaz, 2014

3 large dimensional system of time series poses difficulties in estimation
⇒ we use factor models and lasso-type regressions as solutions;

4 financial shocks have an economic meaning
⇒ we identify shocks by means of recursive identification scheme;

5 higher connectedness means higher uncertainty
⇒ we extract volatilities as measures of fear or lack of confidence.
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In a nutshell - results
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Data

A panel of stock daily returns

r =
{
rit |i = 1, . . . , n, t = 1, . . . ,T

}
from Standard & Poor’s 100 index;
n = 90 assets from 10 sectors: Consumer Discretionary, Consumer Staples,
Energy, Financial, Health Care, Industrials, Information Technology, Materials,
Telecommunication Services, Utilities;
T = 3457 days from 3rd January 2000 to 30th September 2013;
from returns we extract volatilities which are unobserved;
we are in a large n,T setting.

Introduction 3/38



Long Run Variance Decomposition Network
(LVDN)

Weighted and directed graph;
the weight associated with edge (i , j) represents the proportion of
h-step ahead forecast error variance of variable i which is accounted
for by the innovations in variable j ;
completely characterised by the infinite vector moving average (VMA)
representation given by Wold’s classical representation theorem;
for a generic process Y the model reads

Yt = D(L)et , et ∼ w .n.(0, I)

where
et are orthonormal shocks with an economic meaning
D(L) are impulse response functions (IRF) which give the network
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Long-Run Variance Decomposition Network
(LVDN)

Vertices set V = {1 . . . n};
edges set

ELVDN =

{
(i , j) ∈ V × V| lim

h→∞
wh
ij 6= 0

}
edges weights

wh
ij = 100

( ∑h−1
k=0 d

2
k,ij∑n

`=1
∑h−1

k=0 d
2
k,i`

)
where dk,ij is entry of Dnk such that Dn(L) =

∑∞
k=0 DnkL

k ;
wh
ij is the proportion of h-step ahead forecast error variance of Zi

which is accounted for by the innovations in Zj .
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Long-Run Variance Decomposition Network
(LVDN)

The operative definition of LVDN requires to fix h;
the weights are normalised

1
100

n∑
j=1

wh
ij = 1,

1
100

n∑
i ,j=1

wh
ij = n;

we define the FROM and TO degrees as

δFROM
i =

n∑
j=1
j 6=i

wh
ij , δTOj =

n∑
i=1
i 6=j

wh
ij ;

a measure of total connectedness is given by

δTOT =
1
n

n∑
i=1

δFROM
i =

1
n

n∑
j=1

δTOj .
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Goal 1 - estimate a VMA

Estimate and invert VAR (classical approach);

in a large dimensional setting ⇒ curse of dimensionality;

two main solutions in time series:
1 factor models - dense modeling;

Forni, Hallin, Lippi, Reichlin, 2000, Forni, Hallin, Lippi, Zaffaroni, 2017, Barigozzi and Hallin, 2020

2 lasso-type penalised regressions - sparse modeling;
Peng, Wang, Zhou, Zhu, 2009, Kock and Callot, 2015, Barigozzi and Brownlees, 2019

used to analyse two complementary features of financial markets:
1 effect of global shocks ⇒ pervasive risk, non-diversifiable;

Ross, 1976, Chamberlain and Rothschild, 1983, Fama and French, 1993

2 effect of idiosyncratic shocks ⇒ systemic risk, limited diversifiability;
Gabaix, 2011, Acemoglu, Carvalho, Ozdaglar, Tahbaz-Salehi, 2012

Economic data are more likely to be dense rather than sparse.
Giannone, Primiceri, Lenza, 2018
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Goal 2 - identify the shocks

Given a VMA any invertible linear transformation of the shocks is a
statistically valid representation;

to attach an economic meaning to the shocks ⇒ to identify;

assume orthonormality or even independence;
recursive identification schemes, i.e. choose shocks’ ordering.
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Generalised Dynamic Factor Model (GDFM)

Consider a generic n × T panel of time series Yn such that
A1 Yn is strongly stationary;
A2 its spectral density Σn(θ) exists, is rational, with eigenvalues λj ,n(θ);
A3 there exists a q < n not depending on n such that:

a λq,n(θ)→∞ as n→∞;
b λq+1,n(θ) < M <∞ for any n ∈ N.
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Generalised Dynamic Factor Model (GDFM)

Under A1-A3
Ynt = Xnt + Znt = Bn(L)ut + Znt (1)

i u is q-dimensional and ut ∼ w .n.(0, I)
⇒ global shocks;

ii Bn(L) is n × q polynomials with squared summable coefficients
⇒ IRFs to global shocks;

iii q spectral eigenvalues of Xn diverge as n→∞;
⇒ strong (auto)correlation among components of Xn;

iv n spectral eigenvalues of Zn are bounded for any n ∈ N;
⇒ weak, but not zero, (auto)correlation among components of Zn;

v Xn and Zn are mutually orthogonal at every lead and lag.

Notice that
model and assumptions are defined in the limit n→∞;
under A1-A2, model (1) and A3 are equivalent.
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Idiosyncratic component - VMA

The idiosyncratic component admits the Wold decomposition

Znt = Dn(L)ent

vi en is n-dimensional and ent ∼ w .n.(0, I)
⇒ idiosyncratic shocks;

vii Dn(L) is n × n polynomials with squared summable coefficients
⇒ IRFs to idiosyncratic shocks.
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Shocks

Two sources of variation:
1 few (q) global shocks, u, with pervasive effect

due to condition (iii) of diverging eigenvalues;

2 many (n) idiosyncratic shocks, en, with limited, but not null, effect
due to condition (iv) of bounded eigenvalues
⇒ no sparsity assumption is made.

We first control for the global effects and then we focus on the effect of
idiosyncratic shocks measured through the LVDN.
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Idiosyncratic component - VAR

To estimate a VMA we assume
A4 Zn has the sparse-VAR(p) representation

Fn(L)Znt = vnt , vnt ∼ w .n.(0,C−1
n )

where Fn(L) =
∑p

k=0 FnkL
k with Fn0 = I and det(Fn(z)) 6= 0 for any

z ∈ C such that |z | ≤ 1, and Cn has full-rank. Moreover, Fnk and Cn

are sparse matrices.
Notice that
we assume sparsity of VAR and not of VMA for estimation purposes but the argument
of condition (iv) of bounded eigenvalues still holds; for convenience in the identification
step, we parametrise the covariance matrix of the VAR innovations by means of its
inverse Cn
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Idiosyncratic component - VAR

As a by-product, we have a Long-Run Granger Causality Network (LGCN)
Edges set

ELGCN =

{
(i , j) ∈ V × V|

p∑
k=0

fkij 6= 0

}
it captures the leading/lagging conditional linear dependencies;
Dahlhaus and Eichler, 2003, Eichler, 2007, Barigozzi and Brownlees, 2019

under A4 the LGCN is likely to be sparse but the LVDN is not
necessarily sparse;
the economic interpretation of the LGCN is not as straightforward as
that of the LVDN, and the LGCN therefore is of lesser interest for the
analysis of financial systems and we consider it just as a tool to derive
the LVDN;
cfr. with traditional macroeconomic analysis where IRF, i.e. VMA
coefficients, rather than VAR ones, are the object of interest for policy
makers.
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Identification

From the VAR and VMA of Zn we have

Dn(L) = (Fn(L))−1Rn

where Rn is such that it makes the shocks R−1
n vn = en orthonormal.

choosing Rn is equivalent to identifying the shocks;
choose Rn as the lower triangular matrix such that

Cov(vn) = C−1
n = RnR′n

then
Cov(en) = R−1

n Cov(vn)R−1′
n = R−1

n RnR′nR
−1′
n = I

but this choice depends on the ordering of the shocks, a given order of
shocks defines which component we choose to hit first.
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Identification

We use vn’s partial correlation structure
the partial correlation between vi and vj is

ρij =
−[Cn]ij√
[Cn]ii [Cn]jj

associated is the Partial Correlation Network (PCN), with edges set

EPCN =
{

(i , j) ∈ V × V| ρij 6= 0
}

by A4, the PCN is a sparse network;
Peng, Wang, Zhou, Zhu, 2009, Barigozzi and Brownlees, 2019

order shocks by decreasing eigenvector centrality in the PCN;
we are considering the case in which the most contemporaneously
interconnected node is firstly affected by an unexpected shock, and
then, by means of the subsequent impulse response analysis, we study
the propagation of such shock through the whole system.
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Returns vs. Volatilities

returns are observed but volatilities are unobserved
⇒ factor model for returns to extract volatilities in a multivariate way
Barigozzi and Hallin, 2016, 2017, 2020

in a univariate setting a generic model for volatility reads as

a(L)rt = ηt , ηt ∼ w .n.(0, σ2), η2
t = f (ηt−1 . . . η0)

for example stochastic volatility models where log η2 is an AR(1)

log η2
t = c + a log η2

t−1 + νt .
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Returns vs. Volatilities

in the large n case we use an AR of the GDFM
Forni, Hallin, Lippi, Zaffaroni, 2017

An(L)rnt = ηnt + ξnt

ηnt = Hnut with Hn full-rank and n × q and ut ∼ w .n.(0, I)
⇒ global shocks to returns, that is market shocks;
An(L) is block-diagonal with blocks of size q + 1;
ξn has bounded spectral eigenvalues, is idiosyncratic such that it has
the sparse VAR representation

Fn(L)ξnt = vnt
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Returns vs. Volatilities

centred log-volatilities are defined as

σnt = log(ηnt + vnt)2 − E[log(ηnt + vnt)2]

we assume a GDFM also for log-volatilities

σnt = χσ,nt + ξσ,nt

Aσ,n(L)χσ,nt = Hn,σεt

ε is Q-dimensional and εt ∼ w .n.(0, I)
⇒ global shocks to volatilities, that is risk market shocks;
Hn,σ is n × Q and H′

n,σHn,σ = nI
⇒ global shocks are pervasive;
An(L) is block-diagonal with blocks of size Q + 1;
ξσ,n has bounded spectral eigenvalues, is idiosyncratic such that it has
the sparse VAR representation

Fn(L)ξσ,nt = νnt
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Estimation in one slide

GDFM estimation is based on the following “tools” (details omitted):
Spectral density matrix, dynamic PCA, autocovariances by inverse
Fourier transform, Yule Walker equations; Forni, Hallin, Lippi, Zaffaroni, 2017

run GDFM estimation twice: Barigozzi and Hallin, 2016, 2017, 2020

1 on returns to obtain shocks u and vn for computing log-volatilities;
2 on volatilities to obtain the idiosyncratic component ξσ,n;

estimate a sparse VAR on ξσ,n, some options are
1 elastic net Zou and Hastie, 2005

2 group lasso Yuan and Lin, 2006, Nicholson, Bien, Matteson, 2014, Gelper, Wilms, Croux, 2016

3 adaptive lasso Zou, 2006, Kock and Callot, 2015, Barigozzi and Brownlees, 2019

4 other penalties are also possible Hsu, Hung, Chang, 2008, Abegaz and Wit, 2013

Consistency, as n,T →∞:
1 for the double GDFM estimator—Barigozzi and Hallin, 2020;
2 for the adaptive lasso on a large VAR—Barigozzi and Brownlees, 2019.
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The effect of global shocks

The VMA for common volatilities

χσ,nt = (An(L))−1Hσ,nKεt
= Bn(L)εt

εt ∼ w .n.(0, I) by construction
⇒ global shocks to volatilities;
K for identification (easy since there are few shocks);
truncate (An(L))−1Hσ,nK at lag h = 20 (one month);
from the entries of Bn(L) we can compute percentages of h-step
ahead forecast error variances due to the global shocks.
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The effect of idiosyncratic shocks (LVDN)

The VMA for idiosyncratic volatilities

ξσ,nt = (Fn(L))−1νnt

= (Fn(L))−1RnR−1
n νnt

= Dn(L)ent

ent ∼ w .n.(0, I) by construction
⇒ idiosyncratic shocks to volatilities;
Rn identified using centrality in the PCN of νnt ;
truncate (Fn(L))−1Rn at lag h = 20 (one month);
LVDN weights are given by the entries of Dn(L)
⇒ weighted directed non-sparse network;
LVDN can be made sparse by some thresholding method.
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Data

Adjusted daily closing prices pit ;
90 daily stock returns from S&P 100 index rit = 100∆ log pit ;
10 sectors: Consumer Discretionary, Consumer Staples, Energy, Financial, Health
Care, Industrials, Information Technology, Materials, Telecommunication Services,
Utilities;
two periods 2000-2013 and 2007-2008;
from returns we extract log-volatilities;
data are not standardised.
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Number of factors

look at the behaviour of the spectral eigenvalues;
Hallin and Liška, 2007

one global shock in returns q = 1;
one global shock in volatilities Q = 1;
in both cases the global shock explains about 40% of total variation

EV =

∫ π
−π λ1,n(θ)dθ∑n

i=1
∫ π
−π λi ,n(θ)dθ

' 0.4

the idiosyncratic shocks account for about 60% of total variation.
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Effects of global volatility shocks

Sector 2000-2013 2007-2008
Cons. Disc. 8.87 8.82
Cons. Stap. 10.54 10.14
Energy 11.61 18.44
Financial 11.89 14.40
Health Care 9.38 8.01
Industrials 8.50 7.97
Inf. Tech. 10.00 6.94
Materials 8.35 9.79
Telecom. Serv. 10.07 8.04
Utilities 10.82 7.47
Total 100 100

Percentages of 20-step ahead forecast error variances due to the global shock.
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Sparse VAR for idiosyncratic component

VAR order selected: p = 5 - Elastic net

1

45

90
1 45 90

1

45

90
1 45 90

2000-2013 2007-2008
density = 0.53 density = 0.86

negative weights in blue, positive weights in red.
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Sparse VAR for idiosyncratic component

VAR order selected: p = 5 - Group lasso
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PCN for idiosyncratic innovations
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PCN for idiosyncratic innovations

2000-2013 2007-2008
JPM JP Morgan Chase & Co. BAC Bank of America Corp.
C Citigroup Inc. USB US Bancorp
BAC Bank of America Corp. JPM JP Morgan Chase & Co.
APA Apache Corp. MS Morgan Stanley
WFC Wells Fargo WFC Wells Fargo
COP Conoco Phillips DVN Devon Energy
OXY Occidental Petroleum Corp. GS Goldman Sachs
DVN Devon Energy AXP American Express Inc.
SLB Schlumberger COF Capital One Financial Corp.
MS Morgan Stanley UNH United Health Group Inc.

Eigenvector centrality in the PCN.
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LVDN

1

45

90
1 45 90

1

45

90
1 45 90

2000-2013 2007-2008
weights below the 95th percentile in grey, between the 95th and 97.5th percentiles in blue,
between the 97.5th and 99th percentiles in yellow, and above the 99th percentile in red.
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LVDN

percentiles 50th 90th 95th 97.5th 99th max
2000-2013 0.02 0.13 0.20 0.29 0.48 4.29
2007-2008 0.17 0.71 1.00 1.28 1.76 4.53

Selected percentiles of LVDN weights.
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LVDN - sparse
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LVDN - centrality

2000-2013 2007-2008
BAC Bank of America Corp. USB US Bancorp
JPM JP Morgan Chase & Co. BAC Bank of America Corp.
WFC Wells Fargo COF Capital One Financial Corp.
C Citigroup Inc. AIG American International Group Inc.
USB US Bancorp C Citigroup Inc.
APA Apache Corp. WFC Wells Fargo
SLB Schlumberger BA Boeing Co.
COP Conoco Phillips CVX Chevron

Eigenvector centrality in the LVDN.
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LVDN - connectivity

2000-2013 2007-2008
Sector from to from to
Cons. Disc. 4.32 2.37 26.31 26.41
Cons. Stap. 3.98 4.65 27.47 22.65
Energy 5.52 7.92 21.91 33.72
Financial 4.74 6.22 24.42 35.56
Health Care 5.00 2.51 28.06 22.36
Industrials 4.43 3.21 27.26 25.81
Inf. Tech. 5.03 4.89 29.90 19.98
Materials 3.24 4.62 26.86 27.01
Telecom. Serv. 6.50 7.26 27.44 16.52
Utilities 5.15 8.74 29.49 21.54
Total degree 4.73 26.54

From- and To-degree sectoral averages in LVDN.
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Summary

We determine and quantify the different sources of variation driving a
panel of volatilities of S&P100 stocks over the period 2000-2013;
increased connectivity during Financial Crisis;
key role of the Financial sector, particularly during the Financial Crisis;
other sectors such as Energy seem to have an important role too;
a “factor plus VAR” approach motivated by

financial interpretation: global vs. idiosyncratic risk;
existence of common factors is at odds with sparsity;
data structure as shown by partial spectral coherencies;

results are robust to
other VAR estimations as (i) group lasso, (ii) adaptive lasso;
different forecasting horizons h;
other identifications strategies as (i) centrality of PCN when signs of
correlations are accounted for, (ii) generalised variance decomposition.
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Thank you!
Questions?
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Partial spectral coherence

It is the analogous of partial correlation but in the frequency domain

PSCij(θ) =
−[Σ(θ)]ij√

[Σ(θ)]ii [Σ(θ)]jj

directly related to VAR coefficients;
Davis, Zang, Zheng, 2015

compare PSC of volatilities σn and idiosyncratic volatilities ξσ;n;
difference between a sparse VAR on σn vs. sparse VAR on ξσ;n.
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Partial spectral coherence
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PSCσn (θ = 0) PSCξσ;n (θ = 0) |PSCσn (θ = 0)− PSCξσ;n (θ = 0)|

Left and middle panels: weights in absolute values below the 90th percentile in grey,
weights above the 90th percentile in red, and below the 10th percentile in blue. Right
panel: weights below the 90th percentile in grey, between the 90th and 95th percentiles

in blue, and above the 95th percentile in red.

Results 38/38


	Introduction
	Factors and Networks
	Estimation
	Results

