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Multiple Hypothesis Testing

Setting: hypotheses H1, . . . ,Hn with p-values p1, . . . , pn

Notation:
• H0 = {i : Hi is true}: null hypotheses
• S = {i : Hi is rejected}: set of rejections (discoveries)
• R = |S| total rejections
• V = |S ∩ H0| incorrect rejections

False Discovery Proportion FDP = V
R∨1

Goal: control False Discovery Rate [Benjamini and Hochberg, ’95]

FDR = E[FDP] ≤ α
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Side Information

Observe side information xi ∈ X for each Hi

x1, . . . , xn treated as fixed

Ordered multiple testing
• H1 most “promising,” then H2, . . . ,Hn (xi = i)
• Focus power on early hypotheses

Other examples:
• Data from a similar experiment
• Spatiotemporal location e.g. Hi : f(ti) ≤ 0

Idea: if we learn a region of X has many non-nulls, can relax
multiplicity correction in that region
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Side Information in Biology

5 / 26



AdaPT in a Nutshell

We proposed Adaptive P-value Thresholding (AdaPT)

• controls FDR in finite samples

• robust to arbitrary misspecification of non-nulls

• can wrap around any black-box algorithm

• able to deal with any type of covariates
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AdaPT works well in a range of applications

Chao and Fithian ’21:
AdaPT-GMM: Powerful and robust covariate-assisted multiple testing

Number of rejections in case studiesB
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AdaPT works well in a range of applications
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AdaPT, Visualized

F̂DPt =
#blue points+ 1

#red points ∨ 1
(#blue points ≈ #red nulls)
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Covariate-dependent threshold st(x)

Mirror image 1− st(x)

Update st(x) until F̂DPt ≤ α

Reject all red points
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AdaPT, “Analyst View”
Define partially masked p-values:

p̃t,i =

{
pi st(xi) < pi < 1− st(xi)
min{pi, 1− pi} otherwise.

AdaPT (Analyst View)
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To select st+1(x), we can only use:
• x1, . . . , xn
• p̃t,1, . . . , p̃t,n

Any such update rule is OK
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AdaPT: Finite-Sample FDR Control

Theorem 1 (L. and Fithian, ’18).

Assume that, conditional on (xi)
n
i=1 and (pi)i/∈H0

, the null p-values
(pi)i∈H0 are independent and mirror-conservative (e.g. uniform).
Then AdaPT controls FDR at level α.

• Non-null p-values can be arbitrarily dependent

• Most p-values in practice are mirror conservative

• AdaPT controls FDR with arbitrary update rule
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AdaPT is flexible!

AdaPT is unusually flexible in that the FDR is controlled

• no matter how misspecified our model is

• no matter how misguided our priors are (if Bayesian)

• no matter how we select a model or tuning parameter

• no matter how crazy we are

Don’t worry!

Use your favorite method

Guaranteed FDR nevertheless

Don’t be crazy!

Use the best possible method

Degraded power otherwise

12 / 26



AdaPT is flexible!

AdaPT is unusually flexible in that the FDR is controlled

• no matter how misspecified our model is

• no matter how misguided our priors are (if Bayesian)

• no matter how we select a model or tuning parameter

• no matter how crazy we are

Don’t worry!

Use your favorite method

Guaranteed FDR nevertheless

Don’t be crazy!

Use the best possible method

Degraded power otherwise

12 / 26



AdaPT is flexible!

AdaPT is unusually flexible in that the FDR is controlled

• no matter how misspecified our model is

• no matter how misguided our priors are (if Bayesian)

• no matter how we select a model or tuning parameter

• no matter how crazy we are

Don’t worry!

Use your favorite method

Guaranteed FDR nevertheless

Don’t be crazy!

Use the best possible method

Degraded power otherwise

12 / 26



AdaPT is flexible!

AdaPT is unusually flexible in that the FDR is controlled

• no matter how misspecified our model is

• no matter how misguided our priors are (if Bayesian)

• no matter how we select a model or tuning parameter

• no matter how crazy we are

Don’t worry!

Use your favorite method

Guaranteed FDR nevertheless

Don’t be crazy!

Use the best possible method

Degraded power otherwise

12 / 26



AdaPT is flexible!

AdaPT is unusually flexible in that the FDR is controlled

• no matter how misspecified our model is

• no matter how misguided our priors are (if Bayesian)

• no matter how we select a model or tuning parameter

• no matter how crazy we are

Don’t worry!

Use your favorite method

Guaranteed FDR nevertheless

Don’t be crazy!

Use the best possible method

Degraded power otherwise

12 / 26



AdaPT is flexible!

AdaPT is unusually flexible in that the FDR is controlled

• no matter how misspecified our model is

• no matter how misguided our priors are (if Bayesian)

• no matter how we select a model or tuning parameter

• no matter how crazy we are

Don’t worry!

Use your favorite method

Guaranteed FDR nevertheless

Don’t be crazy!

Use the best possible method

Degraded power otherwise

12 / 26



AdaPT is flexible!

AdaPT is unusually flexible in that the FDR is controlled

• no matter how misspecified our model is

• no matter how misguided our priors are (if Bayesian)

• no matter how we select a model or tuning parameter

• no matter how crazy we are

Don’t worry!

Use your favorite method

Guaranteed FDR nevertheless

Don’t be crazy!

Use the best possible method

Degraded power otherwise

12 / 26



Updating the Threshold: Guiding Principle

Theorem 2 (L. and Fithian, ’18).

Under the two-group model and mild assumptions, the optimal
threshold s(x) is a level curve of local FDR.

1 Propose a working model;

2 Use your favorite method to fit the model;

3 Estimate level curves of local FDR;

4 Move the threshold towards a “near” level curve;

5 Repeat Step 2 - Step 4 until F̂DP ≤ α.
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Conditional Two-Groups Model (A Working Model!)

Frame threshold choice in terms of conditional two-groups model:

Hi | xi ∼ Bernoulli(π1(xi))

pi | Hi, xi ∼
{
f0(p | xi) if Hi = 0

f1(p | xi) if Hi = 1
.

Assume f0(p | x) = 1, define conditional mixture density

f(p | x) = (1− π1(x)) f0(p | x) + π1(x)f1(p | x)
= 1− π1(x) + π1(x)f1(p | x),

leading to conditional local fdr

fdr(p | x) = P(Hi is null | xi = x, pi = p) =
1− π1(x)
f(p | x)
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Rejection Thresholds and Local fdr

Best st(x) are level surfaces of fdr(p | x)
(maximizes power subject to FDR ≤ α)

Idea:
1 Estimate f̂drt(p | x) using data at step t
2 Choose level surface for st+1(x)

Note: Need to impute Hi and pi (only know min{pi, 1− pi})

EM update is easy!
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Generalized EM Framework

Masked
Input:
(xi, p̃i,t)

Imputation
(E Step)

Input:
any exp.
family

Fitting l̂fdr
(M Step)

Converge

Input:
any fitting
algorithm

GLM, GAM, GBM,

LASSO, Random forest,

Neural Networks ...

Output

(l̂fdri)i∈[n]

Yes

No
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AdaPT Pipeline

Input:
(xi, pi)i∈[n]

Masked
Input:
(xi, p̃i,t)

EM
Framework

Model
Selection

Update
st(x) and Rt

F̂DP ≤ α Return R
No

Yes
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R package: adaptMT

• Convenient wrappers: adapt_glm/gam/glmnet/gbm
• Generic interface: allows any user-specified learning algorithm
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Example: RNA-seq Data

Expression in two mouse strains C57BL/6J (B6) and DBA/2J (D2)

• n = 13932 genes, 21 samples (10 B6 and 11 D2)

• Hi : no differential response in gene i

• pi : computed via DEseq2 package

• xi : logarithmic normalized count via DEseq2 package

• Data by [Bottomly et al. ’11]; studied also by [Ignatiadis et al. ’16]
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Animation: RNA-seq Data
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RNA-seq Data: Power Comparison

Number of Rejections (Bottomly)

Target FDR level α
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Learnability of AdaPT

• Even the initial step contains a lot of information

F−1 = {(xi,min{pi, 1− pi})ni=1}

• Can be highly informative about which hypotheses are non-null

• min{pi, 1− pi} = 10−8 =⇒ Hi is likely false

• For large t, Ft ≈ whole data set: nearly no information loss

• More informative than just using large p-values {pi : pi ≥ λ}
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Information Loss by Partial Masking

Correlation of Estimated Local FDR (Bottomly)

Target FDR α (large −−> small)
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Extension: FDR Control With Structural Constraints

Selectively Traversed Accumulation Rules (STAR) L., Ramdas, Fithian ’21
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Extension: FDR Control With Multivariate Test Statistics

Bags of Null Statistics (BONuS) Yang, L., Ho, Fithian ’21
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Summary

We proposed Adaptive P-value Thresholding (AdaPT)

• controls FDR in finite samples

• robust to arbitrary misspecification of non-nulls

• can wrap around any black-box algorithm

• able to deal with any type of covariates

Thank you!
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