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Multiple Hypothesis Testing

Setting: hypotheses Hy, ..., H, with p-values p1,...,p,

Notation:
® Hy = {i: H; is true}: null hypotheses
e S={i: H;is rejected}: set of rejections (discoveries)
® R = |S]| total rejections
e V = |S N Hopl incorrect rejections
False Discovery Proportion FDP = %

Goal: control False Discovery Rate [Benjamini and Hochberg, '95]

FDR = E[FDP] < o
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Side Information
Observe side information x; € X for each H;
x1,...,T, treated as fixed

Ordered multiple testing
® H; most “promising,” then Hs, ..., H, (x; = 1)

® Focus power on early hypotheses
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Side Information

Observe side information x; € X for each H;
x1,...,T, treated as fixed

Ordered multiple testing
® H; most “promising,” then Hs, ..., H, (x; = 1)

® Focus power on early hypotheses

Other examples:
e Data from a similar experiment

e Spatiotemporal location e.g. H; : f(t;) <0

|dea: if we learn a region of X has many non-nulls, can relax
multiplicity correction in that region
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Side Information in Biology

A practical guide to methods controlling ®
false discoveries in computational biology

Check for
Updates

Keegan Korthauer'?!, Patrick K.Kimes'2*, Claire Duvallet3#*, Alejandro Reyes' 21,
Ayshwarya Subramanian®*, Mingxiang Teng®, Chinmay Shukla’, Eric J. AIm3#5 and Stephanie C. Hicks®”™

Table 1 Independent and informative covariates used in case studies

Case study Covariates found to be independent and informative

Microbiome Ubiquity: the proportion of samples in which the feature is present. In microbiome data, it is common for many features to
go undetected in many samples.
Mean nonzero abundance: the average abundance of a feature among those samples in which it was detected. We note
that this did not seem as informative as ubiquity in our case studies.

GWAS Minor allele frequency: the proportion of the population which exhibits the less common allele (ranges from 0 to 0.5)

Gene set analyses

Bulk RNA-seq
Single-Cell RNA-seq

ChlIP-seq

represents the rarity of a particular variant.
Sample size (for meta-analyses): the number of samples for which the particular variant was measured.

Gene set size: the number of genes included in the particular set. Note that this is not independent under the null for
over-representation tests, however (see Additional file 1: Supplementary Results).

Mean gene expression: the average expression level (calculated from normalized read counts) for a particular gene.

Mean nonzero gene expression: the average expression level (calculated from normalized read counts) for a particular
gene, excluding zero counts.

Detection rate: the proportion of samples in which the gene is detected. In single-cell RNA-seq it is common for many genes
to go undetected in many samples.

Mean read depth: the average coverage (calculated from normalized read counts) for the region

Window Size: the length of the region
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AdaPT in a Nutshell

We proposed Adaptive P-value Thresholding (AdaPT)
e controls FDR in finite samples
e robust to arbitrary misspecification of non-nulls
® can wrap around any black-box algorithm

® able to deal with any type of covariates
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AdaPT works well in a range of applications

Chao and Fithian '21:
AdaPT-GMM: Powerful and robust covariate-assisted multiple testing

B Number of rejections in case studies

Microbiome. RNA-seq | SCRNA-seq

18 8 3993 3003 4007 4007 153 153 TS 75 SUS 3118 (0374 28345 23257 23257 23257 23257 23257 23257 13777 13777 1877 8777 43777 13777

Total Tests {5059 118171 | 6783 6306 106760196969
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Examples from Korthauer et al. ('19) Genome Biology.
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AdaPT works well in a range of applications

Application of post-selection inference to multi-omics data yields insights
into the etiologies of human diseases

Ronald Yurko, Max G’Sell, Kathryn Roeder, Bernie Devlin
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AdaPT, Visualized
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AdaPT, “Analyst View"

Define partially masked p-values:

p-value p;

- pi
Pti =

AdaPT (Analyst View)
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predictor x;

se(x) < pi <1 —s¢(x5)

min{p;, 1 —p;} otherwise.

To select sy11(z), we can only use:

® Ti,...,Tp

® ﬁt,la s 7ﬁt,n

Any such update rule is OK
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AdaPT: Finite-Sample FDR Control

Theorem 1 (L. and Fithian, '18).

Assume that, conditional on (x;);_; and (p;)igw,, the null p-values
(pi)ien, are independent and mirror-conservative (e.g. uniform).
Then AdaPT controls FDR at level c.

® Non-null p-values can be arbitrarily dependent
® Most p-values in practice are mirror conservative

® AdaPT controls FDR with arbitrary update rule
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AdaPT is flexible!

AdaPT is unusually flexible in that the FDR is controlled
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AdaPT is unusually flexible in that the FDR is controlled
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Guaranteed FDR nevertheless
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AdaPT is flexible!

AdaPT is unusually flexible in that the FDR is controlled

® no matter how misspecified our model is

® no matter how misguided our priors are (if Bayesian)

® no matter how we select a model or tuning parameter

® no matter how crazy we are
Don't worry! Don't be crazy!
Use your favorite method Use the best possible method
Guaranteed FDR nevertheless Degraded power otherwise
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Updating the Threshold: Guiding Principle

Theorem 2 (L. and Fithian, '18).

Under the two-group model and mild assumptions, the optimal
threshold s(x) is a level curve of local FDR.
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@ Propose a working model;
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© Estimate level curves of local FDR;
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Updating the Threshold: Guiding Principle

Theorem 2 (L. and Fithian, '18).

Under the two-group model and mild assumptions, the optimal
threshold s(x) is a level curve of local FDR.

@ Propose a working model;

® Use your favorite method to fit the model;

© Estimate level curves of local FDR;

O Move the threshold towards a “near” level curve;

® Repeat Step 2 - Step 4 until FDP <a.
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Conditional Two-Groups Model (A Working Model!)

Frame threshold choice in terms of conditional two-groups model:

H; | z; ~ Bernoulli(m(x;))

p" R fo(p‘xl) ifHZ'ZO
ST fulp | w) H =1

Assume fo(p | ) = 1, define conditional mixture density

fplz)=Q1-=m()) folp|z)+mx)fi(p|)
=1-m(z) +m(x)filp| ),
leading to conditional local fdr

1—m(z)

fdr(p | x) = P(H;isnull |2, =2,p; =p) = Tl
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Rejection Thresholds and Local fdr

Best s;(x) are level surfaces of fdr(p | x)
(maximizes power subject to FDR < «)

Idea:
@ Estimate fd/\rt(p | z) using data at step ¢

® Choose level surface for s;41(x)
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Rejection Thresholds and Local fdr

Best s;(x) are level surfaces of fdr(p | x)
(maximizes power subject to FDR < «)

Idea:
@ Estimate fd/\rt(p | z) using data at step ¢

® Choose level surface for s;41(x)

Note: Need to impute H; and p; (only know min{p;, 1 — p;})

EM update is easy!
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Generalized EM Framework

Masked
Input:

(@i, Dit)

e Cf 0 e 0
Imputation Fitting lfdr
(E Step) (M Step)
& J & J
T 7 ( T R !
Input: Input: | GLM, GAM, GBM, !
any exp. any fitting |«-------- 4 LASSO, Random forest, !
family ) L algorithm ) : Neural Networks ... “
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AdaPT Pipeline

0
Input:
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.
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R package: adaptMT

adaptMT [EEXJ A Reference  Articles - Ghangelog

adaptMT

Overview

This package implements Adaptive P-Value Thresholding in the paper: AdaPT: An interactive procedure for multiple testing with side
information. It includes both a framework that allows the user to specify any algorithm to learn local FDR and a pool of convenient
functions that implement specific algorithms:

« adapt() provides a generic framework of AdaPT permitting any learning algorithm;
« adapt_gln() , adapt_gan() and adapt_glmnet() provide convenient wrappers of AdaPT using Generalized Linear Models
(GLM), Generalized Additive Models (GAM) and L1-penalized GLMs;

Install the adaptMT package then read vignette(*adapt_demo”, package = “adaptMT”).

Installation

# install.packages("devtools")
devtools: : install_github("Lihualei71/adaptMT")

If one wants to access the vignette, run the following code to build the vignette. This might update other related packages and please
be patient if so.

devtools::install_github("lihualei71/adaptMT", build_vignettes = TRUE)

Links

Download from CRAN at
https://cloud.r-project.org/
package=adaptMT

Browse source code at
https://github.com/lihualei71/adaptMT

Report a bug at
https://github.com/lihualei71/adaptMT/
issues

License

Full license

MIT + file LICENSE
Citation
Citing adaptMT
Developers

Lihua Lei
Author, maintainer

Dev status

e Convenient wrappers: adapt_glm/gam/glmnet/gbm

® Generic interface: allows any user-specified learning algorithm
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Example: RNA-seq Data

Expression in two mouse strains C57BL/6J (B6) and DBA/2J (D2)

® n = 13932 genes, 21 samples (10 B6 and 11 D2)

H; : no differential response in gene 1

® p; : computed via DEseq2 package

x; : logarithmic normalized count via DEseq2 package

Data by [Bottomly et al. '11]; studied also by [Ignatiadis et al. '16]
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Animation: RNA-seq Data
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RNA-seq Data: Power Comparison
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Learnability of AdaPT

® Even the initial step contains a lot of information
F—1 = {(zs min{p;, 1 — pi})ii}
e Can be highly informative about which hypotheses are non-null

® min{p;,1 — p;} = 1078 = H; is likely false
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Learnability of AdaPT

Even the initial step contains a lot of information

F-1 = {(z;, min{p;, 1 — pi})iq}

Can be highly informative about which hypotheses are non-null

min{p;, 1 — p;} = 1078 = H; is likely false

For large t, .#; ~ whole data set: nearly no information loss

More informative than just using large p-values {p; : p; > A\}
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Information Loss by Partial Masking

Correlation of Estimated Local FDR (Bottomly)

1.000

Correlation
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Extension: FDR Control With Structural Constraints

Selectively Traversed Accumulation Rules (STAR) L., Ramdas, Fithian '21

P.Values Masked P-Values Truth (c rcular layout) Truth (hierarchical layout

Step 0: #rej. = 400, FDP = 0. 72 Model-Assisted Score (GAM)

Step 0: #rej. = 100, FDP = 0. 83

RREIEIE) e ..-.. Il
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Extension: FDR Control With Multivariate Test Statistics

Bags of Null Statistics (BONuS) Yang, L., Ho, Fithian '21
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Summary

We proposed Adaptive P-value Thresholding (AdaPT)
e controls FDR in finite samples
e robust to arbitrary misspecification of non-nulls
® can wrap around any black-box algorithm

® able to deal with any type of covariates

Thank you!

26 /26



	2.Plus: 
	2.Reset: 
	2.Minus: 
	2.EndRight: 
	2.StepRight: 
	2.PlayPauseRight: 
	2.PlayRight: 
	2.PauseRight: 
	2.PlayPauseLeft: 
	2.PlayLeft: 
	2.PauseLeft: 
	2.StepLeft: 
	2.EndLeft: 
	anm2: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


