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DR estimation of the local average treatment effect curve Ogburn, Rotnitzky, and Robins (2015)

background
hypothetical example

We want to know the causal effect of colonoscopy (D) on colorectal
cancer (Y ).

High rates of noncompliance for colonoscopy.

Unmeasured confounders (U) of receiving colonoscopy and outcome
include mental health, underlying attitudes and behaviors related to
health.

Treatment assignment (Z ) is an instrument for treatment.

Covariates (X ) include age, family history, BMI, smoking history,
fecal occult bleeding test (ng/mL).

Counterfactuals Yz,d , Dz
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background
setting and definitions

Compliance types:

always takers take treatment regardless of the instrument:
D1 = D0 = 1

never takers do not take treatment regardless of the instrument:
D1 = D0 = 0

compliers follow their assignment: DZ = Z

defiers do the opposite of their assignment: DZ = 1−Z
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background
setting and definitions

The local average treatment effect (LATE) is the treatment
effect among compliers

LATE (v) = E [Y1 −Y0|Complier ,V = v ]

Our goal is to model LATE (v) as robustly as possible.

V may be a strict subset of X , it may be equal to X , or it may be
the empty set.
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outline

1 Background.

2 Warm up with the DR model for LATE (x).

3 Present the more general model for LATE (v).

4 Data analysis.

5 A surprising link between our model for LATE (v) and a
different class of models.
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context

Estimation of LATE first proposed by Angrist, Imbens, and
Rubin (1993, 1996) and Baker and Lindeman (1994).
Froelich (2007), Tan (2006), and Uysal (2011) proposed DR
estimators for LATE marginalized over covariates (see also
Okui et al, 2012).
There have been many proposals for estimation of LATE (x)
(Abadie, 2003; Hirano et al, 2000; Little and Yau, 1998; Tan,
2006).

They are not DR.
They require more modeling restrictions than ours when X is
high dimensional and result in parametric specifications for
LATE (x) that are difficult to interpret.

We are not aware of any previous proposals for estimating
LATE (v), though it would be possible using the methods in
Tan (2010). However, the methods in Tan (2010) could suffer
from model incompatibility.
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context

We propose doubly robust estimators for LATE (v) that
parameterize LATE (v) directly, ensuring interpretability of the
model of interest, along with two nuisance models.

But first, LATE (x)...
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background
I.V. assumptions for identifiability

(i) exclusion: there is no direct effect of Z on Y , Yz ,d = Yd

(ii) instrumentation: Z has a causal effect on D for all X , i.e.
P (D1 = 1|X )−P (D0 = 1|X ) "= 0 w.p. 1

(iii) randomization: Z is independent of the counterfactuals for D

and Y conditional on X , i.e.{Yd , Dz}⊥ Z | X

(iv) monotonicity: there are no defiers in the population, i.e. D1 ≥ D0

(v) positivity: the support of X is the same among those with Z = 1 and
Z = 0, i.e. 0 < P(Z = 1|X )< 1

(vi) consistency: The observed outcome (treatment) is the counterfactual

corresponding to the observed treatment (instrument), i.e.
Y = DY1 +(1−D)Y0 and D = ZD1+(1−Z )D0
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background
modeling assumptions

Under these assumptions, LATE (x) is identified by the I.V.
estimand

IVE (x)≡
E [Y |Z = 1,X = x]−E [Y |Z = 0,X = x]

E [D|Z = 1,X = x]−E [D|Z = 0,X = x]
.

(Angrist, Imbens, and Rubin, 1993, 1996; Imbens and Angrist, 1994)
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background
modeling assumptions

We would like to be able to estimate LATE (x) under the
semiparametric model that posits only the I.V. assumptions
and a parametric model for LATE (x).

But the curse of dimensionality is such that, for X high
dimensional, additional modeling assumptions are required.
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observed data restrictions

I.V. assumptions=⇒






P (y < Y ≤ y ′,D = 1|Z = 1,X )−P (y < Y ≤ y ′,D = 1|Z = 0,X ) ≥ 0

P (y < Y ≤ y ′,D = 0|Z = 0,X )−P (y < Y ≤ y ′,D = 0|Z = 1,X ) ≥ 0

E (D|Z = 1,X )−E (D|Z = 0,X ) > 0

0 < P(Z = 1|X )< 1

m (x ;β ∗) = LATE(x) =⇒ m (x ;β ∗) =
E [Y |Z = 1,X = x]−E [Y |Z = 0,X = x]

E [D |Z = 1,X = x]−E [D |Z = 0,X = x]
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observed data restrictions

I.V. assumptions=⇒






P (y < Y ≤ y ′,D = 1|Z = 1,X )−P (y < Y ≤ y ′,D = 1|Z = 0,X ) ≥ 0

P (y < Y ≤ y ′,D = 0|Z = 0,X )−P (y < Y ≤ y ′,D = 0|Z = 1,X ) ≥ 0

E (D|Z = 1,X )−E (D|Z = 0,X ) > 0

0 < P(Z = 1|X )< 1

m (x ;β ∗) = LATE(x) =⇒ m (x ;β ∗) =
E [Y |Z = 1,X = x]−E [Y |Z = 0,X = x]

E [D |Z = 1,X = x]−E [D |Z = 0,X = x]
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the model

When Z is binary, as we assume throughout,

m(x ;β ∗) =
E [Y |Z = 1,X = x ]−E [Y |Z = 0,X = x ]

E [D|Z = 1,X = x ]−E [D|Z = 0,X = x ]

is equivalent to

Cov



Y −m(X ;β ∗)D︸ ︷︷ ︸
H(β ∗)

, Z

∣∣∣∣∣∣∣
X



= 0.
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the model

Inference is based on the conditional moment restriction

Cov



Y −m(X ;β ∗)D︸ ︷︷ ︸
H(β ∗)

, Z

∣∣∣∣∣∣∣
X



= 0.

The set gradients for β ∗ is




q(X )



Y −m(X ;β ∗)D︸ ︷︷ ︸
H(β ∗)

−E [Y −m(X ;β ∗)D|X ]︸ ︷︷ ︸
E [H(β ∗)|X ]



(Z −E [Z |X ])





.
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the model





q(X )



Y −m(X ;β ∗)D︸ ︷︷ ︸
H(β ∗)

−E [Y −m(X ;β ∗)D|X ]︸ ︷︷ ︸
E [H(β ∗)|X ]



(Z −E [Z |X ])






For high dimensional X , we cannot hope to find an estimator with
influence function in this set.
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the model





q(X )



Y −m(X ;β ∗)D︸ ︷︷ ︸
H(β ∗)

−E [Y −m(X ;β ∗)D|X ]︸ ︷︷ ︸
E [H(β ∗)|X ]



(Z −E [Z |X ])






For high dimensional X , we cannot hope to find an estimator with
influence function in this set.

Postulate two additional models:

(1) E [Z |X ] = π(X ;α)

α̂ solves the score equations

En

[
∂

∂α logitπ (X ;α){Z −π (X ;α)}
]
= 0

(2) E [H (β ) |X ] = h (X ;η(β ))

For each β , η̂ (β ) solves the estimating equation

En

[
∂

∂η h (X ;η){H (β )−h (X ;η)}
]
= 0
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the model

DR estimating equations:

En




q(X )




H(β )−h(X ; η̂(β ))︸ ︷︷ ︸

model for
E [H(β)|X ]








Z − π(X ; α̂)︸ ︷︷ ︸

model for
E [Z |X ]








= 0

CAN for β ∗ if either h(X ;η) or π(X ;α) is correctly specified.

If both are correctly specified, and if q(X ) = qopt(X ), then our
estimator attains the asymptotic semiparametric efficiency
bound.
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LATE (v)
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identifying assumptions

(i) exclusion: there is no direct effect of Z on Y , Yz ,d = Yd

(ii) instrumentation: Z has a causal effect on D for all V , i.e.
P [D1 = 1|V ]−P [D0 = 1|V ] "= 0 w.p 1

(iii) randomization: Z is independent of the counterfactuals for D

and Y conditional on X , i.e.{Yd , Dz}⊥ Z | X

(iv) monotonicity: there are no defiers in the population, i.e. D1 ≥ D0

(v) positivity: the support of X is the same among those with Z = 1 and
Z = 0, i.e. 0 < P(Z = 1|X )< 1

(vi) consistency: The observed outcome (treatment) is the counterfactual

corresponding to the observed treatment (instrument), i.e.
Y = DY1 +(1−D)Y0 and D = ZD1+(1−Z )D0
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estimation of LATE (v)

Under the I.V. assumptions, LATE (v) is identified by the conditional I.V.
estimand

IVE (v) =
E [E (Y |Z = 1,X )−E (Y |Z = 0,X ) |V = v ]

E [E (D|Z = 1,X )−E (D|Z = 0,X ) |V = v ]
.
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observed data restrictions

I.V. assumptions=⇒






P (y < Y ≤ y ′,D = 1|Z = 1,X )−P (y < Y ≤ y ′,D = 1|Z = 0,X ) ≥ 0

P (y < Y ≤ y ′,D = 0|Z = 0,X )−P (y < Y ≤ y ′,D = 0|Z = 1,X ) ≥ 0

E (D|Z = 1,X )−E (D|Z = 0,X ) > 0

0 < P(Z = 1|X )< 1

m (v ;β ∗)=LATE(v) =⇒ m (v ;β ∗) =
E [E (Y |Z = 1,X )−E (Y |Z = 0,X ) |V = v ]

E [E (D |Z = 1,X )−E (D |Z = 0,X ) |V = v ]
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the model

m(v ;β ∗) =
E [E (Y |Z = 1,X )−E (Y |Z = 0,X ) |V = v ]

E [E (D|Z = 1,X )−E (D|Z = 0,X ) |V = v ]

is equivalent to

E





E



Y −m(V ;β ∗)D
︸ ︷︷ ︸

H(β∗)

| Z = 1,X



 | V





−E





E



Y −m(V ;β ∗)D
︸ ︷︷ ︸

H(β∗)

| Z = 0,X



 | V





= 0

and to

E

{(
1

P [Z = 1|X ]

)Z (
−

1

P [Z = 0|X ]

)1−Z

H (β ∗) | V

}

= 0.
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DR estimation of the local average treatment effect curve Ogburn, Rotnitzky, and Robins (2015)

estimation of LATE (v)

The set of gradients for β ∗ is

{

q (V )

[(
1

P [Z = 1|X ]

)Z (
−

1

P [Z = 0|X ]

)1−Z

H (β ∗)

−(Z −P [Z = 1|X ])

(
E [H (β ∗) |Z = 1,X ]

P [Z = 1|X ]
+

E [H (β ∗) |Z = 0,X ]

P [Z = 0|X ]

)]}

For high dimensional X , we cannot hope to find an estimator
with influence function in this set.
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estimation of LATE (v)

The set of gradients for β ∗ is
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estimation of LATE (v)

{

q (V )

[(
Z

P [Z = 1|X ]

)Z (
−

1−Z

P [Z = 0|X ]

)1−Z

H (β ∗)

−(Z −P [Z = 1|X ])

(
E [H (β ∗) |Z = 1,X ]

P [Z = 1|X ]
+

E [H (β ∗) |Z = 0,X ]

P [Z = 0|X ]

)]}

We postulate two additional models

(1) E [Z |X ] = π(X ;α)

(2) E [H (β ) |Z ,X ] = h(Z ,X ;η(β ).
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estimation of LATE (v)

DR estimating equations

En

{

q (V )

[(
Z

π(X ; α̂)

)Z (
−

1−Z

1−π(X ; α̂)

)1−Z

H (β )

−(Z −π(X ; α̂))

(
h(1,X ; η̂(β ))

π(X ; α̂)
+

h(0,X ; η̂(β ))

1−π(X ; α̂)

)]}
= 0

The solution β̂ is CAN for β ∗ if either π(X ;α) or
h(Z ,X ;η(β )) is correctly specified.

If both are correctly specified and if q(V ) = qopt(V ), our
estimator attains the asymptotic semiparametric efficiency
bound (see page 383).
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estimation of LATE (v)

The model for E [H (β ) |Z ,X ] has to respect the constraint
that E {E [H(β ∗) | Z = 1,X ] |−E [H(β ∗) | Z = 0,X ] | V }= 0.

This is immediate when V = X but not straightforward when
V is a strict, non-empty subset of X .
We give one possible modeling strategy on p. 380.

Models π(X ;α) and h(Z ,X ;η) are variation independent of
m(V ;β ). That is, no modeling assumptions incorporated into
π(X ;α) and h(Z ,X ;η) can conflict with any parametric
specification m(V ;β ) of LATE (v).

The asymptotic variance of β̂ can be estimated by the
sandwich variance estimator or by the bootstrap.
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data analysis

What is the effect of 401(k) tax-deferred retirement plans on
household saving in the U.S.? Do 401(k) plans represent
increased saving or do they replace other modes of saving?

Survey of Income and Program Participation (SIPP) data,
previously analyzed by Abadie (2003), included 9725 household
reference subjects.

Y = net financial assets; Z = 401(k) eligibility; D = 401(k)
participation;
X = (age, married, family size, household income)

Eligibility is determined by employers; D = 0 whenever Z = 0.

Therefore there are no defiers or always takers.

We estimated LATE (income).
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data analysis

Estimators of (β0 ,β1) and their bootstrap standard errors

under model LATE (income) = β0 +β1 · income.

Power k of income

1 2 4 8

β̂opt
dr

-4640 (2940) -1845 (3220) -1490 (2900) -1566 (2896)

intercept
β̂ ineff ,stable
dr

-418 (4827) -4958 (5547) -1814 (4527) -1590 (4543)

β̂ ineff ,stable
ipw 12331 (6076) -3489 (5632) -1478 (4019) -1179 (4409)

β̂reg -6992 (7019) 1929 (7665) -1266 (6796) -1494 (7004)

β̂opt
dr

382 (88) 337 (92) 328 (82) 328 (83)

income
β̂ ineff ,stable
dr

272 (128) 425 (149) 340 (123) 331 (120)

β̂ ineff ,stable
ipw 14 (161) 385 (154) 339 (117) 329 (123)

β̂reg 510 (187) 272 (210) 345 (183) 353 (194)
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data analysis

Estimators of (β0 ,β1) and their bootstrap standard errors

under model LATE (income) = β0 +β1 income.

Power k of income

1 2 4 8

β̂opt
dr

-4640 (2940) -1845 (3220) -1490 (2900) -1566 (2896)

intercept
β̂ ineff ,stable
dr

-418 (4827) -4958 (5547) -1814 (4527) -1590 (4543)

β̂ ineff ,stable
ipw 12331 (6076) -3489 (5632) -1478 (4019) -1179 (4409)

β̂reg -6992 (7019) 1929 (7665) -1266 (6796) -1494 (7004)

β̂opt
dr

382 (88) 337 (92) 328 (82) 328 (83)

income
β̂ ineff ,stable
dr

272 (128) 425 (149) 340 (123) 331 (120)

β̂ ineff ,stable
ipw 14 (161) 385 (154) 339 (117) 329 (123)

β̂reg 510 (187) 272 (210) 345 (183) 353 (194)

Different DR estimators give similar estimates; this is consistent with
approximately correct specification of the LATE(income) model.
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data analysis

Estimators of (β0 ,β1) and their bootstrap standard errors

under model LATE (income) = β0 +β1 income.

Power k of income

1 2 4 8

β̂opt
dr

-4640 (2940) -1845 (3220) -1490 (2900) -1566 (2896)

intercept
β̂ ineff ,stable
dr

-418 (4827) -4958 (5547) -1814 (4527) -1590 (4543)

β̂ ineff ,stable
ipw 12331 (6076) -3489 (5632) -1478 (4019) -1179 (4409)

β̂reg -6992 (7019) 1929 (7665) -1266 (6796) -1494 (7004)

β̂opt
dr

382 (88) 337 (92) 328 (82) 328 (83)

income
β̂ ineff ,stable
dr

272 (128) 425 (149) 340 (123) 331 (120)

β̂ ineff ,stable
ipw 14 (161) 385 (154) 339 (117) 329 (123)

β̂reg 510 (187) 272 (210) 345 (183) 353 (194)

The income coefficient is approximately 330, suggesting that 401(k) plans have
more effect on the savings of families with higher incomes.
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data analysis

Estimators of (β0 ,β1) and their bootstrap standard errors

under model LATE (income) = β0 +β1 income.

Power k of income

1 2 4 8

β̂opt
dr

-4640 (2940) -1845 (3220) -1490 (2900) -1566 (2896)

intercept
β̂ ineff ,stable
dr

-418 (4827) -4958 (5547) -1814 (4527) -1590 (4543)

β̂ ineff ,stable
ipw 12331 (6076) -3489 (5632) -1478 (4019) -1179 (4409)

β̂reg -6992 (7019) 1929 (7665) -1266 (6796) -1494 (7004)

β̂opt
dr

382 (88) 337 (92) 328 (82) 328 (83)

income
β̂ ineff ,stable
dr

272 (128) 425 (149) 340 (123) 331 (120)

β̂ ineff ,stable
ipw 14 (161) 385 (154) 339 (117) 329 (123)

β̂reg 510 (187) 272 (210) 345 (183) 353 (194)

As expected, the DR estimator with the optimal q(·) function has the smallest
standard errors.
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connection to ETT

Robins (1994) and Tan (2010) estimated the average treatment
effect on the treated

ETT (V ) = E [Y1 −Y0|D = 1,V ] .

Though the Robins-Tan model is quite different from ours,
estimating procedures are the same under the two models!
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connection to ETT

The Robins-Tan model for the ETT assumes

exclusion, randomization, instrumentation, positivity, and
consistency – but not monotonicity.
no treatment-instrument interaction: ETT (z ,v) = ETT (v).
a parametric model m (v ;β ∗) = ETT (v).

Under these assumptions, ETT (v) is identified by the I.V. estimand

IVE (v) =
E [E (Y |Z = 1,X )−E (Y |Z = 0,X ) |V = v ]

E [E (D|Z = 1,X )−E (D|Z = 0,X ) |V = v ]
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connection to ETT

The Robins-Tan model imposes these constraints on the observed data:

Assumptions=⇒






E [P (D = 1|Z = 1,X ) |V ] "= E [P (D = 1|Z = 0,X ) |V ] w.p. 1

0 < P(Z = 1|X )< 1

m (v ;β ∗)=ETT (v) =⇒ m (v ;β ∗) =
E [E (Y |Z = 1,X )−E (Y |Z = 0,X ) |V = v ]

E [E (D |Z = 1,X )−E (D |Z = 0,X ) |V = v ]
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connection to ETT

Every observed data distribution is compatible with a counterfactual
world in which the models are the same and the ETT is equal to
the LATE .

This counterfactual world is characterized by

no defiers
the effect of treatment is the same among compliers and
always takers.

The treated population is comprised of compliers and always takers,
so if we assume effect homogeneity then ETT (v) = LATE (v).

This condition is unlikely to hold in reality, but it is untestable.
Because it is compatible with any observed data distribution
inference must be the same whether it holds or not.
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summary

DR estimation of LATE (v) where V ⊆ X

requires nuisance models for E [H(β )|Z ,X ] and P(Z = 1|X ).

can be important effect for clinical decisions.

is the same as DR estimation of ETT (v) under a different set
of identifying assumptions.

Please see the paper for

extra efficiency protection.

DR estimation of MLATE (v) = E [Y1|Complier ,V=v ]
E [Y0|Complier ,V=v ] .

DR estimation of the least squares approximation to LATE (v).

further exploration of the SIPP data.
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Thank you!
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