
Point process modelling for 
directed interaction networks

Patrick O. Perry and Patrick J. Wolfe
New York University and University College London

1



Interaction data
emails
mobile phone calls
transit cards
credit cards
movement in public places
blog entries
online social networks

These transactions leave digital traces that can be compiled 
into comprehensive pictures of both individual and group 
behavior

-Lazer et al. (2009)
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Raw data + Point process model = Insight

Insight: Which traits and behaviors are predictive of interaction
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Raw data: Enron e-mail dataset

Message-ID: <7303996.1075860726914.JavaMail.evans@thyme>
Date: Wed, 10 Oct 2001 08:51:16 -0700 (PDT)
From: kenneth.lay@enron.com
To: benjamin.r@enron.com
Subject: RE: Power Trading Group

Ben -

I likewise was glad to see you.   Sorry we didn’t have a chance to talk.

Good to hear you’re doing well.  You’re with a great group and, yes, the 
company will soon be doing a lot better.

Thanks,

Ken

156 Employees, 21635 Messages, Nov 1998 – June 2002 
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156 nodes, 21635 messages

(Heer, 2004)
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Question: Which traits and behaviors are predictive of 
interaction? 

Gender:
Female (43)
Male  (113)

Seniority:
Junior (82)
Senior (74)

Department:
Legal (25)
Trading (60)
Other (71)

Employee Traits

The big question 6



Raw data
Messages

Time Sender Receiver

t1 i1 j1

t2 i2 j2

tN iN jN

t1 i1 j1
t2 i2 j2
...

...
...

tn in jn

1. Continuous time
2. Events, not links
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Point process model

Time

Model via intensity,                :�t(i, j)

�t(i, j) dt = Prob{i sends to j in [t, t+ dt)}

Messages from    to    :i j
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Employee traits

20 edge-specific traits: L(j), L(i)*L(j), T(i)*L(j), J(i) *L(j), ...

Notation:

Point Process Modeling for Directed Interaction Networks 11

Variate Characteristic of actor i Count

L(i) member of the Legal department 25
T (i) member of the Trading department 60
J(i) seniority is Junior 82
F (i) gender is Female 43

Fig. 2. Actor-specific traits, with counts of how many of the 156 actors share each trait

5.2. Covariates
The goal of our investigation is to assess the predictive ability of actor traits and network e↵ects.
To this end, we choose covariates that encode these traits and e↵ects. Each covariate is encoded
as a component of the time-varying dyad-dependent vector xt(i, j), which is linked to the rate of
interaction between sender i and receiver j via the multicast proportional intensity model of (1).

5.2.1. Static covariates to measure homophily and group-level e↵ects

Consider first those actor traits that do not vary with time: the actors’ genders, departments,
and seniorities. We encode the traits of actor i and their second-order interactions using 9
actor-dependent binary (0/1) variables, as described in Fig. 2.

We encode all 20 identifiable first-order interactions between the traits of sender i and receiver
j as components of xt(i, j). We do this by using variates of the form Y (j) and X(i) ·Y (j), where
X and Y are chosen from the list of 4 actor-dependent variates (L, T , J , F ). We also include 4
receiver-specific covariates of the form 1 ·Y (j). We cannot identify the coe�cients for covariates
of the formX(i)·1; if a component of xt(i, j) is the same for all values of j, then the corresponding
component of � will not be identifiable since the product of the two can be absorbed into �̄t(i)
without changing the likelihood.

We measure homophily by way of the estimated coe�cients for covariates of the form X(i) ·
X(j). For example, if the sum of the coe�cients of 1 · J(j) and J(i) · J(j) is large and positive,
this tells us that Junior employees exhibit homophily in their choice of message recipients.

5.2.2. Dynamic covariates to measure network e↵ects

Static e↵ects are useful for determining which traits are predictive of the relative rate of interac-
tion between sender i and receiver j, but they do not shed light on network e↵ects. Therefore,
we are also interested in the predictive relevance of the dynamic network behaviors described in
Fig. 3. The first two behaviors (send and receive) are “dyadic,” involving exactly two actors,
while the last four (2-send, 2-receive, sibling, and cosibling) are “triadic,” involving exactly
three actors.

To measure first-order dependence of message exchange behavior on these network e↵ects, we
introduce binary indicators for all 6 e↵ects as components of xt(i, j). These indicators depend
on the sender i, the receiver, j, and the history of the process at the current time t. By the
shorthand notation 1{send}, we denote the indicator variable depending on sender i, receiver
j, and the current time, t, which indicates if i has sent j a message before time t, with the
remaining notations (1{receive}, 1{2-receive}, etc.) defined similarly.

To measure higher-order time dependence, we introduce additional covariates of the following
form. We partition the interval [�1, t) into K = 7 sub-intervals:

[�1, t) = [t��K , t��K�1

) [ [t��K�1

, t��K�2

) [ · · · [ [t��
1

, t��
0

)

x(i, j) 2 R20
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First attempt: Cox model
Rate of i–j message exchange

Baseline send rate

Coefficient vector

Edge-specific covariate vector

�̄ : 156 ! R+

� : R⇥ 156⇥ 156 ! R+

x : 156⇥ 156 ! R20

⇥t(i, j) = ¯⇥t(i) exp{�Tx(i, j)}
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  [1]  33     0     0   192     0     0     1     0     0     0     0     0     0     0     1     0
 [17]   0     0     0     0     4     0     0     0     0   275     0     0     0     0     0     0
 [33]   0     0     0     0     0     0     0     0     0     0     0     0     2     0     0     1
 [49] 405     0     0     0   407     0     0     0     0     5     0     0     1     0     0     0
 [65]  67     0     0     0     0     0     0     0     0     0     0     1     1     0     0     0
 [81]   0     0     0     0     0     0     0     0     0     0     0   126     0     0     1     0
 [97]   0     3     0    30     0     0     0     0     0     0     0     0   166     0     0     0
[113]   1     0     0     0     0     0     0   271     1     0     0     0     0     0     0     0
[129]   0   221     0     0     0     0     1     8     0   507     0     0     0     0     0     0
[145]   0     0     0     0     0     0     0     0     0    26     7     0
 

  [1]   2.3   2.3   1.4 166.7   1.4   1.4   7.1   2.3   7.1   1.6   2.3   0.4   0.4   1.4 166.7   3.2
 [17]   7.1   2.3   1.4  78.5   3.2   1.4   0.4   4.4  78.5 166.7   3.2   1.4   1.4   2.3   2.3   3.2
 [33]   2.3  78.5   3.2   0.4   0.4   3.2   1.4   2.3   1.4   1.4   2.3   0.4  78.5  78.2   4.4   4.4
 [49] 166.7   2.3   1.4   3.2  78.5   2.3   2.3   4.4   4.4  33.7   0.0   4.4   4.4   1.4   4.6   1.4
 [65]   7.1   4.6   4.4   4.4   0.4   2.3   0.4   7.1   0.4   0.4   2.3   2.3  78.2   2.3   2.3   4.4
 [81]   4.4   4.4   2.3   2.3   0.4   0.4   0.4   1.6   2.3   2.3  33.7 166.7   1.4   4.6 166.7   0.4
 [97]   0.4   2.3   1.4   0.4  33.7   0.4   0.4   1.6   0.4   3.2   0.4   1.4  78.2   0.4   0.4   3.2
[113]  78.5   1.6   0.4   1.4 166.7   3.2   3.2 166.7   4.4  78.5   2.3   4.4   0.4   0.4   0.4   2.3
[129]   3.2  78.2  78.5   0.4   0.4   2.3   2.3   2.3   3.2  78.5   1.4   1.6   0.4   4.6   2.3   4.6
[145]   7.1   0.4   4.4   7.1   2.3   0.4   0.4   0.4   4.4   4.4   4.4   2.3

Messages from Tania J.

Problem: Sparsity

Messages predicted by model
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Solution: Network effects14 P. O. Perry and P. J. Wolfe

send i - j i has sent j a message in the past

receive i � j i has received a message from j in the past

2-send i - h - j there exists an actor h such that i has sent h a mes-
sage and h has sent j a message in the past

2-receive i � h � j there exists an actor h such that i has received a
message from h, and h has received a message from j

sibling h

�
��↵

A
AAU

i j

there exists an actor h such that h has sent i and j
messages in the past

cosibling h

�
���

A
AAK

i j

there exists an actor h such that h has received mes-
sages from i and j

Fig. 3. Dynamic covariates to measure network effects

We measure homophily by way of the estimated coe�cients for covariates of the form X(i) ·
X(j). For example, if the sum of the coe�cients of 1 · J(j) and J(i) · J(j) is large and positive,
this tells us that Junior employees exhibit homophily in their choice of message recipients.

5.2.2. Dynamic covariates to measure network e↵ects

Static e↵ects are useful for determining which traits are predictive of the relative rate of interac-
tion between sender i and receiver j, but they do not shed light on network e↵ects. Therefore,
we are also interested in the predictive relevance of the dynamic network behaviors described in
Fig. 3. The first two behaviors (send and receive) are “dyadic,” involving exactly two actors,
while the last four (2-send, 2-receive, sibling, and cosibling) are “triadic,” involving exactly
three actors.

To measure first-order dependence of message exchange behavior on these network e↵ects, we
introduce binary indicators for all 6 e↵ects as components of xt(i, j). These indicators depend
on the sender i, the receiver, j, and the history of the process at the current time t. By the
shorthand notation 1{send}, we denote the indicator variable depending on sender i, receiver
j, and the current time, t, which indicates if i has sent j a message before time t, with the
remaining notations (1{receive}, 1{2-receive}, etc.) defined similarly.

To measure higher-order time dependence, we introduce additional covariates of the following
form. We partition the interval [�1, t) into K = 7 sub-intervals:

[�1, t) = [t��K , t��K�1

) [ [t��K�1

, t��K�2

) [ · · · [ [t��
1

, t��
0

)

where 1 = �K > �K�1

> · · · > �
1

> �
0

= 0 and “t �1” is defined to be �1. Specifically,
we set �k = (7.5 minutes) ⇥ 4k for k = 1, . . . ,K � 1 so that for k in this range �k takes the
values 30 minutes, 2 hours, 8 hours, 32 hours, 5.33 days, and 21.33 days.
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Interval-dependent network effects
Point Process Modeling for Directed Interaction Networks 15

Define the half-open interval I(k)t = [t � �k, t � �k�1

). For k = 1, . . . ,K we define the
dyadic e↵ects

send
(k)
t (i, j) = #{i ! j in I

(k)
t },

receive
(k)
t (i, j) = #{j ! i in I

(k)
t };

for sender i, such that these covariates measure the number of messages sent to, and respectively

received by, receiver j in time interval I(k)t .
The dyadic e↵ects have been defined in the manner above to enable easy interpretation of the

corresponding coe�cients. To illustrate this, for k = 1, . . . ,K, suppose that �k is the coe�cient

corresponding to send
(k)
t (i, j). If we observe the message i ! j at time t, then for future time

t0 in the interval (t, t + �
1

], the rate �t0(i, j) will be multiplied be the factor e�1 ; for t0 in the
interval (t+�

1

, t+�
2

], the rate will be multiplied by e�2 ; this continues similarly, with the rate
being multiplied by e�k whenever t0 2 (t+�k�1

, t+�k]; equivalently, when �k�1

< t0� t  �k.
Thus, the coe�cients �

1

, . . . ,�K measure the e↵ect of a “send event” and how this e↵ect decays
over time. We expect that �k will decrease as k increases, but we do not enforce this constraint
on the estimation procedure.

The triadic e↵ects involve pairs of messages. For k = 1, . . . ,K and l = 1, . . . ,K we define the
triadic e↵ects

2-send
(k,l)
t (i, j) =

X

h 6=i,j

#{i ! h in I
(k)
t } ·#{h ! j in I

(l)
t },

2-receive
(k,l)
t (i, j) =

X

h 6=i,j

#{h ! i in I
(k)
t } ·#{j ! h in I

(l)
t },

sibling
(k,l)
t (i, j) =

X

h 6=i,j

#{h ! i in I
(k)
t } ·#{h ! j in I

(l)
t },

cosibling
(k,l)
t (i, j) =

X

h 6=i,j

#{i ! h in I
(k)
t } ·#{j ! h in I

(l)
t }.

For sender i and receiver j, the covariate 2-send
(k,l)
t (i, j) counts the pairs of messages such that

for some h distinct from i and j, message i ! h occurred in interval I(k)t and message h ! j

occurred in interval I(l)t ; the other covariates behave similarly.
As with the dyadic e↵ects, the triadic e↵ects are designed so that their coe�cients have

a straightforward interpretation. However, since triadic e↵ects involve pairs of messages, the

interpretation is a bit more involved. We illustrate with the 2-send
(k,l)
t (i, j) covariate having

coe�cient �k,l for k = 1, . . . ,K and l = 1, . . . ,K. Take i and j to be two actors. Suppose at
time t we observe the message h ! j. At this point, we look through the history of the process
for all messages of the form i ! h; when paired with the original h ! j message, each of these
defines a “2-send event.” The other 2-send events are defined as follows: if at time s we observe
the message i ! h, then we enumerate all observed messages h ! j in the history of the process;
when each of these is paired with the original i ! h event it constitutes a 2-send event. A pair
(s, t) can be associated with each 2-send event, where s is the time of the i ! h message and t is
the time of the h ! j message. At time t0 after s and t, the existence of the 2-send event causes
the sending rate �t0(i, j) to be multiplied by the factor e�k,l , where t0 2 (s+�k�1

, s+�k] and
t0 2 (t +�l�1

, t +�l]. We expect �k,l to decrease as k and l increase, though again we do not
enforce this constraint in the fitting procedure.

As previously noted, Butts (2008) used a variant of the proportional intensity model to
capture interaction behavior in social settings. As such, a correspondence can be drawn between

I(1)tI(2)tI(3)t

t
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Triadic network effects

Point Process Modeling for Directed Interaction Networks 15

Define the half-open interval I(k)t = [t � �k, t � �k�1

). For k = 1, . . . ,K we define the
dyadic e↵ects

send
(k)
t (i, j) = #{i ! j in I

(k)
t },

receive
(k)
t (i, j) = #{j ! i in I

(k)
t };

for sender i, such that these covariates measure the number of messages sent to, and respectively

received by, receiver j in time interval I(k)t .
The dyadic e↵ects have been defined in the manner above to enable easy interpretation of the

corresponding coe�cients. To illustrate this, for k = 1, . . . ,K, suppose that �k is the coe�cient

corresponding to send
(k)
t (i, j). If we observe the message i ! j at time t, then for future time

t0 in the interval (t, t + �
1

], the rate �t0(i, j) will be multiplied be the factor e�1 ; for t0 in the
interval (t+�

1

, t+�
2

], the rate will be multiplied by e�2 ; this continues similarly, with the rate
being multiplied by e�k whenever t0 2 (t+�k�1

, t+�k]; equivalently, when �k�1

< t0� t  �k.
Thus, the coe�cients �

1

, . . . ,�K measure the e↵ect of a “send event” and how this e↵ect decays
over time. We expect that �k will decrease as k increases, but we do not enforce this constraint
on the estimation procedure.

The triadic e↵ects involve pairs of messages. For k = 1, . . . ,K and l = 1, . . . ,K we define the
triadic e↵ects

2-send
(k,l)
t (i, j) =

X

h 6=i,j

#{i ! h in I
(k)
t } ·#{h ! j in I

(l)
t },

2-receive
(k,l)
t (i, j) =

X

h 6=i,j

#{h ! i in I
(k)
t } ·#{j ! h in I

(l)
t },

sibling
(k,l)
t (i, j) =

X

h 6=i,j

#{h ! i in I
(k)
t } ·#{h ! j in I

(l)
t },

cosibling
(k,l)
t (i, j) =

X

h 6=i,j

#{i ! h in I
(k)
t } ·#{j ! h in I

(l)
t }.

For sender i and receiver j, the covariate 2-send
(k,l)
t (i, j) counts the pairs of messages such that

for some h distinct from i and j, message i ! h occurred in interval I(k)t and message h ! j

occurred in interval I(l)t ; the other covariates behave similarly.
As with the dyadic e↵ects, the triadic e↵ects are designed so that their coe�cients have

a straightforward interpretation. However, since triadic e↵ects involve pairs of messages, the

interpretation is a bit more involved. We illustrate with the 2-send
(k,l)
t (i, j) covariate having

coe�cient �k,l for k = 1, . . . ,K and l = 1, . . . ,K. Take i and j to be two actors. Suppose at
time t we observe the message h ! j. At this point, we look through the history of the process
for all messages of the form i ! h; when paired with the original h ! j message, each of these
defines a “2-send event.” The other 2-send events are defined as follows: if at time s we observe
the message i ! h, then we enumerate all observed messages h ! j in the history of the process;
when each of these is paired with the original i ! h event it constitutes a 2-send event. A pair
(s, t) can be associated with each 2-send event, where s is the time of the i ! h message and t is
the time of the h ! j message. At time t0 after s and t, the existence of the 2-send event causes
the sending rate �t0(i, j) to be multiplied by the factor e�k,l , where t0 2 (s+�k�1

, s+�k] and
t0 2 (t +�l�1

, t +�l]. We expect �k,l to decrease as k and l increase, though again we do not
enforce this constraint in the fitting procedure.

As previously noted, Butts (2008) used a variant of the proportional intensity model to
capture interaction behavior in social settings. As such, a correspondence can be drawn between
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Final model

⇥t(i, j) = ¯⇥t(i) exp{�Txt(i, j)}

Prob{i sends j a message in time [t,t+dt)}

Vector of time-varying covariates

Baseline intensity for sender i
Vector of coefficients

�t(i, j) dt

�̄t(i)

xt(i, j)

�

(cf. Butts 2008 , Vu et al. 2011)
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MPLE asymptotics
Theorem (POP & PJW): Under regularity conditions:

1.

2.
p
n(�̂n � �)

d! Normal
�
0, �(�)

�
�̂n

P! �

Cox (1975): heuristic argument (“under mild conditions implying 
some degree of independence... and that the information values 
are not too disparate”)

Andersen & Gill (1982): survival analysis, fixed time interval
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Duplication

From: Alice
To: Bob, Carol, Dan

From: Alice
To: Bob

From: Alice
To: Carol

From: Alice
To: Dan

=

?

(21635 to 35567)
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Approximation error
Theorem (POP & PJW): Under regularity conditions, using 
message duplication introduces bias of order (nodes)-1.

2 3 4 5

−4
.0

−3
.5

−3
.0

−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

Log10 Sample Size

Lo
g 1

0 
M

ea
n 

Sq
ua

re
d 

Er
ro

r

●

●

●

●

●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Log10 Receiver Count
1.50
1.75
2.00
2.25
2.50
2.75
3.00

MSE = O(n�1) +O(J�2)

J =
p
n

18



Summary so far

1. Interaction data: (t,i,j) tuples

2. Proportional intensity model; capture group effects and 
reciprocation through covariates

3. Consistent estimates via MPLE

Next: implementation
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Enron results
Data
156 employees
21635 messages

Covariates
20 group-level covariates (static)
216 network effects (dynamic)

Time to fit: 15 minutes
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  [1]  33     0     0   192     0     0     1     0     0     0     0     0     0     0     1     0
 [17]   0     0     0     0     4     0     0     0     0   275     0     0     0     0     0     0
 [33]   0     0     0     0     0     0     0     0     0     0     0     0     2     0     0     1
 [49] 405     0     0     0   407     0     0     0     0     5     0     0     1     0     0     0
 [65]  67     0     0     0     0     0     0     0     0     0     0     1     1     0     0     0
 [81]   0     0     0     0     0     0     0     0     0     0     0   126     0     0     1     0
 [97]   0     3     0    30     0     0     0     0     0     0     0     0   166     0     0     0
[113]   1     0     0     0     0     0     0   271     1     0     0     0     0     0     0     0
[129]   0   221     0     0     0     0     1     8     0   507     0     0     0     0     0     0
[145]   0     0     0     0     0     0     0     0     0    26     7     0
 

  [1]   8.9   0.4   0.3 223.6   0.3   0.3   6.0   0.3   0.2   0.4   0.4   0.2   0.2   0.3  19.8   0.3
 [17]   0.4   0.3   0.3   0.5   5.3   0.3   0.2   0.3   0.5 267.2   0.3   0.3   0.3   0.3   0.3   0.3
 [33]   0.3   0.9   0.3   0.4   0.2   0.3   0.5   0.3   0.3   0.4   0.3   0.2  29.5   0.5   0.2   3.8
 [49] 447.3   0.3   0.3   0.3 233.9   0.3   0.3   0.3   0.2  39.9   0.0   0.4   6.6   0.4   0.3   0.3
 [65]  65.6   0.5   0.3   0.2   0.2   0.3   0.2   0.2   0.2   0.2   0.3   2.7  11.5   0.3   0.4   0.3
 [81]   0.2   0.3   0.3   0.3   0.3   0.2   0.2   0.3   0.3   0.5   1.2  90.4   0.3   0.3   1.5   0.2
 [97]   0.2   3.7   0.3   4.8   0.5   0.2   0.2   0.4   0.2   0.3   0.2   0.3 108.0   0.4   0.2   0.3
[113]  16.2   0.3   0.2   0.3   0.5   0.3   0.3 226.1   2.5   0.9   0.4   0.3   0.2   0.2   0.2   0.3
[129]   0.3 206.6   0.5   0.2   0.2   0.3   7.7   3.9   0.3 655.8   0.3   0.3   0.2   0.3   0.4   0.5
[145]   0.2   0.3   0.4   0.3   0.3   0.3   0.2   0.2   0.2  21.6   3.8   0.4

Messages from Tania J.

Goodness of fit

Messages predicted by model
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Point Process Modeling for Directed Interaction Networks 19

(a) Observed count N1(i, j) plotted against expected count N̂1(i, j)

(b) Pearson residual (N1(i, j)�N̂1(i, j))/{N̂1(i, j)}1/2 plotted against expected count

Fig. 6. Goodness of fit plots for two models

Goodness of fit 22
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Term Df Deviance Resid. Df Resid. Dev

Null 32261 325412
Static 20 50365 32241 275047
Send 8 107942 32233 167105
Receive 8 5919 32225 161186
Sibling 50 3601 32175 157585
2-Send 50 516 32125 157069
Cosibling 50 1641 32075 155428
2-Receive 50 158 32025 155270

Fig. 5. Ad-hoc analysis of deviance for the Enron model. Residual deviance is defined as twice the
approximate negative log partial likelihood from (8). The “Static” term contains the group level effects, and
the other terms contain the network effects.

standard errors by
p
4.8 ⇡ 2.2.

Note, however, that the residual deviance by itself is not adequate as a goodness-of-fit mea-
sure, as it depends only on the estimated coe�cients (see Section 4.4.5 of McCullagh and Nelder
(1989) for discussion of a related problem for logistic regression with sparse data). To shed more
light on how well the model fits these data, we use a normalized version of the martingale residual
from Therneau et al. (1990), which we call a Pearson residual. Specifically, given �̂, we define

N̂t(i, j) =
X

tmt

wtm(�̂, i, j)

Wtm(�̂, i)
1{im = i},

which is the expected number of i ! j events given the estimated model, with
R

�̄t(i) dt

estimated by the Breslow (1974) estimate
R

Wt(�̂, i)�1

P

j dNi,j(t). The martingale residual

analogous to that of Therneau et al. (1990) is then defined as Nt(i, j) � N̂t(i, j); we nor-
malize this quantity by an estimate of its standard deviation to get a “Pearson” residual:
(Nt(i, j)� N̂t(i, j))/{N̂t(i, j)}1/2.

Fig. 6a shows a plot of N1(i, j) versus N̂1(i, j) for two di↵erent models. In the “static”
model, we only include the static covariates, while in the full (“static and dynamic”) model, we
also include all six types of network covariates. The fit for the static model is poor. For instance,
it repeatedly predicts up to 200 i ! j events where we only observed 1 or 2; likewise, the model
predicts 1 or fewer events where we observed up to 20. For the full model, which includes the
dynamic covariates to account for network e↵ects, the fit is much better, with the relationship
between observed and expected interaction counts being roughly linear.

Fig. 6b shows the Pearson residuals. For the full model, more than 95% are less than 1.21
in absolute value, and the maximum absolute residual is 18.7. In contrast, the 95% quantile for
the absolute residuals in the static model is at 3.5, and the maximum absolute residual is 182.7.
The sum of squares if the residuals (X2) is 17281 in the full model, over 34 times lower than that
for the static model (596253). We don’t know what a “reasonable” value for X2 is; an ad-hoc
degrees of freedom calculation suggests that for the full number this should be roughly equal to
23944 = 156 · 155� (20+ 2 · 8+ 4 · 50), which suggests that the full model is too aggressive. The
bootstrap simulations confirm this, with 17055 being 5.6 standard deviances below the mean
value X2 for the bootstrap replicates.

For a more parsimonious model, we might drop most of the triadic e↵ects. Indeed, the model
which only uses dyadic e↵ects has a X2 value of 21094. However, at this stage we desire a model
with the lowest possible bias, and also wish to acquire estimates for all of the network e↵ects.
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Receiver

Sender L T J F

1
-0.91 -0.36 -0.34 0.04
(0.04) (0.04) (0.04) (0.03)

L
0.63 0.28 0.22 0.15
(0.05) (0.05) (0.04) (0.04)

T
0.32 0.43 0.27 -0.07
(0.07) (0.05) (0.05) (0.05)

J
0.06 0.28 0.37 -0.13
(0.05) (0.04) (0.03) (0.03)

F
0.59 -0.21 -0.09 0.15
(0.05) (0.05) (0.04) (0.03)

Fig. 7. Estimated coefficients and standard errors for group-level covariates of the form X(i) · Y (j),
where i is the sender, j is the receiver, and X(i) and Y (j) are given in the row and column headings; dark
coefficients are significant (via Wald test) at level 10�3.

Our first task is to gauge the predictive strength of homophily. To this end, Fig. 7 shows the
estimated group-level coe�cients for our model. Notably, homophily is evident for all almost all
main e↵ects (Department, Seniority, and Gender): the estimated coe�cients of L(j), T (j), and
J(j) are all negative, while the sum of the estimated coe�cients of F (j) and F (i)·F (j) is positive.
Negative homophily is evidenced in that the sum of the coe�cients for L(j) and L(i) · L(j) is
negative. The coe�cient of F (j) and the sum of the coe�cients for T (j) and T (i) · T (j); and
J(j) and J(i) · J(j) are not significant.

Taking Gender as an example, the way the homophily e↵ect manifests is as follows: if i
is a Female sending a message at time t, and person j is identical to person j0 except for
Gender, then i is more likely to send to the similarly-gendered individual. The relative rate is
exp(0.04 + 0.15) ⇡ 1.2. The characterization for other types of homophily is similar.

Conspicuously, the only example of negative homophily is when the sender i is in the Legal
department. In this case, if person j is identical to person j0 except for Department, then i is
more likely to send to an individual in a di↵erent department. The relative rates for the three
departments are exp(0.63 � 0.91) ⇡ 0.76 for the Legal department, exp(0.28 � 0.36) ⇡ 0.92 for
the Trading department, and exp(0) = 1 for any Other department.

Were we interested only in homophily, we might be tempted to forgo the proportional intensity
model of (1), and instead perform a contingency table analysis. The supplementary material
explores this approach in detail. The major shortcoming of the contingency table approach is that
it assumes that the messages are independent, which leads to bias in the parameter estimates.

6.2. Evaluating the importance of network effects
In Section 6.1 we established that homophily was predictive of sending behavior, even after
accounting for network e↵ects. We now investigate the characteristics of these network e↵ects
and establish which of these e↵ects are of greatest importance.

To begin our analysis, Fig. 8 shows the estimated coe�cients for the network indicator ef-
fects, giving a crude picture of the predictive importance of each network e↵ect. The estimated
coe�cients are all positive, indicating that network e↵ects strengthen the ties between individu-
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Example: All other factors being equal, Junior sends to Junior e-0.34 + 0.37 - 1 = 4% more 
than Junior sends to Senior; also, Senior sends to Senior e-(-0.34) - 1 = 40% more than Senior 
sends to Junior.
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Variate 1{send} 1{receive} 1{2-send} 1{2-receive} 1{sibling} 1{cosibling}

Coe�cient 3.26 0.97 0.67 0.01 1.06 0.09
(SE) (0.03) (0.02) (0.05) (0.04) (0.05) (0.04)

Fig. 8. Estimated coefficients for network indicator effects
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Fig. 9. Estimated coefficients for dyadic effects, with standard errors

als. The estimated coe�cient for 1{send} is over three times larger than the other coe�cients,
agreeing with the general notion that one is most likely to do today the things one did yesterday.
The next tier of indicator e↵ects comprises 1{receive}, 1{sibling}, and 1{2-send}, whose esti-
mated coe�cients range from 0.67 to 1.06. Two triadic e↵ects, 1{2-receive} and 1{cosibling},
are not significantly predictive of sending behavior.

The estimated coe�cients for the recency-dependent covariates, shown in Figs. 9 and 10,
give a more complete picture of network e↵ects. Firstly, we can see that dyadic e↵ects persist
for over three weeks from the time a message is sent. The decay of the estimated coe�cients
is roughly exponential in the time elapsed, corresponding to a super-exponential decay in the
relative sending rate. For 30 minutes after i sends a message to j, our estimated model predicts
that the rate at which i sends to j will be multiplied by exp(1.11) ⇡ 3.05, and the rate at which
j sends to i will be multiplied by exp(1.85) ⇡ 6.39; then, between 30 minutes and 2 hours, the
rates will be multiplied by exp(0.51) ⇡ 1.67 and exp(0.70) ⇡ 2.02, respectively; this proceeds
similarly until after 21.3 days, when the rates will be multiplied by exp(0.003) ⇡ 1.002 and
exp(0.002) ⇡ 1.002.

Comparing the coe�cients for send
(k)
t with those of receive(k)t we see that the latter are

higher for k  2, while the former are higher for k > 2. The corresponding intuition is that if
A is sending a message up to two hours after receiving a message from B, then A is likely to
respond to B, but after that, A is more likely to send to an individual whom A e-mailed at the
time of receiving B’s original message (provided B and this other individual are identical in all
other respects). The time window during which reciprocation is more important than past habit
is less than 8 hours.
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Example: All other factors being equal, every message j has sent i in the last 30 minutes 
increases the relative i-to-j sending rate by e1.8 = 6; every message sent between 30 
minutes and 2 hours increases the relative rate by e0.7 = 2.
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Fig. 10. Estimated coefficients for triadic effects, with standard errors

From Fig. 10, we can see that the triadic e↵ects are in general less pronounced and are much
more short-lived than the dyadic e↵ects. About 86% of the estimated coe�cients are within
3 standard errors of 0; even those that are significantly nonzero mostly lie between �0.05 and

+0.05. The exceptions are the coe�cients for sibling(1,1)
t (0.51), sibling(2,2)

t (�0.14), sibling(3,2)
t

(0.15), cosibling(1,2)
t (0.32), 2-receive(4,1)t (�0.21), and 2-receive

(4,2)
t (0.09). We may interpret

these coe�cients as follows:

sibling If B sent A and C messages in the last 30 minutes or between two and eight hours ago,
then A and C are more likely to send messages to each other; however, if B sent A and
C messages between 30 minutes and two hours ago, then A and C are less likely to send
messages to each other.

cosibling If A sent a message to B in the last 30 minutes, and C sent a message to B between
30 minutes and two hours ago, then A will send to B at a higher rate.

2-receive If A sent a message to B in the last 30 minutes, and B sent a message to C between
8 hours and 32 hours ago, then C will send to A at a lower rate; if, however, the message
from A to B was sent between 30 minutes and two hours ago, then C will send to A at a
higher rate.

Given the emphasis on transitivity in the networks literature, it may at first seem discon-
certing that most of the estimated coe�cients for the time-dependent triadic e↵ects are found
to be insignificant in this analysis. However, one must bear in mind that, except for messages
sent to them directly, individuals likely have no knowledge of their colleagues’ e-mail activities,
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What have we learned?

1.Employees exhibit trait-based homophily in their 
message sending behavior.

2.History-dependent network effects are far more 
predictive than trait-based effects.

3. The predictive strength of the network effects 
decays rapidly in time.
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