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High-dimensional data

Many modern applications, e.g. in genomics, can have the number of
predictors p greatly exceeding the number of observations n.

In these settings, variable selection is particularly important.
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(a) Microarray data (b) Sparsity
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What is Stability Selection

@ Stability Selection (Meinshausen & Biihlmann, 2010) is a very general
technique designed to improve the performance of a variable selection
algorithm.

@ It is based on aggregating the results of applying a selection
procedure to subsamples of the data.

o A key feature of Stability Selection is the error control provided in the
form an upper bound on the expected number of falsely selected
variables.
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A general model for variable selection

Let Z1,...,Z, be i.i.d. random vectors.

We think of indices S of some components of Z; as being ‘signal
variables’, and the rest N as ‘noise variables’.

E.g. Z = (X, Y;), with covariate vector X; € RP, response Y; € R and
log-likelihood of the form

S LY X B)

i=1
with 3 € RP. Then S = {k: 8x #0} and N = {k: Bx =0}. Thus
SC{1,...,ptand N={1,...,p}\S.

A variable selection procedure is a statistic S, = §,,(Zl, ..., Zpy) taking
values in the set of all subsets of {1,..., p}.
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How does Stability Selection work?

For a subset A= {i1,...,ija} € {1,...,n}, write

A,

S = §\A|(Z"17“'7Z’.|A|)'

Meinshausen and BiihImann defined

~1

A n

Mik) := 1,, =& .

(k) <L”/2J> AC{;W}’ (ke5(A)}
|Al=[n/2]

Stability selection fixes 7 € [0, 1] and selects S'SST ={k: ﬁ(k) > T}
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Error control of Stability Selection

Assume that {Il{kengj} : k € N} is exchangeable, and that S'L,,/QJ is no
worse than random guessing:

Then, for 7 € (3,1],

1 (E[S,2])?

\T

B(IS55 V) <
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Error control discussion

In principle, this theorem allows to user to choose 7 based on the expected
number of false positives they are willing to tolerate. However:

@ The theorem requires two conditions, and the exchangeability
assumption is very strong

@ There are too many subsets to evaluate S,?ST

exactly when n > 30

@ The bound tends to be rather weak.
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Complementary Pairs Stability Selection (CPSS)

Let {(Azj—1,A2) :j=1,...,B} be randomly chosen independent pairs of
subsets of {1,...,n} of size |n/2] such that Ayj_1 N Ay = 0.

Define
1 B
Ne(k) =52 21 Liresian
J:

and select §,§7555 = {k : flg(k) > 7}.

EEEE
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Worst case error control bounds

Define the selection probability of variable k to be py , =P(k € 3,,)

We can divide our variables into those that have low and high selection
probabilities: for 6 € [0, 1], let

Lo = {k: pins2 <0} and Ho = {k : p,|ns2) > 0}
If r e (%, 1], then

o

ESS’ESS N L9| < 27_7_1

E|§\_n/2j N Lg|.

Moreover, if T € [0, %) then

o 1-6 o
E|NSE3° N Hy| < T BNy 0 Hol-
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[llustration and discussion

Suppose p = 1000 and g := IE\.%L,,/QJ\ = 50. On average, CPSS with
7 = 0.6 selects no more than a quarter of the variables that have below
average selection probability under 5|,/2).

@ The theorem requires no exchangeability or random guessing
conditions

@ It holds even when B =1

o If exchangeability and random guessing conditions do hold, then we
recover

2

N GQECRE S ()

E|3SPSS | <
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Let

B
1
Ma(k) = 5 D Viresiayy Likesian)y

j=1
Note that E{f1g(k)} = pl%,Ln/2J' Now

Thus
P{fg(k) > 7} < P{1(1 + fig(k)) > 7} = P{fig(k) > 2r — 1}

2
S 5 1 Pkln/2)-
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It follows that

&CPSs GCPSS
B8 ~E( X fjeg )= 3 FkeSE)
k:pk, ns2) <0 k:pi,n/2) <0

1 , o .
P Y Pl < 51 El5ln/2) N Lol
k:py,nj2) <0

where the final inequality follows because

EISLn/zjﬂL9!=E< > ﬂ{keétnm}>: > Pun-

k:pk, ns2) <0 k:Pk,|n/2) <0
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Bounds with no assumptions whatsoever

If Z1,...,Z, are not identically distributed, the same bound holds,
provided in Ly we redefine

1
Pk,(n/2] = (Ln/2J> |A|Z;/2]P’{k € 552/ (A)}-

Similarly, if Z1,...,Z, are not independent, the same bound holds, with
pf /2] @S the average of

P{k € SL,,/QJ (AN SLn/2j(A2)}

over all complementary pairs Az, Az.

Samworth & Shah (Cambridge) Variable selection 25 October 2017 13 /28



Can we improve on Markov's inequality?
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Figure : Typical and extremal pmfs of |:|25(k) for a low selection probability
variable k.
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Can we improve on Markov's inequality?
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Figure : Typical and extremal pmfs of |:|25(k) for a low selection probability
variable k.
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Improved bound under unimodality

Suppose that the distribution of [1g(k) is unimodal for each k € Ly. If

1 11 1 2
T€{§+§,§+%7§+§7'“71}' then

n

E|5SPSS M Ly| < C(r, B)OE|S /0 N Lo,

where, when § < 1/\/§
1
2(2r —1—1/2B)
4(1-7141/2B)
1+1/B

if 7€ (min(3 + 62,1 + & +36%), 3]
C(Tv B) =

if 7€ (3,1].
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Extremal distribution under unimodality
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Figure : Typical and extremal pmfs of [1ps(k) for a low selection probability
variable k.
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Extremal distribution under unimodality
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Figure : Typical and extremal pmfs of |:|25(k) for a low selection probability
variable k.
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The r-concavity constraint

r-concavity provides a continuum of constraints that interpolate between
unimodality and log-concavity.

A non-negative function f on an interval | C R is r-concave with r < 0 if
f" is convex on /.

A pmf f on {0,1/B,...,1} is r-concave if the linear interpolant to
{(i,f(i/B)):i=0,1,...,B} is r-concave. The constraint becomes
weaker as r increases to 0.
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Further improvements under r-concavity

Suppose ﬁB(k) is r-concave for all k € Ly. Then for 7 = (%, 1],
E|5$P%5 N Ly| < D(6%,27 — 1, B, r)|Ly|
where D can be evaluated numerically.

Our simulations suggest r = —1/2 is a reasonable choice.
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Extremal distribution under —1/2-concavity
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Figure : Typical and pmfs of |:|25(k) for a low selection probability
variable k.
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Extremal distribution under —1/2-concavity
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Figure : Typical and pmfs of |:|25(k) for a low selection probability
variable k.
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r = —1/2 is sensible
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Reducing the threshold 7

Suppose [g(k) is —1/4-concave, and that [1g(k) is —1/2-concave for all
k € Ly. Then

E|S5P%° N Ly| < min{D(6?,27 — 1,B,-1/2), D(6,7,2B,~1/2)} | L],

for all 7 € (0,1]. (We take D(-, t,-,-) =1 for t <0.)
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Improved bounds
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Figure : Comparison of the bounds on E[SS755 N L, | where p = 1000, q = 50
showing the M & B (dashes), worst case (dot dash), unimodal and
bounds, and the true value for a simulated example.
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Simulation study

Linear model Y; = X7 3 + &; with X; € N,(0, X).

Toeplitz covariance ¥;; = plli=JI=p/2I=p/2,

B has sparsity s with s/2 equally spaced within [-1,—0.5] and s/2
equally spaced within [0.5, 1].

n = 200, p = 1000.

Use Lasso and seek E\ggﬁss N Lg/p| < €. Fix g =+/0.8¢p and for
worst-case bound choose 7 = 0.9.

Choose 7 from r-concave bound, oracle 7*, and oracle \* for Lasso
o
Sh.

Compare

E|SSESS N S| I E|S)M N S|
E|SSPSS N S| E|SCPSS N S|
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Simulation results

L e R X - B i R . Rt - %= oo - Nt TR
X
3+ ---l- b - -
MIEVE R IR EE IR NS RO AR NS --|F-
wa - -BF-A- BB BB s - --
o
SNR 5 1 05 1 05 1 2 05 1 2 05 1 2 05 1 2 1 2 1 2
s 4 8 4 8 4 8 4 8
r 0 05 075 09
x x
L T T - - % %- g - - x- - % x
3+ -l -dt-m-- -1 AR -
N4 -- - A F-1t - -Al-m I -0 -
g -l - BF- BB REE AR el --
o

Figure : Expected number or true positives using worst case and

bounds, and an oracle Lasso procedure (crosses), as a fraction of the expected
number of true positives for an oracle CPSS procedure. The y-axis label gives the
desired error control level £.
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CPSS can be used with any variable selection procedure.

@ We can bound the average number of low selection probability
variables chosen by CPSS with no conditions on the model or original
selection procedure needed.

Under mild conditions e.g. unimodality or r-concavity, the bounds can
be strengthened, yielding tight error control.

This allows the user to choose the threshold 7 in an effective way.

R packages: mboost and stabsel.

Thank you for listening.
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