Comments on "Testing by Betting" by Glenn Shafer

Peter Grünwald

CWI

Covid-19 and Hydroxychloroquine

Currently there are ... randomized clinical trials underway to investigate whether Trump's Miracle Drug helps curing COVID-19

Any guess how many?

Covid-19 and Hydroxychloroquine

Currently there are **156** randomized clinical trials underway to investigate whether Trump's Miracle Drug helps curing COVID-19

Some of these will be significant, some won't. Many of these have been started because previous ones gave hopeful interim results. How to combine results?

Use E-values (Betting Scores), not p-values! Avoiding Research Waste with ALL-IN Meta-Analysis - joint work with Judith ter Schure

Betting and Type-I Error Control

- I agree 100% with Shafer. Still I would like stress there's more to Betting Scores than communication:
- Best of Both (likelihoodist/Neymanian) Worlds: 'evidence as data accumulates', even over several studies $Y_{(1)}, Y_{(2)}, ...$ with different alternative distrs.
 - [you simply multiply betting scores]
- Yet and this might convince practitioners there is still Type-I error control (Ville's Inequality - Shafer & Vovk 2019 – "α-warranty over time"):

$$P_0\left(\exists n:\prod_{i=1}^n S(Y_{(n)}) \ge \frac{1}{\alpha}\right) \le \frac{1}{\alpha}$$

Betting and Bayes

- There's more to Betting Scores than communication:
- [Best of Three Worlds?] For a simple null hypothesis, every Bayes factor is also a betting score
- For composite null hypotheses, most Bayes factors are not not not betting scores in Shafer's sense.
 YET for every prior W₁ on alternative H₁, there is "matching" prior W₀^{*} on H₀ such that the resulting Bayes factor is a valid (and W₁-optimal) betting score!
 - Safe Testing (with R. de Heide W. Koolen, A. Ly R. Turner and M. Perez)

Reverse Information Projection gives Bayesian *W*₁-optimal bets

$$p_W(Y^n) := \int p_\theta(Y^n) dW(\theta)$$

$$W_0^* := \arg \min_{\substack{W_0: \text{distr on } \Theta_0}} D(P_{W_1} || P_{W_0})$$

Thm (G. Koolen, De Heide, Safe Testing, 2019): For every prior W_1 on Θ_1 , $S := \frac{p_{W_1}(Y^n)}{p_{W_0^*}(Y^n)}$ is a valid betting score, and it is the GROW-(log)-optimal one

For separated H_0 and H_1 , best betting scores given by Joint Information Projection (JIPr)

 $p_W(Y^n) := \int p_\theta(Y^n) dW(\theta)$ (W₁^{*}, W₀^{*}) := arg min Min Min Operation $\Theta_1 W_0$: distribution $\Theta_0 D(P_{W_1} || P_{W_0})$

Resulting betting scores $S := \frac{p_{W_1^*}(Y^n)}{p_{W_0^*}(Y^n)}$ often grow much faster (provide more evidence) than those achieved by calibrating p-values!

For separated H_0 and H_1 , best betting scores given by Joint Information Projection (JIPr)

 $p_W(Y^n) := \int p_{\theta}(Y^n) dW(\theta)$ Optimal Bets for testing mean of a normal: Bayes factor with right haar prior $P_{W_1} \parallel P_{W_0}$) on variance (Bayesian t-test) betting **Optimal Bets for 2x2 tables: Bayes factor** $\frac{p_{W_1^*}(Y^n)}{p_{W_0^*}(Y^n)}$ with point prior (something new) **Optimal Bets for time-to-event-data...** much (apologies for shameless advertisement) raster (provide more $P_{W_0^*}$ evidence) than those achieved by calibrating p-values!