Estimating means of bounded random variables by betting

Ian Waudby-Smith & Aaditya Ramdas Carnegie Mellon University Royal Statistical Society meeting, 2023

Given bounded rvs: $X_1, X_2, ..., X_n \in [0, 1]$ with mean $\mathbb{E}(X_i) = \mu$,

Goal: produce a confidence interval $C_n \equiv C(X_1, \dots, X_n)$ for μ :

$\mathbb{P}(\mu \in C_n) \ge 1 - \alpha.$

Hoeffding's inequality (1963) provides one solution:

 $C_n^H := \frac{1}{n} \sum_{i=1}^n Z_{i=1}^n$

(No asymptotics or parametric assumptions.)

The downside? Not ver especially for small var

$$X_i \pm \sqrt{\frac{\log(2/\alpha)}{2n}}$$

y sharp,
riance
$$\sigma^2 := \operatorname{Var}(X_i)$$
.

with mean $\mathbb{E}(X_i) = \mu$,

Goal: produce a confidence interval $C_n \equiv C(X_1, \ldots, X_n)$ for μ :

Given bounded rvs: $X_1, X_2, ..., X_n \in [0,1]$

$\mathbb{P}(\mu \in C_n) \ge 1 - \alpha,$

so that C_n adapts to the underlying variance σ^2 .

Hoeffding:

$$C_n^H := \left\{ m \in [0,1] : \prod_{i=1}^n \exp\left\{ \lambda(X_i - m) \right\} \right\}$$

Our bound:

$$C_n := \left\{ m \in [0,1] : \prod_{i=1}^n (1+\lambda_i) \right\}$$

 $(n) - \lambda^2/8 \} < \frac{1}{\alpha} \}, \qquad \lambda \leftarrow \sqrt{\frac{8\log(1/\alpha)}{n}}.$

 $\lambda_i(X_i - m)) < \frac{1}{\alpha}$ (design λ_i later) α

Quick detour: motivation

Motivation 1 of 2: Risk-controlling prediction sets.

Their goal: prediction sets for tumors while controlling risk.

Tight confidence interval ⇒ sharper prediction sets.

Bates, Angelopoulos, Lei, Malik, Jordan (2021)

Motivation 2 of 2: Risk-limiting election audits

The goal: audit the outcome of an election using random samples of ballots.

Tight confidence sequence \implies faster audit.

Waudby-Smith, Stark, and Ramdas (2021)

Formal setup:

- 1. Observe $X_1, X_2, X_3, ...$
- 2. $X_t \in [0,1]$ almost surely.
- 3. $\mathbb{E}(X_t \mid X_1, \dots, X_{t-1}) = \mu$.

Familiar special case: $X_1, X_2, \dots \stackrel{iid}{\sim} \mathbb{P}$, with $\mathbb{E}_{\mathbb{P}}(X_1) = \mu$.

Forgetting about confidence sets for a moment, consider the following game for each *m*

 $K_0 \leftarrow \$1$ For t = 1, 2, 3, ...: (based on $X_1, ..., X_{t-1}$) Observe X_t $K_t \leftarrow K_{t-1} + K_{t-1} \cdot \lambda_t \cdot (X_t - m)$ EndFor

Gambler chooses bet $\lambda_t \in (-1/(1-m), 1/m)$

$$K_t \leftarrow K_{t-1} +$$

- What if $\mu \gg m$? $K_t \to \infty$ by cleverly choosing $\lambda_t > 0$. • What if $\mu \ll m$? $K_t \to \infty$ by cleverly choosing $\lambda_t < 0$. • What if $\mu = m$? Then the gambler can *never* make much money, no matter how λ_{t} is chosen!

$$C_t := \left\{ m \in [0,1] : K_t(m) < \frac{1}{\alpha} \right\}.$$

$$K_{t-1} \cdot \lambda_t \cdot (X_t - m)$$

So C_t is "the set of all $m \in [0,1]$ for which $K_t(m)$ is small."

The "capital process" $(K_t(\mu))_{t=0}^{\infty}$

is a nonnegative martingale starting at one.

Proof:

: $\mathbb{E}(K_t(\mu) \mid X_1^{t-1}) = K_{t-1}(\mu)$

 $\mathbb{E}(K_t(\mu) \mid X_1^{t-1}) = K_{t-1}(\mu) + K_{t-1}(\mu) \cdot \mathbb{E}(\lambda_t(X_t - \mu) \mid X_1^{t-1}))$ $= \lambda_t \left(\mathbb{E}(X_t \mid X_1^{t-1}) - \mu \right)$ = 0Ideas also in Robbins et al. Shafer & Vovk,

$$12.5$$

 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (2)
 (1)
 (2)
 (2)
 (2)
 (3)
 (2)
 (3)
 (2)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)
 (3)

 $\mathbb{P}\left(\exists t \ge 1: K_t(\mu) \ge \frac{1}{\alpha}\right) \le \alpha$

"Invert" Ville's inequality:

"The set of *m* for which the gambler didn't make much money".

$(C_t)_{t=1}^{\infty}$ forms a $(1 - \alpha)$ -confidence sequence.

Robbins et al. (1960s-1970s), Shafer & Vovk (2001, 2019) Johari et al. (2015) Jun & Orabona (2019), Howard et al. (2020). Grunwald et al. (2019)

$C_t := \left\{ m \in [0,1] : K_t(m) < \frac{1}{\alpha} \right\}.$

$\mathbb{P}\left(\exists t \geq 1 : \mu \notin C_t\right) \leq \alpha.$

Detour: confidence sequences

Herbert Robbins, 1960s/70s

+ Siegmund, Darling, & Lai

<u>Confidence sequence</u>

 $\mathbb{P}\left(\exists t \ge 1 : \mu \notin C_t\right) \le \alpha$ $\mathbb{P}\left(\forall t \ge 1, \mu \in C_t\right) \ge 1 - \alpha$

Confidence interval

$\forall n, \mathbb{P} \left(\mu \notin C_n \right) \leq \alpha$ $\forall n, \mathbb{P} \left(\mu \in C_n \right) \geq 1 - \alpha$

Confidence intervals are valid *at a single sample size*. Confidence sequences are valid *at all sample sizes simultaneously*. Back to confidence sequences for means of bounded random variables

Our confidence sequence:

$$C_t := \left\{ m \in [0,1] : \prod_{i=1}^t \right\}$$

is valid for any λ_i but what is a smart choice?

 $\left\{ \prod_{i=1}^{n} (1 + \lambda_i(m) \cdot (X_i - m)) < \frac{1}{\alpha} \right\}$

Maximize the Growth Rate Adapted to the Particular Alternative (GRAPA).

Or $\lambda_t(m) \approx \frac{\widehat{\mu}_{t-1} - m}{\widehat{\sigma}_{t-1}^2 + (\widehat{\mu}_{t-1} - m)^2}$

(approximate GRAPA)

Indeed, the same bound

can be used to derive state-of-the-art confidence intervals and sequences for both fixed-*n* and sequential regimes.

 $C_t := \left\{ m \in [0,1] : \prod_{i=1}^t (1 + \lambda_i(m) \cdot (X_i - m)) < \frac{1}{\alpha} \right\}$

Even if we only care about fixed-*n* confidence intervals, deriving a confidence sequence first can be beneficial.

If $(C_t)_{t=1}^{\infty}$ is a confidence sequence, then C_n is a confidence interval for any fixed *n*.

$$C_t := \left\{ m \in [0,1] : K_t(m) < \frac{1}{\alpha} \right\}$$

$$\lambda_{i}^{+}(m) := \sqrt{\frac{2\log(2/\alpha)}{n\hat{\sigma}_{i-1}^{2}}} \wedge \frac{1/2}{m} \qquad K_{n}^{\pm}(m) := \max\left\{\frac{1}{2}\prod_{i=1}^{n}(1+\lambda_{i}^{+}\cdot(X_{i}-m))\right\}$$
$$\frac{1}{2}\prod_{i=1}^{n}(1-\lambda_{i}^{-}\cdot(X_{i}-m))$$
$$\lambda_{i}^{-}(m) := \sqrt{\frac{2\log(2/\alpha)}{n\hat{\sigma}_{i-1}^{2}}} \wedge \frac{1/2}{n}$$

$$\lambda_{i}^{-}(m) := \sqrt{\frac{2\log(2/\alpha)}{n\widehat{\sigma}_{i-1}^{2}}} \wedge \frac{1/2}{1-m}$$
data-withe

After some heuristic calculations, a good choice is

-dependent tuning parameters out sample splitting!

So, given X_1, \ldots, X_n bounded with mean μ , $C_n^{\pm} := \begin{cases} m \in [0]{n} \\ m \in [0]{n} \end{cases}$

is a sharp confidence interval for μ .

There's one more modification we can make to get **strictly** tighter confidence intervals!

$$0,1]: K_n^{\pm}(m) < \frac{1}{\alpha} \}$$

so does C_i . $i \leq n$

So, $\bigcap_{i=1}^{\infty} C_i^{\pm}$ is a strict improvement over C_n^{\pm} for free. $i \leq n$

If $C_1, C_2, \ldots, C_n, \ldots$ forms a $(1 - \alpha)$ -confidence sequence, then

Summary

- 1. Developed nonparametric, nonasymptotic confidence sets for means of bounded random variables.
- 2. Valid at arbitrary stopping times, w/ no penalties for peeking at data early.
- 3. Substantially outperform prior work on this problem.
- + Closed-form empirical Bernstein confidence sets and extensions to sampling without replacement in the full paper

Thank you.

ian.waudbysmith.com

stat.cmu.edu/~aramdas/

Confidence sets for sampling without replacement

Without-replacement (WoR) sampling:

 $(x_1, \dots, x_N) \in [0, 1]^N, \ \mu := \frac{1}{N} \sum_{i=1}^N x_i$

 $X_1 \sim \text{Unif}\left((x_1, \ldots, x_N)\right)$

 $X_2 \sim \text{Unif}\left((x_1, \ldots, x_N) \setminus X_1\right)$

 $X_t \sim \text{Unif}\left((x_1, \dots, x_N) \backslash X_1^{t-1}\right)$

Want to estimate $\mu := \frac{1}{N} \sum_{i=1}^{N} x_i$

Goal: construct a game so that (*I* sampling.

 $X_t \sim \text{Unif}\left((x_1, \dots, x_N) \setminus X_1^{t-1}\right)$

$$K_t(\mu)\Big)_{t=0}^N$$
 is a martingale under WoR

Consider a "candidate mean" $m \in [0,1]$

$$K_{0} \leftarrow \$1$$

For $t = 1, 2, 3, ...$
Gambler chooses bet $\lambda_{t} \in (-$
Observe X_{t}
 $K_{t} \leftarrow K_{t-1} + K_{t-1} \cdot \lambda_{t} \cdot (X_{t} - T)$
EndFor

$-1/(1-m_t^{WOR}), 1/m_t^{WOR})$

 m_t^{WoR})

 $m_t^{\text{WoR}} = \frac{Nm - \sum_{i=1}^{t-1} X_i}{N - t + 1}$

Consider a "candidate mean" $m \in [0,1]$

36

Consider a "candidate mean" $m \in [0,1]$

$$K_{0} \leftarrow \$1$$

For $t = 1, 2, 3, ...$
Gambler chooses bet $\lambda_{t} \in (-$
Observe X_{t}
 $K_{t} \leftarrow K_{t-1} + K_{t-1} \cdot \lambda_{t} \cdot (X_{t} - T)$
EndFor

$-1/(1-m_t^{WOR}), 1/m_t^{WOR})$

 m_t^{WoR})

 $m_t^{\text{WoR}} = \frac{Nm - \sum_{i=1}^{t-1} X_i}{N - t + 1}$

Then, $K_t^{\text{WoR}}(\mu) := \prod_{i=1}^{r} (1 + \lambda_i \cdot (X_i - \mu_t^{\text{WoR}}))$ i=1

forms a nonnegative martingale, and

$$C_t^{\text{WoR}} := \left\{ m \in [m] \right\}$$

forms a $(1 - \alpha)$ -confidence sequence.

 $[0,1]: K_t^{\text{WoR}}(m) < \frac{1}{\alpha} \}$

Confidence sequences for sampling WoR

Confidence intervals for sampling WoR

Closed-form empirical Bernstein confidence sequences & confidence intervals

$$C_t := \left\{ m \in [0,1] : \right\}$$

While C_t is easy to compute, it is not closed-form.

However,

$$C_t^{\text{PMEB}} := \left\{ m \in [0,1] : \prod_{i=1}^t \exp\left\{\lambda_i (X_i - m) - 4(X_i - \hat{\mu}_{i-1})^2 \psi_E(\lambda_i)\right\} \right\} \quad \text{is}$$

 $\left\{ \prod_{i=1}^{t} \left(1 + \lambda_i(m) \cdot (X_i - m) \right) \right\}$

$$C_t^{\text{PMEB}} := \left(\frac{\sum_{i=1}^t \lambda_i X_i}{\sum_{i=1}^t \lambda_i} \pm \frac{\log(2/\alpha) + 1}{\sum_{i=1}^t \lambda_i} \right)$$

$\psi_E(\lambda) := -\left(\log(1-\lambda) - \lambda\right)/4,$ where

$$\begin{split} \lambda_t &:= \sqrt{\frac{2\log(2/\alpha)}{\widehat{\sigma}_{t-1}t\log(1+t)}} \wedge \frac{1}{2}, \\ \widehat{\sigma}_t^2 &:= \frac{1/4 + \sum_{i=1}^t (X_i - \widehat{\mu}_i^2)^2}{t+1}, \end{split}$$

 $\frac{4\sum_{i=1}^{t} (X_i - \hat{\mu}_{i-1})^2 \psi_E(\lambda_i)}{\sum_{i=1}^{t} \lambda_i}$

-, and $\hat{\mu}_t := \frac{1/2 + \sum_{i=1}^t X_i}{1/2 + \sum_{i=1}^t X_i}$. *t* + 1

Similarly for fixed-time confidence intervals:

$$C_n^{\text{PMEB}} := \left(\frac{\sum_{i=1}^n \lambda_i X_i}{\sum_{i=1}^n \lambda_i} \pm \frac{\log(2/\alpha)}{2}\right)$$

but here, λ

$$\lambda_i := \sqrt{\frac{2\log(2/2)}{n\hat{\sigma}_{i-1}}}$$

Final bound:

$$\bigcap_{i \le n} C_i^{\text{PMEB}}$$

 $\frac{1}{2}(\alpha) + 4\sum_{i=1}^{n} (X_i - \hat{\mu}_{i-1})^2 \psi_E(\lambda_i)}{\sum_{i=1}^{n} \lambda_i}\right)$

 $\frac{\alpha}{2} \wedge \frac{1}{2},$

Maurer-Pontil '09

Choice of $(\lambda_t^+)_{t=1}^n$ and $(\lambda_t^-)_{t=1}^n$ for fixed-time confidence intervals

Why does
$$\lambda_i^+(m) := \sqrt{\frac{2\log(2/\alpha)}{n\hat{\sigma}_{i-1}^2}} \wedge \frac{1}{m}$$
 perform so well?
 $K_n^+(\mu) := \prod_{i=1}^n \left(1 + \lambda \cdot (X_i - \mu)\right)$
 $\gtrsim \prod_{i=1}^n \exp\left\{\lambda \cdot (X_i - \mu) - (X_i - \hat{\mu}_{i-1})^2 \lambda^2 / 2\right\}$
 $\Longrightarrow \text{Width}_n := \frac{\log(2/\alpha) + \sum_{i=1}^n (X_i - \hat{\mu}_{i-1})^2 / 2}{t\lambda}$
 $\approx \frac{\log(2/\alpha) + n\sigma^2 / 2}{t\lambda}$

$${}_{i}^{+}(m) := \sqrt{\frac{2\log(2/\alpha)}{n\widehat{\sigma}_{i-1}^{2}}} \wedge \frac{1}{m} \quad \text{perform so well?}$$

$${}_{n}^{+}(\mu) := \prod_{i=1}^{n} \left(1 + \lambda \cdot (X_{i} - \mu)\right)$$

$${}_{n}^{+}(\mu) := \prod_{i=1}^{n} \exp\left\{\lambda \cdot (X_{i} - \mu) - (X_{i} - \widehat{\mu}_{i-1})^{2}\lambda^{2}/2\right\}$$

$${}_{n}^{+}(\mu) := \frac{\log(2/\alpha) + \sum_{i=1}^{n} (X_{i} - \widehat{\mu}_{i-1})^{2}/2}{t\lambda}$$

$${}_{n}^{+}(\mu) := \frac{\log(2/\alpha) + \sum_{i=1}^{n} (X_{i} - \widehat{\mu}_{i-1})^{2}/2}{t\lambda}$$

$$n) := \sqrt{\frac{2\log(2/\alpha)}{n\widehat{\sigma}_{i-1}^2}} \wedge \frac{1}{m} \quad \text{perform so well?}$$

$$u) := \prod_{i=1}^n \left(1 + \lambda \cdot (X_i - \mu)\right)$$

$$\gtrsim \prod_{i=1}^n \exp\left\{\lambda \cdot (X_i - \mu) - (X_i - \widehat{\mu}_{i-1})^2 \lambda^2 / 2\right\}$$

$$\implies \text{Width}_n := \frac{\log(2/\alpha) + \sum_{i=1}^n (X_i - \widehat{\mu}_{i-1})^2 / 2}{t\lambda}$$

$$\approx \frac{\log(2/\alpha) + n\sigma^2 / 2}{t\lambda}$$

$$\frac{2/\alpha}{-1} \wedge \frac{1}{m} \quad \text{perform so well?}$$

$$\frac{1}{1} (X_i - \mu) \left(X_i - \hat{\mu}_{i-1} \right)^2 \lambda^2 / 2 \right)$$

$$\frac{10g(2/\alpha) + \sum_{i=1}^n (X_i - \hat{\mu}_{i-1})^2 / 2}{t\lambda}$$

$$\frac{10g(2/\alpha) + n\sigma^2 / 2}{t\lambda}$$

$$\lambda_t^+(m) := \sqrt{\frac{2\log(2/\alpha)}{n\widehat{\sigma}_{t-1}^2}} \wedge \frac{1}{m}$$

 $\underset{\lambda}{\operatorname{argmin Width}_{n}} = \sqrt{\frac{2\log(2/\alpha)}{n\sigma^{2}}}$

$$\lambda_t^{-}(m) := \sqrt{\frac{2\log(2/\alpha)}{n\widehat{\sigma}_{t-1}^2}} \wedge \frac{1}{1-m}$$

Brief selective history of betting ideas

50