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Given bounded rvs: 
with mean ,

X1, X2, …, Xn ∈ [0,1]
𝔼(Xi) = μ

2

Goal: produce a confidence interval 
 for :Cn ≡ C(X1, …, Xn) μ

ℙ(μ ∈ Cn) ≥ 1 − α .
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Hoeffding’s inequality (1963) provides one solution:

CH
n :=

1
n

n

∑
i=1

Xi ± log(2/α)
2n

The downside? Not very sharp, 
especially for small variance .σ2 := Var(Xi)

(No asymptotics or parametric assumptions.)
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Given bounded rvs: 
with mean ,

X1, X2, …, Xn ∈ [0,1]
𝔼(Xi) = μ

Goal: produce a confidence interval 
 for :Cn ≡ C(X1, …, Xn) μ

ℙ(μ ∈ Cn) ≥ 1 − α,

so that  adapts to the underlying variance .Cn σ2
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Our bound: 

Hoeffding:

Cn := {m ∈ [0,1] :
n

∏
i=1

(1+λi(Xi−m)) <
1
α } .

CH
n := {m ∈ [0,1] :

n

∏
i=1

exp {λ(Xi−m) − λ2/8} <
1
α },

(design  later)λi

λ ←
8 log(1/α)

n
.
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σ2 = 1/4

σ2 ≈ 0.0046

Ours
Hoeffding

Ours
Hoeffding
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Quick detour: motivation



Motivation 1 of 2:
Risk-controlling prediction sets.

Their goal: prediction sets for 
tumors while controlling risk.

Tight confidence interval
 sharper prediction sets.⟹

8

Bates, Angelopoulos, Lei, 
Malik, Jordan (2021)



The goal: audit the outcome 
of an election using random 
samples of ballots.

Tight confidence sequence 
 faster audit.⟹

Motivation 2 of 2:
Risk-limiting election audits

9

Waudby-Smith, Stark, 
and Ramdas (2021)
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Formal setup:

1. Observe 

2.  almost surely.

3. .

X1, X2, X3, …

Xt ∈ [0,1]

𝔼(Xt ∣ X1, …, Xt−1) = μ

Familiar special case: , with .X1, X2, … iid∼ ℙ 𝔼ℙ(X1) = μ
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$1
For :

Gambler chooses bet  
(based on )
Observe  

K0 ←
t = 1,2,3,…

λt ∈ (−1/(1−m), 1/m)
X1, …, Xt−1

Xt

Kt ← Kt−1 + Kt−1 ⋅ λt ⋅ (Xt−m)

Forgetting about confidence sets for a moment, 
consider the following game for each m

EndFor
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Kt ← Kt−1 + Kt−1 ⋅ λt ⋅ (Xt−m)

Ct := {m ∈ [0,1] : Kt(m) <
1
α } .

• What if ?  by cleverly choosing .
• What if ?  by cleverly choosing .
• What if ? Then the gambler can never make much 

money, no matter how  is chosen!

μ ≫ m Kt → ∞ λt > 0
μ ≪ m Kt → ∞ λt < 0
μ = m

λt

So  is “the set of all  for which  is small.”Ct m ∈ [0,1] Kt(m)
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The “capital process”   (Kt(μ))∞
t=0

is a nonnegative martingale starting at one.

𝔼(Kt(μ) ∣ Xt−1
1 ) = Kt−1(μ) + Kt−1(μ) ⋅ 𝔼(λt(Xt−μ) ∣ Xt−1

1 )

= λt (𝔼(Xt ∣ Xt−1
1 )−μ)

= 0

∴ 𝔼(Kt(μ) ∣ Xt−1
1 ) = Kt−1(μ)

Ideas also in
Robbins et al.

Shafer & Vovk,
& many others

Proof:
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Jean Ville (1939): ℙ (∃t ≥ 1 : Kt(μ) ≥
1
α ) ≤ α

prob ≤
1
10

Markov
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“Invert” Ville’s inequality:

ℙ (∃t ≥ 1 : μ ∉ Ct) ≤ α .

Ct := {m ∈ [0,1] : Kt(m) <
1
α } .

 forms a -confidence sequence.(Ct)∞
t=1 (1 − α)

“The set of  for which the gambler didn’t make much money”.m

Robbins et al. (1960s-1970s), 
Shafer & Vovk (2001, 2019) 

Johari et al. (2015) 
Jun & Orabona (2019), 
Howard et al. (2020). 

Grunwald et al. (2019)
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Detour: confidence sequences

Herbert Robbins, 1960s/70s

+ Siegmund, Darling, & Lai
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ℙ (∃t ≥ 1 : μ ∉ Ct) ≤ α

Confidence sequence Confidence interval

∀n, ℙ (μ ∉ Cn) ≤ α

ℙ (∀t ≥ 1, μ ∈ Ct) ≥ 1 − α ∀n, ℙ (μ ∈ Cn) ≥ 1 − α
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Confidence intervals are valid at a single sample size.
Confidence sequences are valid at all sample sizes simultaneously.

Confidence sequence

Confidence interval
C

on
fi

de
nc

e 
se

ts
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Back to confidence sequences for 
means of bounded random variables
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Ct := {m ∈ [0,1] :
t

∏
i=1

(1+λi(m) ⋅ (Xi−m)) <
1
α }

Our confidence sequence:

is valid for any  but what is a smart choice?λi
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Maximize the Growth Rate Adapted to the 
Particular Alternative (GRAPA).

Choose λt(m) = argmax
λ

1
t − 1

t−1

∑
i=1

log (1+λ ⋅ (Xi−m))

Or λt(m) ≈
̂μ t−1−m

̂σ 2
t−1 + ( ̂μ t−1−m)2

⋮
(approximate GRAPA)
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σ2 = 1/4

σ2 ≈ 0.0046
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Indeed, the same bound

Ct := {m ∈ [0,1] :
t

∏
i=1

(1+λi(m) ⋅ (Xi−m)) <
1
α }

can be used to derive state-of-the-art confidence intervals 
and sequences for both fixed-  and sequential regimes.n
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Even if we only care about fixed-  confidence intervals, 
deriving a confidence sequence first can be beneficial.

n
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If  is a confidence sequence, then  
is a confidence interval for any fixed .
(Ct)∞

t=1 Cn
n
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After some heuristic calculations, a 
good choice is

Ct := {m ∈ [0,1] : Kt(m) <
1
α }

λ+
i (m) :=

2 log(2/α)
n ̂σ 2

i−1
∧

1/2
m

λ−
i (m) :=

2 log(2/α)
n ̂σ 2

i−1
∧

1/2
1−m

K±
n (m) := max { 1

2

n

∏
i=1

(1 + λ+
i ⋅ (Xi−m)),

1
2

n

∏
i=1

(1 − λ−
i ⋅ (Xi−m))}

data-dependent tuning parameters 
without sample splitting!
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So, given  bounded with mean ,X1, …, Xn μ

C±
n := {m ∈ [0,1] : K±

n (m) <
1
α }

is a sharp confidence interval for .μ

There’s one more modification we can make 
to get strictly tighter confidence intervals!
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If  forms a -confidence sequence, then 
so does .

C1, C2, …, Cn, … (1 − α)

⋂
i≤n

Ci

So,  is a strict improvement over  for free.⋂
i≤n

C±
i C±

n
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σ2 = 1/4

σ2 ≈ 0.0046

⋂
i≤n

C±
i

Hoeffding

⋂
i≤n

C±
i

Hoeffding
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Summary

1. Developed nonparametric, nonasymptotic confidence sets 
for means of bounded random variables.

2. Valid at arbitrary stopping times, w/ no penalties for 
peeking at data early.

3. Substantially outperform prior work on this problem.

+ Closed-form empirical Bernstein confidence sets and 
extensions to sampling without replacement in the full paper
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Thank you.

ian.waudbysmith.com stat.cmu.edu/~aramdas/

http://ian.waudbysmith.com
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Confidence sets for sampling without replacement



33

Without-replacement (WoR) sampling:

,  (x1, …, xN) ∈ [0,1]N μ :=
1
N

N

∑
i=1

xi

X1 ∼ Unif ((x1, …, xN))
X2 ∼ Unif ((x1, …, xN)∖X1)

Xt ∼ Unif ((x1, …, xN)∖Xt−1
1 )

⋮
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Want to estimate μ :=
1
N

N

∑
i=1

xi

Goal: construct a game so that  is a martingale under WoR 
sampling.

(Kt(μ))N
t=0

Xt ∼ Unif ((x1, …, xN)∖Xt−1
1 ) ⟹ 𝔼(Xt ∣ Xt−1

1 ) =
Nμ−∑t−1

i=1 Xi

N − t + 1

=: μWoR
t
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$1

For :

Gambler chooses bet 

Observe  

K0 ←

t = 1,2,3,…

λt ∈ (−1/(1−mWoR
t ), 1/mWoR

t )

Xt

Kt ← Kt−1 + Kt−1 ⋅ λt ⋅ (Xt−mWoR
t )

EndFor

Consider a “candidate mean” m ∈ [0,1]

mWoR
t =

Nm−∑t−1
i=1 Xi

N − t + 1
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$1

For :

Gambler chooses bet 

Observe  

K0 ←

t = 1,2,3,…

λt ∈ (−1/(1−m), 1/m)

Xt

Kt ← Kt−1 + Kt−1 ⋅ λt ⋅ (Xt−m)

Consider a “candidate mean” m ∈ [0,1]

EndFor
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$1

For :

Gambler chooses bet 

Observe  

K0 ←

t = 1,2,3,…

λt ∈ (−1/(1−mWoR
t ), 1/mWoR

t )

Xt

Kt ← Kt−1 + Kt−1 ⋅ λt ⋅ (Xt−mWoR
t )

EndFor

Consider a “candidate mean” m ∈ [0,1]

mWoR
t =

Nm−∑t−1
i=1 Xi

N − t + 1
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Then,

KWoR
t (μ) :=

t

∏
i=1

(1 + λi ⋅ (Xi−μWoR
t ))

forms a nonnegative martingale, and

CWoR
t := {m ∈ [0,1] : KWoR

t (m) <
1
α }

forms a -confidence sequence.(1 − α)
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Ours

W-S&R ‘20

Ours

W-S&R ‘20

Confidence sequences for sampling WoR
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Ours

W-S&R ‘20

Ours
W-S&R ‘20

Confidence intervals for sampling WoR
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Closed-form empirical Bernstein 
confidence sequences & confidence intervals
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Ct := {m ∈ [0,1] :
t

∏
i=1

(1 + λi(m) ⋅ (Xi − m)}
While  is easy to compute, it is not closed-form.Ct

However,

CPMEB
t := {m ∈ [0,1] :

t

∏
i=1

exp {λi(Xi − m) − 4(Xi − ̂μ i−1)2ψE(λi)}} is!
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CPMEB
t :=

∑t
i=1 λiXi

∑t
i=1 λi

±
log(2/α) + 4∑t

i=1 (Xi − ̂μ i−1)2ψE(λi)

∑t
i=1 λi

where ψE(λ) := − (log(1 − λ) − λ)/4,

λt :=
2 log(2/α)
̂σ t−1t log(1 + t)

∧
1
2

,

̂σ 2
t :=

1/4 + ∑t
i=1 (Xi − ̂μ2

i )2

t + 1
, ̂μ t :=

1/2 + ∑t
i=1 Xi

t + 1
.and
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Hoeffding

PMEB

Betting

Hoeffding
PMEB

Betting
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CPMEB
n := (

∑n
i=1 λiXi

∑n
i=1 λi

±
log(2/α) + 4∑n

i=1 (Xi − ̂μ i−1)2ψE(λi)

∑n
i=1 λi )

Similarly for fixed-time confidence intervals:

but here, λi :=
2 log(2/α)

n ̂σ i−1
∧

1
2

,

Final bound: ⋂
i≤n

CPMEB
i
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Hoeffding

Maurer-Pontil ‘09

Betting

PMEB

Hoeffding

Maurer-Pontil ‘09

Betting

PMEB
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Choice of  and  for fixed-time 
confidence intervals

(λ+
t )n

t=1 (λ−
t )n

t=1
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λ+
i (m) :=

2 log(2/α)
n ̂σ 2

i−1
∧

1
m

Why does perform so well?

K+
n (μ):=

n

∏
i=1

(1 + λ ⋅ (Xi − μ))

≳
n

∏
i=1

exp {λ ⋅ (Xi − μ) − (Xi − ̂μ i−1)2λ2/2}

⟹ Widthn:=
log(2/α) + ∑n

i=1 (Xi − ̂μ i−1)2/2

tλ

≈
log(2/α) + nσ2/2

tλ
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argmin
λ

Widthn =
2 log(2/α)

nσ2

λ+
t (m) :=

2 log(2/α)
n ̂σ 2

t−1
∧

1
m

λ−
t (m) :=

2 log(2/α)
n ̂σ 2

t−1
∧

1
1 − m
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Brief selective history of betting ideas


