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Figure S1: Estimates of (i) µr, and (ii) σr, the mean and standard deviation of the Normal

flight period curve, for each year r, from the extended GAI applied to Chalk Hill Blue (A)

and Gatekeeper (B). Plots show the point estimates with 95% confidence intervals (CI).
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Figure S2: Demonstration of the phenology adjustment approach for the Comma Polygonia

c-album butterfly: A) flight period curves estimated from UKBMS data for four years. The

blue shaded areas represents the BBC sampling period each year. B) the proportion of the

Comma flight period covered by the BBC sampling period each year. C) relative abundance

indices produced from the GAI applied to UKBMS data (black), from BBC data without

phenology adjustment (i, blue squares), and from BBC data with phenology adjustment (ii,

green triangles). Indices are on the log10 scale with a mean value of 2 (indicated by the

horizontal dashed lines).
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S1 Extended GAI

Here we describe the concentrated likelihood approach for the extended GAI in more detail.

We suppose that counts of adults are recorded at S sites, each visited on up to V occasions,

in each of Y successive years. In any particular year r, the count ys,v,r can be treated as

the realisation of an appropriate discrete random variable. For example, if this is taken as

Poisson, with expectation λs,v,r for site s, visit v and year r, the likelihood has the form

L(N ,θ;y) =
S∏
s=1

V∏
v=1

Y∏
r=1

exp(−λs,v,r)λys,v,rs,v,r

ys,v,r!
, (1)

where θ are the model parameters which determine the forms of the functions {as,v,r}, spec-

ified below. Using the same structural form for the Poisson means as for the standard GAI,

results in the likelihood:

L(N ,θ;y) ∝
Y∏
r=1

S∏
s=1

V∏
v=1

exp(−Ns,ras,v,r)(Ns,ras,v,r)
ys,v,r .

We now incorporate the expression for the annual model Ns,r = eαs+βr - see ter Braak et al.

(1994) - which results in the following expression for the log-likelihood, ignoring an additive

constant.

ℓ(α,β,θ;y) =
∑
r

∑
s

∑
v

{−e(αs+βr)as,v,r + ys,v,r(αs + βr) + ys,v,rlog(as,v,r)}. (2)

Here {αs} and {βr} are respectively site and year effects to be estimated. In order to form

maximum-likelihood parameter estimates efficiently we use concentrated likelihood as above.

We start by concentrating out the parameters α, by analogy with what is done in the GAI,

when there are just data from one year.

Differentiating with respect to αs then gives:

∂ℓ

∂αs
=

∑
r

∑
v

{−e(αs+βr)as,v,r + ys,v,r}+ other terms,

where the other terms lack parameters α and β.

Next we set ∂ℓ
∂αs

= 0 to give

eαs
∑
r

eβras,.,r = ys,.,..
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Thus

eαs =
ys,.,.∑
r e

βras,.,r
. (3)

We now substitute for αs in Equation (2), which after some cancellation gives

ℓ(β,θ;y) =
∑
r

∑
s

∑
v

[
−ys,.,.e

βras,v,r∑
j e

βjas,.,j
+ ys,v,r{βr − log(

∑
j

eβjas,.,j)}

]
. (4)

We can now maximise efficiently with respect to the parameters θ and β.

S2 Variational inference

The transition from complete to observed data likelihoods for the simplest single-season

occupancy model and then using Gibbs sampling is given by Royle and Dorazio (2008, p.107)

and the corresponding results for the general single-season occupancy model are given by

Dorazio and Rodriguez (2012).

Thus, in our case the joint probability of the data y and the latent variables z given

(βψ, βp) can be written as

p(y, z|βψ, βp) = p(y|z, βp)p(z|βψ) =
∏
j:zj=1

{ ∏
i:ki=j

pyii (1− pi)
1−yi

}{
n∏
j=1

z
ψj

j (1− zj)
1−ψj

}
.

The observed data likelihood for(βψ, βp) given the data y can then be written as

L(βψ, βp; y) =
∏
j:oj=1

{
ψj

∏
i:ki=j

pyii (1− pi)
1−yi

} ∏
j:oj=0

[
ψj

{ ∏
i:ki=j

(1− pi)

}
+ (1− ψj)

]
,

where ψj = logistic(Xψ
j β

ψ), pi = logistic(Xp
i β

p) and oi is a latent variable which is equal to 1

if sampling unit i is confirmed occupied (that is, if at least one detection was recorded) and

0 otherwise.

The gradient of the ELBO, ∇λEθ∼qλ(θ) [logp(y, θ)− logqλ(θ)], is not straightforward to

compute since the variational parameter λ appears in the expectation. To overcome this issue,

Kingma and Welling (2013) propose writing the variational distribution qλ(θ) as a determin-

istic function of the variational parameter λ and a noise term ϵ independent of λ, that is, θ =

g(λ, ϵ). Once this is done, the ELBO can be rewritten as Eϵ [logp(y, g(λ, ϵ))− logqλ(g(λ, ϵ))]

and the gradient operator can be brought inside the expectation. We note that expressing θ
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in the form g(λ, ϵ) is straightforward since having chosen q to be a normal distribution θ is

simply µ+ Lϵ, where ϵ ∼ N(0, I).

Next, we can perform a Monte Carlo approximation to compute the gradient as

1

M

M∑
m=1

∇λ

(
log(p(y|βψ, βp))− log(qλ(g(λ, ϵi)

)
where ϵi ∼ f(·). The gradient of the second term does not pose problems. The gradient of

the first term ∇λlog(p(y|βψ, βp)) can be decomposed as
∑n

i=1 log(p(yi|βψ, βp)).

Using the chain rule, we can compute the derivative ∂li
∂λi

as ∂li
∂β

× ∂β
∂λi

, where β = (βψ, βp).

The gradient ∂li
∂β

can be computed as

∂li
∂βψ

=
∑
oj=1

Xψ
j

1

1 + exp(Xψ
j β

ψ)
+

∑
oj=0

Xψ
j

exp (−Xψ
j βψ)(p̂j − 1)

(ψj p̂j + (1− ψj))(1 + exp−Xψ
j βψ)

2

∂li
∂βp

=
∑
oj=1

∑
i:ki=j

(
yi

Xp
i

1 + exp(Xp
i β

p)
− (1− yi)X

p
i

exp(Xp
i β

p)

1 + exp(Xp
i β

p)

)
+
∑
oj=0

∑
i:ki=j

qjψj p̂j
ψj p̂j + (1− ψj)

where p̂j =
∏

i:ki=j
(1− pi) and qj = −

∑
i:ki=j

Xp
i

exp (−Xp
i βp)

(1+exp (−Xp
i βp))

2

Expressions for the gradient ∂β
∂λi

can be found in Tan and Nott (2018).

We have set L such that the the intercept of the detection and occupancy probability are

dependent a-posteriori, while all the other parameters are independent a-posteriori.
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