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Abstract

Psychologists developed Multiple Factor Analysis to decompose multivariate data
into a small number of interpretable factors without any a priori knowledge about
those factors [Thurstone, 1935]. In this form of factor analysis, the Varimax factor
rotation redraws the axes through the multidimensional factors to make them sparse
and thus make them more interpretable [Kaiser, 1958]. Charles Spearman and many
others objected to factor rotations because the factors seem to be rotationally invariant
[Thurstone, 1947, Anderson and Rubin, 1956]. These objections are still reported in all
contemporary multivariate statistics textbooks. However, this vintage form of factor
analysis has survived and is widely popular because, empirically, the factor rotation
often makes the factors easier to interpret. We argue that the rotation makes the factors
easier to interpret because, in fact, the Varimax factor rotation performs statistical
inference. We show that Principal Components Analysis (PCA) with the Varimax
axes provides a unified spectral estimation strategy for a broad class of semi-parametric
factor models, including the Stochastic Blockmodel and a natural variation of Latent
Dirichlet Allocation (i.e., “topic modeling”). In addition, we show that Thurstone’s
widely employed sparsity diagnostics implicitly assess a key leptokurtic condition that
makes the axes statistically identifiable in these models. Taken together, this shows
that the know-how of Vintage Factor Analysis performs statistical inference, reversing
nearly a century of statistical thinking on the topic. We illustrate these techniques
use on two large bibliometric examples (a citation network and a text corpus). With
a sparse eigensolver, PCA with Varimax is both fast and stable. Combined with
Thurstone’s straightforward diagnostics, this vintage approach is suitable for a wide
array of modern applications.

Keywords: Factor analysis, Independent Component Analysis, Spectral Clustering,
Little Jiffy, orthoblique
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Outside the language of mathematical statistics, Louis Leon Thurstone, Henry Kaiser,
and other psychologists developed the first forms of Multiple Factor Analysis, or what
is referred to herein as Vintage Factor Analysis [Thurstone, 1935, 1947, Kaiser, 1958].
There are two simultaneous aims of Vintage Factor Analysis. The first aim is to provide
a low dimensional approximation of the observed data; in this sense, it is like Principal
Components Analysis (PCA).1 The second aim is to ensure that each factor (i.e. each
axis in the lower dimensional representation) corresponds to a “scientifically meaningful
category” [Thurstone, 1935]. A Varimax rotation of the principal components is a simple
and popular way to find such meaningful dimensions [Kaiser, 1958, Jolliffe, 2002].

For example, suppose n students take an exam with d questions, producing a d di-
mensional vector of data for each individual. Principal components analysis with k=2
dimensions will roughly approximate the students’ d dimensional data; this is the first aim
of factor analysis. In order to make those two dimensions more interpretable, Varimax
draws different axes through the two dimensional space; a fancier way to say this is that
it rotates the points. Selecting the axes does not change the quality of the lower dimen-
sional approximation. After inspecting how each question embeds in the k=2 Varimax
coordinates, an analyst might find the Varimax axes to be meaningful; linguistic questions
fall onto one axis and mathematical questions onto the other. This form of data analysis
is often called “exploratory” because the factor dimensions are computed from the data
without requiring an hypothesis to specify them.

The key source of the controversy is the second aim, producing axes that correspond
to what Thurstone called scientifically meaningful categories. Anderson and Rubin [1956]
showed that under the Gaussian factor model, the factors are rotationally invariant ; there is
nothing in the data to suggest where the axes should be drawn. Contemporary multivariate
analysis textbooks all discuss the result from Anderson and Rubin [1956], but then go on
to report the empirical benefits of the factor rotation (e.g. Ramsay and Silverman [2007],
Johnson and Wichern [2007], Bartholomew et al. [2011]). For example, after discussing
rotational invariance, Jolliffe [2002] says “The simplification achieved by rotation can help
in interpreting the factors or rotated PCs.”

Maxwell’s Theorem starts to resolve this enigma [Maxwell [1860] and Feller [1971]
Chapter 3, Section 4]. It characterizes the multivariate Gaussian distribution as the only
distribution of independent random variables that is rotationally invariant. So, if the
factors are independent random variables and come from any non-Gaussian distribution,
then the axes are partially identifiable with the potential to identify scientifically meaningful
categories. See Figure 1 for an example in k = 2 dimensions.2

Maxwell’s theorem and some of the core factor analysis methodologies have been re-
discovered and further developed in the literature on Independent Components Analysis
(ICA) [Hyvärinen et al., 2004]. More recently, Anandkumar et al. [2014] showed how a

1PCA is not the preferred approach in Vintage Factor Analysis. See Remark 5.3 for a further discussion.
2A common point of confusion is to presume that the factors must be Gaussian if we are using PCA;

see Section 5 and Remark 5.1 to see how PCA performs with non-Gaussian factors.
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A good factor rotation redraws the axes to align with the data.

The Gaussian distribution
has no natural axes

This non−Gaussian
has radial streaks

Varimax correctly
estimates the axes

Figure 1: Maxwell’s Theorem characterizes the multivariate Gaussian distribution (left
panel) as the only rotationally invariant distribution of independent variables. The center
panel and the right panel give the same data; the only difference is that the right panel
gives the axes that Varimax estimates.

tensor decomposition can estimate a broad class of factor models that is closely related
to the class studied herein. The current paper demonstrates that tensor methods are not
required; an old approach with historical precedence to ICA is sufficient. This old approach
comes with a suite of know-how and diagnostic practices that are described in Section 4.
This old approach provides a unified spectral estimation strategy and diagnostic practices
that can be applied to many different problems in multivariate statistics. It relates Pro-
jection Pursuit, Independent Components Analysis, Non-Negative Matrix Decompositions,
Latent Dirichlet Allocation, and Stochastic Blockmodeling.

Figure 2 shows a motivating data example with a 22, 688× 22, 688 matrix of citations
among 22,688 academic journals, where Aij ∈ {0, 1} indicates if the papers in journal i cite
the papers in journal j. Each panel in Figure 2(a) plots a pair of principal components
against one another. Each panel in Figure 2(b) plots these components after the Varimax
rotation (i.e. with the Varimax axes). Section 2 describes this procedure in more detail.
See Section 3.1 for further details on the data and the data analysis in Figure 2.

All of the panels in Figure 2 display radial streaks, a phrase used in Thurstone [1947]
to identify the axes. In Figure 2(b), the streaks are aligned with the coordinate axes. This
is precisely the desired outcome of a factor rotation because when the axes are aligned with
the streaks, the resulting components are approximately sparse. For this reason, this paper
refers to Varimax rotated PCA as Vintage Sparse PCA (vsp). Vu and Lei [2013] referred
to the vintage notion of subspace sparsity as column-wise sparsity. See Chen and Rohe
[2020] for further discussion.

Theorem 6.1, the main result of this paper, shows that vsp can estimate the following
semi-parametric factor model.
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In this data example, the principal components (left) have radial streaks.
Varimax draws new axes that align with the streaks (right).

Varimax rotated PCA is Vintage Sparse PCA, vsp.

(a) Principal Components (b) After Varimax rotation

Figure 2: In this example, the data is a 22, 688× 22, 688 matrix of citations among 22,688
academic journals. Each small panel on the left is a scatter plot of two principal compo-
nents. Each small panel on the right is a scatter plot of two Varimax rotated components.
See Section 3.1 for more details.

Definition 1. Let Z ∈ Rn×k and Y ∈ Rd×k be latent factor matrices. Under the semi-
parametric factor model, we observe A ∈ Rn×d which has independent elements and
has expectation

E(A|Z, Y ) = ZBY T , where B ∈ Rk×k is not necessarily diagonal. (1)

This model is semi-parametric because it does not make parametric assumptions on
the distribution of Z, Y or A|Z, Y . Section C in the Appendix describes how this model
includes the Stochastic Blockmodel, several of its generalizations, and Latent Dirichlet
Allocation.

Importantly, in the semi-parametric factor model, the columns of Z are not the principal
components of E(A|Z, Y ). However, if the elements of Z are independently generated from
a leptokurtic distribution, then a Varimax rotation of the principal components estimates
Z. This means that the Varimax axes for the principal components will align with the
axes (i.e. columns) of Z; they will have the same set of coordinates (up to statistical
errors). The leptokurtic condition on the elements of Z is the key identifying assumption
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for Varimax and vsp.

Definition 2. For a random variable X ∈ R with four finite moments, let η = E(X) and
define the jth centered moment as ηj = E(X − η)j for j = 2, 4. The kurtosis of X is
κ = η4/η

2
2. The random variable X and its distribution are leptokurtic if κ > 3.

For any Gaussian random variable, κ = 3. As such, κ 6= 3 indicates a non-Gaussian
distribution. Roughly speaking, when κ > 3, the distribution has a heavier tail than
Gaussian. Kurtosis κ was originally named and used by Pearson around 1900 to measure
whether a symmetric distribution was Gaussian [Fiori and Zenga, 2009]. See Section 4 for
further discussion of leptokurtosis.

After reading Section 1 and the algorithm in Section 2, one can read Sections 3, 4, 5
and 6 in any order. Section 7 should be read after Sections 5.1 and 5.2.

Section 1 introduces Varimax and gives both algebraic and geometric intuition for why
it prefers “sparse axes”. Section 2 describes the vsp algorithm and some variations on
the algorithm. Section 3 illustrates how to interpret the results of vsp by applying it
to a large citation network and a large text corpus. Section 4 provides intuition for the
sparsity diagnostics developed in Thurstone [1935, 1947] to show that they implicitly assess
the leptokurtic assumption. Section 5 gives the population results for PCA with latent
variable models and population results for Varimax applied to these population principal
components. Section 6 gives the main theoretical result, Theorem 6.1. Section 7 discusses
what happens when the latent variables are not independent.

Key Notation: Let O(k) = {R ∈ Rk×k : RTR = RRT = Ik} denote the set of k × k
orthonormal matrices. Let 1a ∈ Ra be a column vector of ones. Let Id denote the d × d
identity matrix. For x ∈ Rd, let diag(x) ∈ Rd×d be a diagonal matrix with diag(x)ii = xi.
For M ∈ Ra×b, define Mi ∈ Rb as the ith row of M and ‖M‖p→∞ = maxi ‖Mi‖p, for p ≥ 1
and `p norm for vectors ‖ · ‖p. Let ‖M‖F be the Frobenius norm, ‖M‖ be the spectral
norm, ‖M‖∞ be the maximum absolute row sum of M , and ‖M‖max be the maximum
element of M in absolute value. For sequences xn, yn ∈ R, define xn � yn to mean that
xn →∞ and yn →∞ and there exists an N, ε, and c all in (0,∞) such that xn/yn ∈ (ε, c)
for all n > N . Define xn � yn to mean that for any ε ∈ (0,∞), there exists an N < ∞
such that for all n > N , xn/yn > ε > 0. Define [k] = {1, . . . , k}.

1 Varimax

Varimax is the most popular way of computing a factor rotation [Kaiser, 1958]. It is
contained in the base R packages and, akin to kmeans, is so popular that it is often not
properly cited. Ramsay and Silverman [2005] describes Kaiser’s Varimax as an “invaluable
tool in multivariate analysis”.

Given an n × k matrix U , with columns that form an orthonormal basis (e.g. as in
PCA), the Varimax rotation is the k × k orthogonal matrix that maximizes the following
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function

v(R,U) =
k∑
`=1

1

n

n∑
i=1

[UR]4i` −

 1

n

n∑
q=1

[UR]2q`

2 . (2)

Kaiser [1958] suggests preprocessing U by normalizing each row to have sum of squares
equal to one. We do not use this normalization herein.3 In later work, Kaiser suggested
removing this normalization [Kaiser, 1970, Kaiser and Rice, 1974].

Varimax is not convex; each solution has k! 2k optima, all corresponding to the identical
set of axes, but simply reorder the coordinates (k!) and changing their sign (2k), neither of
which changes the value of (2). In R, varimax is optimized via projected gradient ascent.

1.1 Varimax and sparsity

To see why the Varimax axes prefer sparsity, imagine a single point (x1, x2) ∈ R2 on the
unit circle, x2

1 + x2
2 = 1. In this case, optimizing the axes is equivalent to deciding where

to put this point on the circle. The Varimax objective is x4
1 +x4

2−1. To maximize x4
1 +x4

2,
notice that

x4
1 + x4

2 = (x2
1 + x2

2)2 − 2x2
1x

2
2 = 1− 2x2

1x
2
2.

This is maximized at any “sparse point,” where either x1 = 0 or x2 = 0. This argument
extends to a single point on the unit sphere in higher dimensions, x ∈ Rd,

d∑
i=1

x4
i = (

d∑
i=1

x2
i )

2 − 2(
∑
i,j

x2
ix

2
j ) = 1− 2(

∑
i,j

x2
ix

2
j ).

This is maximized whenever all but one of the components is equal to zero.
Of course, we are not typically interested in sparsely representing a single point, but

multiple points. To reach towards this, define R(θ) as a rotation matrix in R2,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

The left panel in Figure 3 gives a single data point x. The thicker blue line is the curve
(θ, v(θ, x)) in polar coordinates, where the radius v(θ, x) is the Varimax objective after
rotating x by R(θ). An angle θ∗ that maximizes v(θ, x) (i.e. the radius of the blue line) is
an angle that gives the optimal Varimax rotation, R(θ∗); there are four optimal values, all
of which give the same axes. The optimal axes are displayed in thinner blue lines. They
sparsely represent the single data point.

3In R, the function varimax has a default argument normalize = TRUE. Note that when U has orthogonal
columns (as is the case for PCA) and normalization is not used, then the second term in Varimax is a
constant function of the matrix R. In such cases, this term can be ignored without changing the optimum.
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In the right panel of Figure 3, there are 5000 points x1, . . . , x5000 distributed with radial
streaks. Each data point creates v(θ, xi), a “four petal flower,” as in the left panel. Then,
the Varimax objective function is the sum of these flowers,

∑5000
i=1 v(θ, xi). The sum of the

flowers is displayed as the thicker blue line in the right panel. The thinner blue lines gives
the optimal axes, which align with the radial streaks in this data.

Varimax estimates a sparse basis

Varimax curve for one point The sum of 5000 curves

Figure 3: These curves are in polar coordinates, where the radius of the curve is the
Varimax objective value for that angle. The optimal axes are displayed in blue. These
axes provide an approximately sparse representation for the points because most points
are close to the axes.

2 vsp: Vintage Sparse PCA

This section describes the methodological details of Vintage Sparse PCA (vsp). First, the
algorithm is stated. Then, Remarks 2.1 and 2.2 describe ways in which vsp can be modified
for certain settings; Table 1 summarizes these settings.

Algorithm: vsp

- Input A ∈ Rn×d and desired number of dimensions k.

1. Centering (optional). Define row, column, and grand means,

µ̂r = A1d/d ∈ Rn, µ̂c = 1TnA/n ∈ Rd, µ̂. = 1TnA1d/(nd) ∈ R.

Here µ̂r is a column vector and µ̂c is a row vector. Define

Ã = A− µ̂r1Td − 1nµ̂c + µ̂.1n1
T
d ∈ Rn×d. (3)

7



2. SVD. If centering is being used, then compute the top k left and right singular
vectors of Ã, Û ∈ Rn×k and V̂ ∈ Rd×k. These are the principal components and their
loadings. Let D̂ ∈ Rk×k be a diagonal matrix containing the corresponding singular
values. So, Ã ≈ ÛD̂V̂ T . If centering is not being used, then use the original input
matrix A instead of Ã. If A is large and sparse, steps 1 and 2 can be accelerated.
See Remark B.

3. Varimax. Compute the orthogonal matrices that maximize Varimax, v(R, Û) and
v(R, V̂ ). Define them as R

Û
, R

V̂
∈ O(k) respectively.

- Output:

Ẑ =
√
nÛR

Û
, Ŷ =

√
dV̂ R

V̂
, and B̂ = RT

Û
D̂R

V̂
/
√
nd (4)

In modern applications where the row sums (or column sums) of A are highly hetero-
geneous, the degree-normalized version of A can be input into vsp.

Remark 2.1. [Optional degree-normalization step] Define the row “degree”, the row regu-
larization parameter, and the diagonal degree matrix as

degr = |A|1d ∈ Rn, τr = 1Tndegr/n ∈ R, Dr = diag(degr + τr1n) ∈ Rn×n,

where |A|ij = |Aij |. Similarly, define the column quantities degc, τc, Dc with degc = 1Tn |A| ∈
Rd and τc = degc1d/d. Define the normalized matrix as L = D

−1/2
r AD

−1/2
c . Then, input

L to vsp (instead of A). When using L, vsp estimates a normalized version of Z and Y .

To undo this, the output of vsp could be renormalized as D
1/2
r Ẑ and D

1/2
c Ŷ .

Normalizing the matrix with the regularizer τ improves the statistical performance of
spectral estimators derived from a sparse random matrix [Chaudhuri et al., 2012, Amini
et al., 2013, Le et al., 2017]. In many empirical examples, the τr and τc prevent large
outliers in the elements of the singular vectors that are created as an artifact of noise in
sparse matrices [Zhang and Rohe, 2018]. In this paper, the degree-normalization step is
used for the analyses in Section 3, but it is not studied in the main theorem.

The optional centering step (step 1 of vsp) plays a surprising role. In particular,
Proposition 5.1 in Section 5 shows that if A is centered in step 1, then vsp estimates the
centered factors in the semi-parametric factor model (i.e., Z −E(Z)). See Remark 5.2 and
Section 7.1.2 for more discussion. To estimate Z, instead of its column centered version,
the output of vsp can be recentered as follows.

Remark 2.2. [Optional recentering step] After running vsp with the centering step, it is
possible to use the quantities already computed to recenter the estimated factors Ẑ and Ŷ
as a post-processing step. This enables vsp to estimate Z instead of Z − E(Z). Define

µ̂Z =
√
nµ̂cV̂ D̂

−1R
Û
, and µ̂Y =

√
dµ̂Tr ÛD̂

−1R
V̂

(5)
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and recenter the estimated factors as follows: Ẑ + 1nµ̂Z and Ŷ + 1dµ̂Y . If the renormal-
ization step in Remark 2.1 is also used, then recenter before renormalizing. Section 5 and
Appendix F.1 justify the estimator µ̂Z .

Table 1 below lists the variations of vsp that are defined above.

Option Motivated when ...

Centering factor modeling, topic modeling, soft-clustering.
See Remarks 2.2 and 5.2, Sections 7.1.2 and C.4

Recentering the factor means are desired.
See Theorem 6.1, Remark 5.2, Section F.1.

Avoid centering hard-clustering, Stochastic Blockmodeling.
See Sections 7.1.2 and C.3.

Degree-normalization heterogeneous column sums or row sums in A.
Used in the data example.

Renormalization we want to estimate the distribution of the factors Z.
See Remark 2.1.

Table 1: The motivation for each of the optional steps in vsp.

3 An example with Academic Bibliometrics

This section uses vsp to study academic citation patterns and abstracts from a corpus
of over 200 million academic publications that are curated and provided by the Semantic
Scholar project [Ammar et al., 2018].4 In order to (1) identify academic areas or disciplines
and (2) identify the large journals within these disciplines, Section 3.1 applies vsp to the
citation patterns among academic journals. Then, in order to understand where and how
“factor analysis” is used, Section 3.2 applies vsp to all abstracts that contain the phrase
“factor analysis.”

3.1 vsp on journal citations

We apply vsp to the citation patterns among academic journals and find that
the columns of Ŷ identify academic disciplines or areas. For a small value
of k, vsp factorizes journals into high level groupings (e.g. medicine, biology,
physical sciences, mathematics, etc). For a large value of k, the academic areas
are more resolved (e.g. pure mathematics vs. applied mathematics). This
section uses degree-normalization, renormalization, centering, and recentering.

4http://s2-public-api.prod.s2.allenai.org/corpus/
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In Figure 2 and in this subsection, the data matrix A is a 22, 688× 22, 688 matrix. For
each i ∈ 1, . . . , 22, 688, the ith row and column of A corresponds to a unique journal name
in the Semantic Scholar database (after putting all letters in lower case and removing all
punctuation). For computational ease, we took a simple random sample of 5% of the paper
citations.5 If there were more than five citations from the papers in journal i to the papers
in journal j in this 5% sample, then Aij = 1, otherwise Aij = 0. There were roughly
100,000 journals that appeared in the database, but only 22,688 remain after the sampling
and thresholding described above. While A is a square matrix, it is not symmetric because
a citation is directed from one paper to another.

This matrix is sparse with heterogeneous row and column sums. There are 474,841 non-
zero elements in A, roughly 1/1000 of the elements, making the average row and column
sum roughly 20. The median row sum is four. The median column sum is two. PLOS
ONE has the largest row sum, 5,556. Nature has the largest column sum, 4,413. The next
table gives the column and row sums for Journal of the Royal Statistical Society-Series
B (JRSS-B) , Annals of Statistics (AOS), Journal of the American Statistical Association
(JASA), Annals of Probability (AOP), Nature, PLOS ONE, Proceedings of the National
Academy of Sciences (PNAS), and The New England Journal of Medicine (NEJM).

JRSS-B AOS JASA AOP Nature PLOS ONE PNAS NEJM

column sum 178 146 462 59 4413 3176 3928 3209
row sum 16 45 51 28 522 5556 1283 284

Because the column and row sums ofA have a heavy tail, we used the degree-normalization
described in Remark 2.1. The sparsity in the data matrix makes vsp quick to compute. In
R, on a 2.3 GHz Macbook Pro, it takes 1.3 seconds for k = 10, 13 seconds for k = 50, and
23 seconds for k = 50.

Notice that the columns of A measure how widely a journal is cited. For this reason,
the Ŷ matrix in vsp, which embeds the columns of A, reveals how widely a journal receives
citations. We will refer to each column of Ŷ as a factor. So, if element Ŷij is large, it
suggests that journal i is a more central or prestigious journal in factor j. Because the
rows of A measure how a journal cites other journals, the elements in Ẑ reveal how widely
the journal sends citations [Rohe et al., 2016a]. Here, we will focus on Ŷ .

Figure 4 plots the largest 300 squared singular values of L. Inspecting this scree plot,
it seems that the typical analyst would hesitate to make k larger than 50. However, with
k = 100 there continues to be radial streaks in V̂ that Varimax aligns with the axes in Ŷ ;
Figure 2 shows columns 1, 2, 3, 4, 5, 96, 97, 98, 99, and 100 of V̂ (on the left) and Ŷ (on the
right). The leading columns of V̂ have a few radial streaks when they are plotted against
one another. The trailing columns of V̂ show multiple streaks within each plot. The leading
columns of Ŷ have streaks that are tightly aligned with the axes; the trailing columns, even

5Specifically, the population of this sample is the edges (u, v) between papers.
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with k = 100 are axis aligned. These later factors are more diffuse, suggesting that they
contain more noise.6

0 50 100 150 200 250 300

0.1

0.2

0.3

0.4

0.5

Squared singular values of L

Figure 4: The first 300 squared singular values of L are plotted, along with lines at k =
10, 50, and 100.

3.1.1 Journal factors with k = 10

We interpret the meaning of a factor in Ŷ by (1) finding external features that correlate
with that column and then (2) examining the journals that have the largest values in that
column. For external features, we construct the document-term matrix from the journal
titles. Define X ∈ {0, 1}22,688×2397 where Xi` ∈ {0, 1} indicates whether the title for
journal i contains word `. Due to the sparse and heterogeneous nature of Ŷ and X, simple
correlations are unstable. We have found better results with the following “best feature
function” bff [Wang and Rohe, 2016]. For each factor j, define the sets in(j) = {i : Ŷij ≥ 0}
and out(j) = {i : Ŷij < 0}. Define the importance of word ` in factor j as

bff(j, `) =

√√√√∑i∈in(j) ŶijXi`∑
i∈in(j) Ŷij

−

√∑
i∈out(j)Xi`

|out(j)|
.

Using k = 10, vsp finds a high level grouping of disciplines. For each factor j =
1, . . . , 10, the largest seven elements of bff are given below.

1. medicine, surgery, clinical, american, cancer, official, oncology

6In later work, Chen et al. [2021] developed a resampling procedure to examine whether a column of V̂
is statistically significant. Figure 3 in that paper shows that the first 150 eigenvectors on a symmetrized
version of the journal citation graph are all highly statistically significant.
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2. molecular, cell, biology, immunology, microbiology, genetics, nature

3. psychology, psychiatry, neuroscience, brain, neurology, behavior, psychological

4. materials, chemistry, physics, chemical, physical, energy, polymer, engineering

5. ecology, plant, biology, evolution, microbiology, marine, environmental

6. geology, earth, geological, geophysical, planetary, atmospheric, geophysics

7. ieee, on, conference, transactions, computer, pattern, vision

8. mathematical, mathematics, arxiv, physics, geometry, analysis, differential

9. economics, economic, review, management, finance, statistics, financial

10. oral, dentistry, dental, surgery, orthodontics, maxillofacial, periodontology

Figure 5 plots factor 1 “medicine” against all of the others; each dot is a journal.
“Medicine” has a mixing pattern with factor 2 “small-scale biology”, because multiple
journals rank highly in both. With factor 3 “psych/neuro”, there is less mixing, but
still some. For the other factors, there is nearly zero mixing, making the radial streaks
increasingly pronounced.

Figure 5: Each dot is a journal. The vertical axis gives factor 1, the “medicine” factor. The
horizontal axis gives the other factors, 2, . . . , 10. If you squint, some panels have multiple
horizontal streaks (e.g. factor 6); with a larger choice of k, these streaks reveal themselves
to be buds that unfurl and branch into their own axes, in a hierarchical tree fashion.

The factors in Ẑ identify the same academic areas as Ŷ . The leading bff terms for Ẑ
are given in Section D.1 and the top eleven journals for both Ẑ and Ŷ are given in Section
D.2. The difference between Ẑ and Ŷ is that the largest elements in Ŷ tend to identify the
more prestigious journals in that academic area, whereas the largest elements in Ẑ tend
to identify the journals that publish the most papers (and thus send the most citations)
in that academic area. For example, the largest five elements in the first factor of Ŷ are
highly prestigious journals: JAMA, The New England Journal of Medicine, The Lancet,
Annals of Internal Medicine, and BMJ, in descending order. In the first column of Ẑ, none
of these journals are among the largest 20 elements. Instead, the leading journal in the
first column of Ẑ is Medicine, an open access journal akin to PLOS ONE.
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3.1.2 The middle B matrix

Interpreting B̂ can be challenging. Vintage factor analysis does not typically include this
matrix.7 In PCA, there is a diagonal matrix of eigenvalues that is mildly analogous to
B; typically these eigenvalues are absorbed into the components. When B̂ is not strictly
diagonal, it describes how the factors in Ẑ relate to the factors in Ŷ . The Stochastic
Blockmodel, further discussed in Section C.3, provides the most expedient interpretation
for the B matrix. It is the first parametric model to include the “middle B matrix” [Holland
et al., 1983]. Under the Stochastic Blockmodel, the matrices Z (and Y ) have a single one
in each row and the rest of the elements are zero. If Zij = 1, then we say “person i is in
block j.” In that model, Buv gives the probability that a person in block u is friends with
a person in block v. Zhang et al. [2014], Jin and Ke [2017] generalized this model to allow
people to have non-negative, weighted memberships in each block. In this generalization,
the middle B matrix has an analogous interpretation. In order to adopt that interpretation
here, the elements of Ẑ, Ŷ , and B̂ must be non-negative.

Figure 6, in the left panel, gives the matrix B̂. Indeed, it is hard to interpret. The
middle panel gives the non-negative interpretation, defined as follows. For any matrix
M , define M+ to be equal to M , except setting the negative elements to zero. Define
non-negative interpretation (nni) for B̂ as

B̂nni =
[
(ẐT+Ẑ+)−1ẐT+AŶ+(Ŷ T

+ Ŷ+)−1
]

+
. (6)

In Figure 6, the non-negative interpretation of B̂ has a clear diagonal structure, which is
consistent with our understanding that journals in the same area are more likely to cite
one another than journals from separate areas.

While it seems strange to threshold away all of the negative values, this step is not as
severe as it first sounds. The right panel in Figure 6 gives a histogram of the elements in Ẑ
and Ŷ that are larger than 4 in absolute value. The largest values are all positive. This is
because, empirically, the factors estimated by Varimax tend to be “one-sided,” with large
skewness.8 Following Kaiser and Rice [1974], we change the signs of all factors to ensure
the skewness is positive. With k = 10, the median skewness of the 20 factors in Ẑ and Ŷ is
8.1 and all but one of the factors has skewness greater than 2. Because of this, thresholding
away the negative values enables a clearer interpretation of B̂.

3.1.3 The factors become more refined as k increases

As k increases, the factors provide a more refined specification of academic areas; this
refinement is roughly hierarchical, e.g. “medicine” splits into different areas. However, it is

7It does appear in Harris and Kaiser [1964]; see Section 7.2 for more.
8The skewness for a random variable is η3/η

3/2
2 where the η’s are the centered moments defined in

Definition 2. Symmetric random variables have zero skewness and the exponential distribution, which
seems quite skewed, has skewness of two. In this section, we are discussing empirical moments.
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Interpreting the B̂ matrix via B̂nni
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Figure 6: The B̂ matrix can be hard to interpret. B̂nni provides a clearer picture; it is
constructed by thresholding away the negative values in Ẑ, Ŷ as in Equation (6). The right
panel justifies this thresholding, by showing that the largest values in Ẑ, Ŷ are positive.

not perfectly hierarchical. This can be seen in the loadings for AOP (Annals of Probability)
for k increasing from 10, to 50, to 100. In the factoring with k = 10, AOS, JASA, and
JRSS-B have their largest loading values in both factors 7 and 9; that is, the rows of Ŷ
corresponding to these journals have their largest values in columns 7 and 9. Meanwhile,
AOP has its largest loading value in factor 8 (mathematics). None of these journals rank
among the highest forty journals in these factors. Increasing to k = 50, AOS, JASA,
JRSS-B, and AOP combine into a “Probability and Statistics” factor. Despite the fact that
there is another factor of prestigious math journals (Inventiones Mathematicae, Annals of
Mathematics, etc), AOP has its highest loading in the “Probability and Statistics” factor.
The journals with the largest 20 elements in the “Probability and Statistics” factor are
given in a text box below, in decreasing order. AOS, JASA, JRSS-B, and AOP all rank
highly in this factor. This merging pattern is completely sensible and yet not strictly
hierarchical.

The top 20 journals in “Probability and Statistics” in k = 50 factoring.
annals of statistics, annals of mathematical statistics, journal of statistical plan-
ning and inference, journal of multivariate analysis, biometrika, statistics probabil-
ity letters, journal of the royal statistical society series b statistical methodology,
statistical science, scandinavian journal of statistics, annals of probability, tech-
nometrics, journal of computational and graphical statistics, comput stat data
anal, journal of the american statistical association, bernoulli, journal of applied
probability, stochastic processes and their applications, annals of the institute of
statistical mathematics, biometrics, probability theory and related fields.
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Increasing to k = 100, the “Probability and Statistics” factor from k = 50 splits in a
hierarchical fashion into two separate factors, one for “Statistics” and one for “Probability.”
Table 2 gives the first bff term for each of these 100 factors in Ŷ . The leading five journals
in each of these factors is given in Appendix D.3.

gastroenterology microbiology infectious marketing alcohol urology comb
cardiovascular microbiology management materials control animal food
communications neuroscience nephrology mechanics ecology cancer ieee
pharmaceutical parasitology obstetrics neurology ecology comput ieee
otolaryngology pharmacology psychiatry nutrition geology energy ieee
rehabilitation rheumatology psychology numerical nursing health oper
transportation atmospheric psychology political optical marine oral
communication dermatology quaternary radiology physics nature soil
endocrinology probability statistics sociology physics sports inf
environmental accounting toxicology circuits polymer speech de
ophthalmology anesthesia veterinary genetics sensing vision
astrophysics analytical chemistry language surgery aging
geotechnical entomology economics language surgery child
mathematical immunology education robotics surgery fuzzy
mathematical immunology geography software tourism plant

Table 2: For each of the k = 100 factors, this table gives the top bff term. While there
are 9 bff terms that repeat for more than one factor (e.g. mathematical), these repeated
factors identify subdisciplines within these areas (e.g. one of the math factors finds “applied
math” journals and the other appears to find “pure math” journals). See Appendix D.3
for the leading five journals in all 100 factors.

3.1.4 How should we choose k?

In this example, the screeplot in Figure 4 suggests a value of k much smaller than 100.
However, there is no evidence of over-factoring in the k = 100 factoring above. First, in
Figure 2, there are still radial streaks in the principal components all the way up to the
96th, 97th, 98th, 99th, and 100th components and these streaks rotate to become axis
aligned. Second, in Appendix D.3, the journals with the largest loadings in each of the 100
factors neatly identify academic areas.

While there is certainly an upper bound for k, beyond which the factors behave like
noise and fail to provide meaningful insights, in this example with academic journals, the
screeplot is not helpful in detecting this upper bound. When inspecting the screeplot to
select k, do not mind the eigen-gap too much.

In addition to the meaningful factoring at k = 100, the factors at k = 10 are also
meaningful. This is a common empirical phenomenon; many times the factors have some-
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thing resembling a hierarchical structure. Perhaps the k = 10 results are more suited for a
certain task at hand. The Cheshire Cat Rule says that there is not a single correct answer
for the choice of k, that the answer depends upon where you want to go.

Alice: Would you tell me, please, which way I ought to go from here?
The Cheshire Cat: That depends a good deal on where you want to get to.
Alice: I don’t much care where.
The Cheshire Cat: Then it doesn’t much matter which way you go.

— Lewis Carroll, Alice in Wonderland

3.2 How and where is “factor analysis” used?

This section describes where and how “factor analysis” is used. We study the 144,136
papers in the Semantic Scholar database that contain “factor analysis” in the title or
abstract (case insensitive) and for which the abstract is classified as English by Compact
Language Detector 3 [Salcianu and et al, 2020].

3.2.1 Where is factor analysis used?

In order to find where factor analysis is used, we examine where these papers appear in
the Ŷ journal embedding above. Of the 144,136 papers, 64,873 were published in a journal
that was included in that analysis. For each of these 64,873 papers, take its journal’s row
of Ŷ from the k = 100 analysis and place it into the rows of a new 64, 873 × 100 matrix.
Columns of this matrix with a large sum correspond to places in the academic literature
where factor analysis appears.

In descending order, the largest 16 of these 100 journal factors are child–psychology,
psychiatry–psychiatric, psychology–social, nursing–nurse, health–care, rehabilitation–occupational,
environmental–water, aging–gerontology, nutrition–obesity, alcohol–health, education–educational,
analytical–chromatography, tourism–hospitality, toxicology–environmental, management–
business, and statistics–statistical. The column with the smallest sum is probability–
annals. Each of these factor names is constructed from the first two bff terms for that
factor (Table 2 only gives the first).

This exploratory analysis has numerous lurking variables, such as the number of papers
published within each factor and the likelihood that a paper using factor analysis includes
“factor analysis” in the title or abstract. That said, it is not surprising that psychology,
psychiatry, and statistics rank high, while probability ranks low.

3.2.2 How is factor analysis used?

In order to explore how “factor analysis” is used, we study the document-term matrix
A constructed via the tidytext package [Silge and Robinson, 2016] constructed with the
144,136 abstracts. There are 240,331 unique words in the corpus. So, A ∈ {0, 1}144,136×240,331
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with Aij indicating whether abstract i contains word j. Just as in Section 3.1, A is sparse
with highly heterogeneous column sums. It contains 16.8 million non-zero elements, which
averages to 117 terms per document. The column sums of A are highly skewed; the median
is 1, the average is 70, and 12 terms appear in over 100,000 documents. Stop words (e.g.
the, of, and, to) have not been removed.

With k = 50, vsp takes 72 seconds.9 For comparison, constructing A from the 144, 136
abstracts represented as character strings requires 23 seconds in tidytext.

Seven of the k = 50 factors appear to focus on words that are more “methodological.”
These seven are listed below; in bold font is a name we assigned based upon our interpre-
tation, following that are the ten words with the largest loading values in Ŷ ∈ R240,331×50.
In addition, we find 32 “subject area” factors. These subject area factors use discipline
specific words. These 32 factors echo the journal factors listed in Section 3.2.1 (e.g. Envi-
ronment, Nutrition, Psychology, etc). See Section E.1 for these factors. The final eleven
factors are artifacts and anomolies that are further discussed in Section E.2.

The seven methodological factors.
item–response–theory: consistency, cronbach, internal, validity, reliability,
retest, version, alpha, psychometric, properties
modern–factor–models: algorithm, bayesian, estimation, carlo, monte, simu-
lation, algorithms, likelihood, inference, markov
confirmatory–factor–analysis(cfa): invariance, across, fit, confirmatory, mea-
surement, scalar, configural, multigroup, cfa, metric
structural–equation–modeling(sem): equation, structural, modeling, sem,
confirmatory, model, mediating, intention, modelling, amos
cfa–sem–summaries: rmsea, cfi, gfi, df, agfi, nfi, tli, srmr, root, approximation
qualitative–research: literature, review, development, develop, management,
implementation, process, experts, qualitative, interviews
vintage–factor–analysis: olkin, kaiser, meyer, bartlett, sphericity, kmo, rota-
tion, varimax, principal, adequacy

9In R on a 2020 MacBook Pro with 2.3 GHz Intel i7.

17



4 Thurstone’s diagnostics assess whether Varimax can iden-
tify the axes

Factors are rotational invariant because redrawing the factor axes does not
change the fit to the data. In linear regression with more features than samples
(p > n), there is also an invariance. However, we now know that if there is a
sparse solution, it can be unique. Decades before sparsity became popular for
removing the invariance in p > n regression, Thurstone proposed using sparsity
to remove rotational invariance in factor analysis. His sparsity diagnostics are
still used routinely in practice. Theorem 4.1 shows that sparsity implies the
key leptokurtic condition that is sufficient for Varimax to identify the axes. In
this way, Vintage Factor Analysis performs statistical inference.

Step 2 of vsp approximates Ã with the leading k singular vectors, Ã ≈ ÛD̂V̂ T . Step 3
computes the Varimax rotations of Û and V̂ . However, for any rotation matrices R1, R2 ∈
O(k), rotating Û and V̂ does not change the approximation to Ã,

ÛD̂V̂ T = (ÛR1)(RT1 D̂R2)(V̂ R2)T ,

where the rotated factor matrices ÛR1 and V̂ R2 still have orthonormal columns. As such,
no rotation can improve the approximation to Ã. Many have interpreted this to imply
that we can never estimate factor rotations from data. This is the misunderstanding of
rotational invariance.

In an attempt to resolve the rotational invariance, Thurstone developed a new type
of data analysis to find rotations R

Û
∈ O(k) such that ÛR

Û
is sparse [Thurstone, 1935,

1947]. He developed a suite of tools and diagnostics to assess this sparsity and many of
these remain in use today. They are described in modern textbooks, built into the base
R packages for factor analysis, and used routinely in practice. Section 4.1 describes these
diagnostic practices. Section 4.2 and Theorem 4.1 show how these diagnostics can be
reinterpreted as assessing whether the factors come from a leptokurtic distribution which
is a key condition for Varimax to be able to identify the correct factor rotation in Theorems
5.1 and 6.1.

4.1 Thurstone’s simple structure and diagnostics

Thurstone [1935] and Thurstone [1947] propose using sparsity to remove the rotational
invariance. “In numerical terms this is a demand for the smallest number of non-vanishing
entries in each row of the ... factor matrix. It seems strange indeed, and it was entirely
unexpected, that so simple and plausible an idea should meet with a storm of protest
from the statisticians” [p333 Thurstone [1947]]. Thurstone refers to this sparsity as simple
structure. Thurstone’s use of sparsity is analogous to the modern use of sparsity in high
dimensional regression and underdetermined systems of linear equations. In these more
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modern problems, without any sparsity constraint, there is a large space of plausible solu-
tions. However, under certain conditions, the sparse solution is unique. This intuition is
analogous to Thurstone’s intuition for resolving rotational invariance.

Thurstone implemented techniques to find rotations which produce sparse solutions,
but he struggled to find any assurance that the computed solution is the sparsest solution
(i.e. unique). “When [a solutions has] been found which produces a simple structure,
it is of considerable scientific interest to know whether the simple structure is unique...
The necessary and sufficient conditions for uniqueness of a simple structure need to be
investigated. In the absence of a complete solution to this problem, five criteria will here
be listed which probably constitute sufficient conditions for the uniqueness of a simple
structure” [p334 Thurstone [1947]]. Thurstone’s five conditions are quoted in Appendix A.
They motivate his radial streaks diagnostic, illustrated in Figure 2.

If the diagnostic plots do not show radial streaks, Thurstone suggests that one should
proceed more cautiously. A few pages after giving the five criteria for simple structure,
Thurstone gives a diagnostic plot with points evenly spaced inside a circle (i.e., like the
Gaussian in Figure 1) and explains what happens when you have loadings that appear
to come from a rotationally invariant distribution. “A figure such as [this] leaves one
unconvinced, no matter where the axes are drawn, unless an interpretation can be found
that seems right. Random configurations like this seldom yield clear interpretations, but
they are not, of course, physically impossible.”

The current paper creates a statistical theory around Thurstone’s key ideas by presum-
ing that the factors are generated as random variables from a statistical model and using
the Varimax estimator. Thurstone does not presume the latent factors are generated from
a probability distribution, and as such, he lacks any statistical notion of the true axes to
be inferred. His notion of uniqueness is more akin to the uniqueness of an optimization
solution.

Thurstone computed rotations by hand and human judgement. Only after Thurstone’s
death in 1955 did it become popular to compute factor rotations such as Varimax on
“electronic computers” with numerical optimization techniques. In k = 2 dimensions,
Kaiser [1958] gives a a unique closed form solution to Varimax. In k > 2, if one assumes
the models in this paper, then the maximizer to Varimax is unique (up to permutations
and sign flips). However, under lesser assumptions, uniqueness remains an open problem.

4.1.1 Simple structure in contemporary multivariate statistics

Contemporary textbooks on multivariate statistics still suggest that the rotated factors or
the rotated principal components should be inspected to see if they are sparse [Mardia
et al., 1979, Jolliffe, 2002, Johnson and Wichern, 2007, Bartholomew et al., 2011]. These
textbooks all share the empirical observation that it is often easier to interpret factors
which have been rotated for sparsity. The given reason is that sparse factors are “simpler.”
While this appears to use Thurstone’s word, these texts do not discuss whether or not
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this simple structure might resolve the problem of rotational invariance. Rather, it is an
empirical observation that sparse and simple solutions are easier to interpret. For example,
Ramsay and Silverman [2007] says “It is well known in classical multivariate analysis that
an appropriate rotation of the principal components can, on occasion, give components ...
more informative than the original components themselves.” Johnson and Wichern [2007]
says “A rotation of the factors often reveals a simple structure and aids interpretation.”
Bartholomew et al. [2011] says “Rotation assumes a very important role when we come to
the interpretation of latent variables.”

The notion that the data analyst should inspect the factors for sparsity is built into
the print function for factor loadings in the base R packages; if a loading is less than the
print argument cutoff then instead of printing a number, it appears as a whitespace.

This paper shows that sparsity does not merely make the factors simpler; sparsity
enables statistical identification and inference. Sparsity and radial streaking are two dis-
tinctively non-Gaussian patterns. As such, Thurstone’s visualizations and diagnostics can
be reinterpreted as assessing whether the factors are generated from a non-Gaussian dis-
tribution and thus, by Maxwell’s theorem, whether the rotation is statistically identifiable.
Moreover, Theorem 4.1 in the next subsection shows that sparsity implies leptokurticity,
the key identifying assumption for Varimax.

4.2 Kurtosis and sparsity

The next theorem shows that Thurstone’s sparsity diagnostics can be reinterpreted as
assessing an identifying assumption for Varimax.

Theorem 4.1. Any random variable X that satisfies 5
6 < P(X = 0) < 1 and has four

finite moments is leptokurtic.

For example, suppose X ∼ Bernoulli(p) with q = P (X = 0). Theorem 4.1 implies
that if q > 5/6 ≈ .83, then X is leptokurtic. For comparison, in this specific case of the
Bernoulli distribution, X is leptokurtic if q (or p) is greater than (

√
3 + 1)(2

√
3)−1 ≈ 0.79.

While Theorem 4.1 does not provide a sharp results for the Bernoulli distribution, .83 is
close to .79. Moreover, Theorem 4.1 applies to any random variable, it does not make any
parametric assumptions, and the moment assumptions are only so that kurtosis is defined.
See Section G.1 in the Appendix for a proof. This theorem assumes hard sparsity (i.e.,
P(X = 0) > 0) for technical convenience. See Appendix G.2 for a discussion about softer
forms of sparsity.

5 Mathematical intuition for vsp with population results

This section studies each of the three steps in vsp by studying their population
behavior. Statistical convergence around the population quantities is rigorously
treated in Theorem 6.1 in Section 6.
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5.1 Population results for two layers of randomness

The semi-parametric factor model is a latent variable model with two sequential layers of
randomness. In the first layer of randomness, the latent variables Z and Y are generated. In
the second layer, the observed matrix A is generated, conditionally on the latent variables.
To parallel these two layers, there are two types of population results given in the next two
subsections.

Propositions 5.1 and 5.2 study the first two steps of vsp applied to the population
matrix

A = E(A|Z, Y ) = ZBY T (7)

instead of A. These propositions imply that the population principal components can be
expressed as Z̃R, where Z̃ ∈ Rn×k is Z after column centering and R ∈ Rk×k is defined
below. If the nk many random variables in Z ∈ Rn×k are mutually independent, then
R converges to a rotation matrix. These results in Section 5.2 allows for the randomness
in Z and Y , but they remove the second layer of randomness by using A instead of A.
Then, Section 5.3 studies the population version of the Varimax step. To do this, take
the expectation of the Varimax objective function, evaluated at the population principal
components (i.e., Z̃R), where the expectation is over the distribution of Z. This expectation
removes the randomness in Z. Under the identification assumptions for Varimax defined
below, Theorem 5.1 shows that the rotation that maximizes this function is RT ∈ O(k).
So, rotating the population principal components with the population Varimax rotation
yields the original factors, (Z̃R)RT = Z̃.

5.2 PCA for latent variable models; population results

Define Z̄ ∈ Rn×k such that Z̄ij equals the sample mean of the jth column of Z. Similarly
for Ȳ ∈ Rd×k. Define

Z̃ = Z − Z̄ and Ỹ = Y − Ȳ . (8)

Proposition 5.1. [Step 1 of vsp] Centering A to get Ã as in Equation (3), has the effect
of centering Z and Y .

Ã = Z̃BỸ T

This does not require any distributional assumptions on Z or Y .

A proof is given in Appendix F. The next proposition gives the SVD of Ã = Z̃BỸ T .
Define

Σ̂Z = Z̃T Z̃/n, Σ̂Y = Ỹ T Ỹ /d,

and define R̃U , R̃V ∈ O(k), and diagonal matrix D̃ to be the SVD of Σ̂
1/2
Z BΣ̂

1/2
Y ∈ Rk×k,

Σ̂
1/2
Z BΣ̂

1/2
Y = R̃TUD̃R̃V . (9)
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The next proposition shows that the rotation matrices R̃U and R̃V convert the factor
matrices Z̃ and Ỹ into the principal components and loadings U and V .

Proposition 5.2. [Step 2 of vsp] Define the following matrices,

U = n−1/2Z̃ Σ̂
−1/2
Z R̃TU , D =

√
ndD̃, V = d−1/2Ỹ Σ̂

−1/2
Y R̃TV . (10)

Then, Ã = UDV T , where U and V contain the left and right singular vectors of Ã and
D contains the singular values of Ã . This does not require any distributional assumptions
on Z or Y .

The proof requires demonstrating the equality Ã = UDV T and showing that U and
V have orthonormal columns. Substituting in the definitions reveals this result. Taken
together, Propositions 5.1 and 5.2 show that the first two steps of vsp on A compute

U ∝ Z̃ Σ̂
−1/2
Z R̃TU ; these are the principal components of A .

Remark 5.1. [Relationship between PCA and the factors] Proposition 5.2 relates PCA
on the population matrix A to the factors Z. This is because the population principal
components are the columns of the matrix

U = n−1/2Z̃ Σ̂
−1/2
Z R̃TU . (11)

So, the principal components are the centered latent factors Z̃, orthogonalized with Σ̂
−1/2
Z ,

and rotated by a k×k nuisance matrix R̃TU . Despite the fact that PCA is typically considered
a second order technique, this result implies that the principal components themselves do
not retain any first or second order information about the latent factors, but retain all
other distributional information. With Maxwell’s Theorem, this suggests that higher order
techniques such as Varimax hold the possibility of identifying the nuisance matrix. In fact,
Theorem 5.1 below shows that Varimax can identify the nuisance matrix.

5.3 Population results for Varimax

The Varimax problem applied to the population principal components U in Equation (11)
is

arg max
R∈O(k)

v(R, Z̃ Σ̂
−1/2
Z R̃TU ). (12)

Despite the fact that these are the population principal components, this is still a sample
quantity because Z is random. This randomness is from the first stage of randomness in
the semi-parametric factor model. The next theorem gives a population result for the M-
estimator in (12) by studying the expected value of v over Z, to show that it can identify
R̃U . Assumption 1 gives the identification assumptions on the distribution of Z that will
be used in both the population result for Varimax (Theorem 5.1) and the main theorem
(Theorem 6.1).

22



Assumption 1. [The identification assumptions for Varimax] The matrix Z ∈ Rn×k sat-
isfies the identification assumptions for Varimax if all of the following conditions hold on
the rows Zi ∈ Rk for i = 1, . . . , n:

i) the vectors Z1, Z2, . . . , Zn are iid,

ii) each vector Zi ∈ Rk is composed of k independent random variables (not necessarily
identically distributed),

iii) V ar(Zij) = 1 for all j,10 and

iv) the elements of Zi are leptokurtic.

Let Z̃1 be the first row of Z̃. Define Zo = Z1 − E(Z1) ∈ Rk. Theorem 5.1 shows
that the rotation matrix R that maximizes the expected Varimax objective function,
E(v(R,ZoR̃TU )), is R̃U . In this formulation, several quantities from the sample maximiza-
tion problem (12) have been replaced. First, the sample objective function v in Equation
(2) has been replaced with its expectation over the distribution of Z. Then, Z̄ has been re-

placed by E(Z1) and Σ
−1/2
Z has been replaced with its limiting quantity under Assumption

1 (i.e., the identity matrix).
Because the Varimax objective function does not change if the estimated factors are

reordered or if some of the estimated factors have a sign change, the maximizer of Varimax
is actually an equivalence class that allows for these operations. Define the set

P(k) = {P ∈ O(k) : Pij ∈ {−1, 0, 1}}. (13)

It is the full set of matrices that allow for column reordering and sign changes.

Theorem 5.1. [step 3] Suppose that Z ∈ Rn×k satisfies the identification assumptions for
Varimax (Assumption 1). Let Z1 ∈ Rk be the first row of Z. Define Zo = Z1−E(Z1). For
any nuisance rotation matrix R̃ ∈ O(k),

arg max
R∈O(k)

E(v(R,ZoR̃T )) = {R̃P : P ∈ P(k)} (14)

The output step of vsp right multiplies the principal components
√
nU ≈ Z̃R̃TU with a

matrix which maximizes Varimax. In the population results, this matrix is R̃U . Thus, the
Varimax rotation reveals the unrotated factors, (Z̃R̃TU )R̃U = Z̃.

Remark 2.2 describes a method to recenter the factors Z̃ to get Z. Section F.1 in the
Appendix gives a population justification for this recentering step.

10The third assumption in Varimax is not restrictive because the matrix B can absorb a rescal-
ing of the variables. That is, let Zrescaled ∈ Rn×k satisfy the first two conditions and presume that
A = ZrescaledBrescaledY T . Define ΣZ = Cov(Zrescaledi ), Z = ZrescaledΣ−1/2, and B = Σ1/2Brescaled. Be-
cause Zrescaled satisfies the second condition, ΣZ is diagonal. So, Z = ZrescaledΣ−1/2 retains independent
components and now satisfies the third condition. Moreover, A = ZBY T .
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Remark 5.2. [The role of centering] A version of Proposition 5.2 still holds for the SVD
of A (without centering) by replacing Σ̂Z with ZTZ/n and replacing Σ̂Y with Y TY/d
in Equation (10). Even if the elements of the matrix Z are independent and have unit
variance, then the columns of Z will not be asymptotically orthogonal (unless E(Z) =
0). As such, right multiplying U = Z(ZTZ/n)−1/2R̃TU with an orthogonal rotation (i.e.,
the one estimated by Varimax) cannot reveal Z. This highlights the role of centering in
vsp; centering A has the effect of centering the latent variables, which in turn makes
the latent factors asymptotically orthogonal under the assumption of independence. This
allows Varimax to unmix them with an orthogonal matrix. This point is further discussed
in Section 7.

Remark 5.3. The first step in Vintage Factor Analysis is to extract the factors. In this
paper, we extract the factors with PCA. However, this is not the preferred technique in
the classical approach to factor analysis. To see why, define A = E(A|Z, Y ) = ZBY T

and notice that the diagonal elements of n−1A A T are less than or equal to the diagonal
elements of the expected sample covariance matrix n−1E(ATA|Z, Y ). PCA does not adjust
for this excess along the diagonal of the sample covariance matrix and this makes PCA
biased. Traditional approaches in Vintage Factor Analysis attempt to estimate the diagonal
elements of n−1A A T and replace those estimates down the diagonal of n−1AAT . One of
the more common approaches begins with the observation that the diagonal elements of
A A T are the diagonal elements of UD2UT . So, compute a low rank eigendecomposition
of AAT ≈ ÛD̂2ÛT , replace the diagonal elements of AAT with the diagonal elements
of ÛD̂2ÛT , then iteratively recompute the eigendecomposition and replace the diagonal
elements, until convergence. This problem is still an area of research (e.g. Bertsimas et al.
[2017], Zhang et al. [2018]). Alternatively, Bartholomew et al. [2011] suggests specifying a
parametric model for both the latent variables Z and the manifest variables A, then using
Bayesian and/or likelihood based approaches.

6 The main theorem

Theorem 6.1 is the main result for this paper. This theorem does not presume
a parametric form for the random variables in Z or A. Instead, it uses the iden-
tifying assumptions for Varimax (Assumption 1) and two further assumptions
on the tails of the distributions for Z and A.

Recall that µ̂Z estimates the column means of Z defined in Remark 2.2. Let Ẑi be the
ith row of Ẑ. Theorem 6.1 shows that for every i ∈ 1, . . . , n, Ẑi+ µ̂Z converges to Zi (after
allowing for a permutation and sign flip).

Assumption 2. Each column of Z and Y is generated from a distribution that does not
change asymptotically and has a moment generating function in some fixed ε > 0 neigh-
borhood around zero.
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Let A be defined in Equation (7). Define the mean and maximum of A as

ρn =
1

nd

∑
i,j

Aij and ρ̄n = max
i,j
|Aij |. (15)

Theorem 6.1 allows for A to contain mostly zeros by assuming that as n and d grow,
Bn = ρnB for some fixed matrix B ∈ Rk×k. If ρn → 0, then A is sparse. This is analogous
to the asymptotics in Bickel and Chen [2009] for the Stochastic Blockmodel.

Assumption 3. For any valid subscripts i and j, eventually in n,

E[(Aij −Aij)
m] ≤ (m− 1)! max{ρ̄m/2n , ρ̄n}, for all m ≥ 2,

where this expectation is conditional on Z, Y .

Assumption 3 controls the tail behavior of the random variables in the elements of
A. This assumption is more inclusive than sub-Gaussian. For example, this assumption
is satisfied when A contains Poisson random variables, as happens in Latent Dirichlet
Allocation in Section C.4. This assumption is also satisfied if A contains Bernoulli random
variables, as happens in Stochastic Blockmodeling. See Sections J.1.5 and J.2.1 in the
Appendix for further discussion.

The quantity
∆n = nρn

controls the asymptotic rate in Theorem 6.1. So, it is helpful to have some sense for it. For
example, suppose that (i) A contains Bernoulli elements, (ii) each row and column sum of
A grows at a similar rate, (iii) n � d, and (iv) ρn → 0, then ∆n is roughly the expected
number of ones in each row and column of A.

Theorem 6.1. Suppose that A ∈ Rn×d is generated from a semi-parametric factor model
that satisfies Assumptions 1, 2, and 3. Presume that asymptotically, A = ρnZBY

T for
some fixed and full rank matrix B. In the asymptotic regime where n � d and ∆n �
log11.1 n,

||(Ẑ + 1nµ̂Z)− ZPn||2→∞ = Op(∆
−.24
n log2.75 n), (16)

where Ẑ is the estimate produced by vsp (with step 1) applied to A and µ̂Z is the estimate
defined in Equation (5).

Theorem 6.1 shows convergence in 2→∞ norm. This means that every row of Ẑ+1nµ̂Z
converges to the corresponding row of Z in `2. The Pn matrix accounts for the fact that
we do not attempt to identify the order of the columns in Z, or their sign. If Ẑ is used
without recentering by 1nµ̂Z , then a similar result holds for estimating Z̃. By symmetry,
if Y satisfies the identification assumptions for Varimax, then vsp can also estimate Y .
If both Z and Y satisfy the identification assumptions for Varimax, then B can also be
recovered, even when it is not diagonal. The proof for Theorem 6.1 begins in Appendix G.3.
Corollaries C.1 and C.2 in the Appendix extend Theorem 6.1 to the Stochastic Blockmodel
and Latent Dirichlet Allocation.

25



7 Correlated factors or “Why should the radial streaks be
orthogonal?”

Because Varimax provides an orthogonal rotation, it constructs orthogonal axes. One
common concern in the factor analysis literature is that orthogonal axes cannot detect
latent factors that are correlated. For example, in Figure 5, the panel with the title “3”
has radial streaks that are slightly wider than the vertical and horizontal axes; we will call
this phenomenon the appearance of non-orthogonal factors. This non-orthogonality can be
far more severe than what appears in Figure 5. Despite the fact that correlated factors
are an often discussed problem, this section shows how severe cases can be an artifact of a
common data processing step that is not included in vsp.

vsp easily handles correlated factors; Section 7.1 gives more intuition for how and
why. Then, Sections 7.1.1 and 7.1.2 describe how two data analytic choices can create the
appearance of non-orthogonal factors (even when the factors are independent). Section
7.2 shows how “the middle B matrix” in the semi-parametric factor model provides a
path towards deeper understanding of correlated factors, a path that we reserve for future
research. If the slight misalignment of streaks, such as in panel “3” discussed above, needs
a solution, then the vsp solution could be refined via an iterative approach that involves
soft thresholding (e.g. Chen and Rohe [2020]).

7.1 vsp can handle correlated factors

Proposition 5.1 and Proposition 5.2 do not make any probabilistic assumptions; both are
simply results of linear algebra. Together, these propositions show that if the data matrix
is not centered, then the principal components are

U = Z(ZTZ)−1/2RTU

for some rotation matrix RU . Alternatively, if the data matrix is centered, then the prin-
cipal components are a function of the centered latent factors Z̃,

U = Z̃(Z̃T Z̃)−1/2R̃TU

for some other rotation matrix R̃U .
In the principal components U , the latent factors Z have been orthogonalized via

(ZTZ)−1/2. As such, if the original latent factors are correlated, they become orthogonal in
the principal components U . So, a set of orthogonal Varimax axes could potentially uncover
the orthogonalized factors Z(ZTZ)−1/2. This is good news. If underlying correlated factors
had radial streaks, those radial streaks will be preserved in Z(ZTZ)−1/2. Those streaks
will not necessarily be perfectly orthogonal. However, they are often close, as in panel “3”
of Figure 5.
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This assessment aligns with Kaiser’s. In “A Second Generation Little Jiffy”, Kaiser
discusses orthoblique, which rotates the unit length eigenvectors11 via Varimax without
row normalization [Harris and Kaiser, 1964, Kaiser, 1970]. This differs from vsp only in
some preprocessing steps. Kaiser says, orthoblique has “the tremendous advantage of being
99% of the way” to the solution for recovering correlated factors. He develops a much more
complicated winsorizing technique and makes the following remark.

One final comment about this Kaiser-Tukey winsorizing business: above when
I said that we were 99% of the way with orthoblique, I was not using a figure
of speech. In some 40 or 50 studies involving hundreds of factors the average
correlation between an original Harris orthoblique factor [i.e. vsp] and its
winsorized counterpart was .99. It is clear that we have gone to a lot of trouble
to apply a very mild polish. [Kaiser, 1970]

The fact that vsp easily handles correlated factors is an empirical phenomenon that
does not contradict any of the technical results in this paper. In the technical results, the
independence of elements in Z is a sufficient condition, not a necessary condition.

7.1.1 Scaling eigenvectors creates the appearance of non-orthogonal factors

A key difference between common factor analysis practice and vsp/orthoblique, is that
vsp/orthoblique use unit length eigenvectors, whereas common practice scales each eigen-
vector by the square root of its eigenvalue. For example, the popular psych package in R

does this scaling [Revelle, 2017].
This subsection describes how the common practice of scaling the eigenvectors cre-

ates the appearance of non-orthogonal factors, even if the factors are independent. Then,
Subsection 7.1.2 explores one (necessarily unexciting) place where the remaining 1% from
Kaiser’s calculation might come from.

For simplicity, suppose that we are not centering and that ZTZ is the identity matrix.
So, U = ZRTU . We hope that Varimax provides R∗ = RU . If it does, then vsp rotates and
recovers,

UR∗ = Z(RTURU ) = Z.

This is, essentially, why vsp works. However, suppose D is a diagonal matrix containing
the singular values of A (i.e. the square root of the eigenvalues of A A T ). If we scale U
by D before rotation, then the two rotation matrices cannot cancel out like they do above,

UDR∗ = Z(RTUDR
∗).

11In this section, we refer to the columns of U as eigenvectors, not principal components or singular
vectors, because they are also eigenvectors of AAT . In the historical literature cited, “the eigenvectors” are
typically coming from matrices that have been preprocessed in ways discussed in 5.3.
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By scaling with D, the appearance of non-orthogonal factors could become much more
severe than in Figure 5.

For example, if Z contains independent, mean zero, and unit variance factors, but Y
contains correlated factors, then the singular values of A = ZY in the diagonal matrix
D will be proportional to the eigenvalues of (Y TY )1/2 (see Proposition 5.2). In general,
Varimax will not be able to recover Z from UD. Moreover, it will appear as though the
factors in Z are not orthogonal; in fact, the factors in Z are orthogonal, but they are not
if you rotate them with RU and then scale by a diagonal matrix that is determined by Y ,
not Z.

Given the numerous data analytic choices that must be made in the course of performing
factor analysis, Henry Kaiser proposed a sequence of default procedures “Little Jiffy,” “A
second generation Little Jiffy,” and finally “Little Jiffy, Mark IV” [Kaiser, 1970, Kaiser and
Rice, 1974]. All of these default procedures apply Varimax (without row normalization)
to the unit length eigenvectors (of variously transformed matrices); this is the procedure
used in this paper too.

Kaiser uses unit length vectors because of an observation in Harris and Kaiser [1964]
that it solves the rotation problem when each row of Z has exactly one non-zero element;
they call this “Independent Cluster” structure. This structure in Z is analogous to the
Degree Corrected Stochastic Blockmodel discussed in Section C.3. However, if the structure
in Z is not this nice, Harris and Kaiser [1964] says this: “If the ‘ideal’ common part of
any one or more variables is of complexity greater than one [i.e. more than one non-zero
element in that row of Z], then rotating ... will not yield [the] ‘ideal’ solution.” In general,
this observation is true. However, if the latent factors are independent and leptokurtic
random variables, then the rows of Z can have multiple non-zero elements and Theorem
6.1 shows that rotating the principal components with Varimax can reveal these structures.

7.1.2 The role of centering

The appearance of non-orthogonal factors can also happen as a result of improper centering.
The last section has a simple suggestion for data analysis: use the unit length eigenvectors,
do not scale them by their eigenvalues. Unfortunately, for the problem of centering, there
is not a simple suggestion. The good news is that this is likely a small problem; akin to
the 1% in Kaiser’s calculation.

In order for Varimax to be asymptotically unbiased in recovering Z (or Z̃) from U ,
the orthogonalizing matrix (ZTZ)−1/2 or (Z̃T Z̃)−1/2 should converge to a diagonal matrix;
diagonal matrices are acceptable because if Z has radial streaks aligned with the axes, then
scaling it by a diagonal matrix would keeps the streaks aligned with the axes. However,
in certain settings described below where Z has orthogonal radial streaks, (ZTZ)−1/2

is not diagonal. In this situation, the orthogonalizing matrix (ZTZ)−1/2 will skew the
orthogonal streaks and thus give the factors the appearance of non-orthogonality. A similar
phenomenon can hold for Z̃.
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Case I (independent and non-zero mean): Suppose the entries of Z are independent
with non-zero mean, then E(ZTZ) = Σ+nµzµ

T
z , where Σ is a diagonal matrix and µz is the

expectation of one row of Z. This means that (ZTZ)−1/2 does not converge to a diagonal
matrix. However, if the data matrix is centered, then U is determined by Z̃ which has
asymptotically orthogonal columns. Thus, (Z̃T Z̃)−1/2 will converge to a diagonal matrix.
In this case, if we center the data matrix, compute the principal components, and rotate
with Varimax, then we can hope to recover Z̃, then uncenter to recover Z.
Case II (Independent clusters): Suppose that the latent factor matrix Z has exactly
one non-zero element in each row, as in the Stochastic Blockmodel or what Harris and
Kaiser [1964] and others call Independent Clusters. In this setting, Z does not have inde-
pendent entries, but it does have orthogonal columns. So, (ZTZ)−1/2 is diagonal. In this
case, centering removes the orthogonality; (Z̃T Z̃)−1/2 is not diagonal. This is the opposite
of Case I. In Case II, if we compute the principal components (without centering), and
rotate with Varimax, then we can hope to recover Z.
Case III (Both independent clusters and factors): Suppose there are k = k1 + k2

columns in Z and the first k1 columns correspond to k1 independent clusters and the last
k2 columns correspond to independent factors. In this setting, neither (ZTZ)−1/2 nor
(Z̃T Z̃)−1/2 will be diagonal. This is a troubling scenario that centering alone cannot fix.
Case IV (Mean zero factors): If the latent factors already have mean zero, centering
will not change anything.

To summarize, centering ensures that independent factors are orthogonal (Case I).
However, factors that are already orthogonal, can become non-orthogonal after centering
(Case II). In these cases above, the appearance of non-orthogonal factors is not an artifact
of latent factors being correlated (in any interesting fashion). In our experience, centering
or not centering has a minimal, yet non-zero, effect on the non-orthogonality of the factors.

7.2 The middle B matrix contains information about factor correlations

One way of understanding the “middle B matrix” in the semi-parametric factor model is
that it describes the correlation among the factors. The Stochastic Blockmodel is the only
previous statistical model (that we are aware of) that parameterizes such a matrix. In
that model, the Z matrix records block memberships and Buv gives the probability of a
connection between a node in block u and a node in block v (see Sections 3.1.2 and C.3).
This B matrix is not typically imaged as describing the correlation among some latent
factors (i.e. “blocks”), but it certainly could be (e.g. “highly correlated blocks form more
connections”).

Outside of the Stochastic Blockmodel, suppose that the Z factors are correlated; the
Y factors are centered, independent, and leptokurtic; and B is proportional to the identity
matrix. Moreover, suppose that Ẑ converges to the orthogonalized factors Z(ZTZ)−1/2,
then B̂ estimates (ZTZ)1/2 (e.g. see Equation (9)). So, if the data generating model does
not have a B matrix (set to identity), then the estimated B matrix records information
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about the correlation among factors. In fact, Harris and Kaiser [1964] and Kaiser and Rice
[1974] discuss a quantity that they call L∗ (or L, or LSTAR) that is analogous to B̂. Harris
and Kaiser [1964] says “The matrix L designates the intercorrelation of the factors.”

Perhaps more directly, hierarchical clustering is one way of imagining how clusters/factors
could be correlated; more correlated factors are closer in the hierarchy. In some param-
eterizations of the hierarchical Stochastic Blockmodel, the hierarchical structure is not
parameterized in the Z matrix, but rather in the B matrix [Lei et al., 2020]. This is
consistent with the idea that B records information about factor correlations.

Taken together, this all suggests that the B matrix provides a path to understanding
“correlation among the factors.” Understanding this phenomenon is an active area of
research in our lab.

8 Discussion

PCA with Varimax is a vintage data analysis technique. Theorem 6.1 shows that it provides
a unified spectral estimation strategy for a broad class of semi-parametric factor models.
The reason is that (1) the principal component subspace is the same subspace as the latent
factor subspace and (2) under the leptokurtic assumption, Varimax draws a set of axes
through this space such that each axis aligns with one of the latent factors; this is the
intuition gained in Section 5. The leptokurtosis condition is satisfied if the factors are
sparse and this condition can be examined in the data. In fact, Section 4 reinterprets the
diagnostics practices developed in Thurstone [1935, 1947] as examining that leptokurtic
condition. Taken together, the results in this paper show that the Vintage Factor Analysis
know-how developed by Thurstone and Kaiser performs statistical inference. This know-
how has survived for nearly a century, despite the conventional wisdom that the factor
rotation cannot perform statistical inference.
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A Thurstone’s five criteria for simple structure

In the quote below, Thurstone’s original mathematical notation has been replaced with the
notation in this paper.

Five rules for simple factor structure; quoted from Thurstone [1947] p335

We shall describe five useful criteria by which the k reference vectors [i.e., the columns
of R

Û
] can be determined. These are as follows:

1. Each row of the .... matrix ÛR
Û

should have at least one zero.

2. For each column ` of the factor matrix ÛR
Û

there should be a distinct set of k

linearly independent [rows] whose factor loadings [ÛR
Û

]j` are zero. [sica]

3. For every pair of columns of ÛR
Û

there should be several [rows] whose entries

[ÛR
Û

]jp vanish in one column but not in the other.

4. For every pair of columns of ÛR
Û

, a large proportion of the tests should have
zero entries in both columns. This applies to factor problems with four or five
or more common factors.

5. For every pair of columns there should preferably be only a small number of
[rows] with non-vanishing entries in both columns.

When these [five] conditions are satisfied, the plot of each pair of columns shows (1)
a large concentration of points in two radial streaks, (2) a large number of points at
or near the origin, and (3) only a small number of points off the two radial streaks.
For a configuration of k dimensions there are 1

2k(k − 1) diagrams. When all of them
satisfy the three characteristics, we say that the structure is ‘compelling,’ and we
have good assurance that the simple structure is unique. In the last analysis it is the
appearance of the diagrams that determines, more than any other criterion, which
of the hyperplanes of the simple structure are convincing and whether the whole
configuration is to be accepted as stable and ready for interpretation.*
——————————————
*Ever since I found the simple-structure solution for the factor problem, I have never at-
tempted interpretation of a factorial result without first inspecting the diagrams. [footnote
original to text]

aThere cannot be k linearly independent vectors in a k − 1 dimensional hyperplane.

An example of the diagrams (i.e., plots) that Thurstone proposes are given in Figure
2. Each of those plots displays radial streaks. After the Varimax rotation, those radial
streaks align with the coordinate axes, making the rotated factors approximately sparse.
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B Fast computation for sparse data matrices

In many contemporary applications, A is sparse (i.e., most elements Aij are zero). In this
case, the SVD step should be computed with power methods. These methods are faster and
require less memory because they only require matrix-vector multiplication (which are fast
for matrices that are sparse). Moreover, if step 1 of vsp is being used, then the centered
matrix Ã should not be explicitly computed. Instead, the matrix-vector multiplications
can be computed as the right hand side of the following equality,

Ãx = Ax− µ̂r(1Td x)− 1n(µ̂cx) + µ̂.1n(1Td x), (17)

and similarly for yÃ. When computed naively, the left hand side of Equation (17) requires
O(nd) operations. However, the right hand size requires O(nnz) operations, where nnz is
the number of non-zero elements in A. In the bibliometrics example displayed in Figure
2, nnz is three orders of magnitude smaller than nd. Using Equation (17) also dramat-
ically reduces the amount of memory required to store the matrices. This can be used
in conjunction with the degree-normalization step in Remark 2.1. This is implemented
in an R package available on GitHub [Rohe et al., 2020] using the R packages Matrix and
rARPACK [Bates and Maechler, 2017, Qiu et al., 2016].

C Modern factor models as semi-parametric factor models

The semi-parametric factor model is related to ICA, the Stochastic Blockmodel,
and Latent Dirichlet Allocation. Corollaries C.1 and C.2 show that with some
slight variations on the preprocessing of A, vsp can estimate the Stochastic
Blockmodel and Latent Dirichlet Allocation.

C.1 Relationship to Independent Components Analysis

Independent Components Analysis (ICA) uses a type of semi-parametric factor model that
is motivated by blind-source separation in signal processing. In the typical formulation
of ICA, we observe a multivariate time series At = ZtM ∈ Rk for t = 1, . . . , n, where
Zt ∈ Rk contains independent and non-Gaussian random variables. The aim is to estimate
M−1, to unmix the observed signals in At, and reveal the independent components Zt.
There are multiple ICA results that share some similarities to Theorems 5.1 and 6.1 (e.g.
Comon [1994], Hyvärinen et al. [2004], Chen and Bickel [2005, 2006], Wei [2015], Miettinen
et al. [2015], Samworth and Yuan [2012]). To see the connection to the current paper, let
M ∈ Rk×d be potentially rectangular and defined as M = BY T . To enable the regime
d = k, the results for ICA typically presume that A = ZM is observed with little or no
noise. In contrast, Theorem 6.1 covers situations where (i) d grows at the same rate as
n, (ii) there is an abundance of noise in A, and (iii) A is mostly zeros (i.e., sparse). This
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allows the theorem to cover contemporary factor models such as the Stochastic Blockmodel
and Latent Dirichlet Allocation.

C.2 Tensor decompositions

Motivated in part by the issue of rotational invariance of PCA, Kruskal [1977] showed how
a tensor decomposition called the CP decomposition is unique; it decomposes a tensor
into a set of factors that are not rotationally invariant. In Section 4, Kruskal discusses
how this three way decomposition does not suffer from the same problem of rotation that
“consumes considerable attention and effort” in factor analysis. In an elegant formulation,
Anandkumar et al. [2014] showed how these tensor spectral methods could be applied to
estimate the latent factors in a model class similar to the semi-parametric factor model.
Where the principal components of A are the eigenvectors of a matrix that contains the
second order moments, n−1E(ÃT Ã)uv = E(ÃiuÃiv), the elements of this higher order tensor
contain the third order (or higher) moments; for example, T ∈ Rd×d×d with Tu,v,w =
E(AiuAivAiw). Then, for various formulations of T and latent variable models, the CP
tensor decomposition of T has components that are equal to the latent factors [Janzamin
et al., 2019].

The issue of rotational invariance motivates for the extension from matrices to tensors.
For example, in a recent book on using tensors for latent variable modeling, Janzamin et al.
[2019] writes in the abstract “PCA and other spectral techniques applied to matrices have
several limitations. By limiting to only pairwise moments, they are effectively making a
Gaussian approximation on the underlying data.” However, despite the fact that PCA is
typically imagined as a second order technique, the principal components of A retain the
higher-order distributional properties of the latent variables (see Remark 5.1). As such, we
need not consider the higher order moments of the manifest variables A in the tensor T .
vsp uses the higher order moments of the principal components themselves, by applying
Varimax directly to the principal components. Given our heuristics around rotational
invariance, it is surprising that this can work.

C.3 Stochastic Blockmodels

In social network analysis, A ∈ {0, 1}n×n is the adjacency matrix of a graph on n people.

Aij =

{
1 i friends with j
0 o.w.

The Stochastic Blockmodel [Holland et al., 1983] is a semi-parametric factor model for
generating a random adjacency matrix. Under this model, each individual i is assigned to
a single block z(i) ∈ {1, . . . , k} and the probability that i and j are friends is

P(Aij = 1|z(i), z(j)) = Bz(i),z(j), where B ∈ [0, 1]k×k.
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Define A = E(A|Z,B, Y ). To express A in the factor model as ZBZT , define Z ∈
{0, 1}n×k such that Zij = 1 when z(i) = j and Zij = 0 otherwise. When friendships are
symmetric, so is A; in this setting Y = Z and the elements above the diagonal of A are
independent. There are four popular generalizations of the Stochastic Blockmodel that
have the structure ZBZT , and are thus other types of semi-parametric factor models. The
Degree-Corrected Stochastic Blockmodel includes an additional degree parameters θi,z(i) >
0 for each individual i. The probability of friendship becomes Aij = θi,z(i)θj,z(j)Bz(i),z(j)
[Karrer and Newman, 2011]. To express this model as ZBZT , define Zij = θi,z(i)I{z(i) =
j}, where I ∈ {0, 1} is the indicator function. In the Overlapping Stochastic Blockmodel,
Z ∈ {0, 1}n×k is sparse [Latouche et al., 2011].12 In the mixed-membership Stochastic
Blockmodel, each row of Z is an independent sample from the Dirichlet distribution [Airoldi
et al., 2008]. Later, Zhang et al. [2014] and Jin and Ke [2017] generalized these models to
only presume that Zi ∈ Rk is element-wise non-negative. Table 3 summarizes all of these
models. While this discussion focuses on unipartite and undirected graphs, graphs that
are “two-way,” “bipartite,” or “directed,” can also be modeled in the form A = ZBY T

[Rohe et al., 2016b].

SBM the vector Zi ∈ Rk contains distribution of Zi
0) Standard SBM a single one, the rest zeros multinomial
1) Degree-Corrected a single positive entry, the rest zeros not specified
2) Overlapping a mix of 1s and 0s independent Bernoulli
3) Mixed Membership non-negative entries that sum to one Dirichlet
4) Degree-Corrected,

Mixed Membership non-negative entries not specified

Table 3: Restrictions on the factor matrix Z create variations on the Stochastic Blockmodel
(SBM). There are further differences between these models that are not emphasized by this
table.

Estimating the Degree-Corrected Stochastic Blockmodel with vsp. Under the
Stochastic Blockmodel and the Degree Corrected version, each node i belongs to exactly
one cluster. In such “hard clustering” models, the elements in the same row of Z cannot
be independent. This implies that Z cannot satisfy Assumption 1 of Theorem 6.1. The
next corollary shows that vsp without the centering step can estimate these models.

Let π ∈ Rk be a probability distribution on [k]. Suppose that z(1), . . . , z(n) ∼
Multinomial(π), independently. For each block j, suppose that θ1,j , . . . , θn,j ∈ R are
independent random variables generated from a bounded probability distribution fj . The
scale of this distribution is unidentifiable; so for technical convenience, it is presumed that
E(Z2

ij) = 1, or equivalently, that E(θ2
i,j) = 1/πj . This is akin to the third assumption in

12The original paper paper on the overlapping Stochastic Blockmodel is not exactly the factor model
used here because it includes a logistic link function, P(Aij = 1) = logit(ZiBZ

T
j ).
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the Varimax assumption. This scaling ensures that E(ZTZ)/n (i.e. without centering)
converges to the identity matrix. If each fj is a point mass, then this model is equivalent
to the SBM.

Corollary C.1. Suppose that An ∈ Rn×n is generated from the Degree Corrected Stochastic
Blockmodel with E(An|Zn) = ZnBnZn, where Zn is generated as described in the proceeding
paragraph. Suppose that the probability distributions fj for j ∈ [k] are bounded. Define ρn
as in Equation (15) and suppose that there exists a fixed matrix B ∈ Rk×k such that
Bn = ρnB.

Define Ẑ ∈ Rn×k as the output of vsp without centering (i.e. skip step 1). In the
asymptotic regime where ∆n � log11.1 n, there exists a sequence permutation and sign-flip
matrices Pn ∈ P(k) such that

||Ẑ − ZPn||2→∞ = Op(∆
−.24
n log2.75 n). (18)

A proof is contained in Appendix J.
To see why the centering step creates bias for vsp under a hard clustering model,

note that vsp with the centering step (step 1) estimates Z̃ (i.e., Z after centering). By
construction, Ẑ contains orthogonal columns. However, under the Stochastic Blockmodel,
Z̃ does not. Interestingly, Z without centering does contain orthogonal columns and vsp

without centering can estimate it.

Overlapping and Mixed Membership. Under the Overlapping SBM,

Zij ∼ Bernoulli(pj)

independently for all i and j. This will satisfy the identification assumptions for Varimax
so long as pj 6∈ [1/2± 1/

√
12] for j = 1, . . . , k. This rather strange condition ensures that

Zij is leptokurtic and thus Varimax can identity the rotation. If Varimax were replaced
with an alternative rotation from the ICA literature, then one could remove the awkward
condition on the pj ’s.

Under the Mixed Membership SBM, Zi is on the simplex. As such, its elements must
sum to one and cannot be statistically independent. This restriction to the simplex also
limits the ability of the Mixed Membership model to create a large amount of degree
heterogeneity, a common property in empirical networks. As discussed in Section C.4,
this problem also arrises for Latent Dirichlet Allocation (LDA). Section C.4 discusses a
natural generalization of LDA that allows for more heterogeneous document lengths. A
similar generalization could be applied to the Mixed Membership SBM. This would create
a “Degree-Corrected Mixed Membership model.” Under such a model, a result analogous
to Corollary C.2 could be derived.

Degree-Corrected Mixed Membership. The papers which proposed the Degree-
Corrected Mixed Membership model only presume that Zi is element-wise non-negative
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[Zhang et al., 2014, Jin and Ke, 2017]. As such, if the elements of Zi are sampled in a way
which satisfy the identification assumptions for Varimax, then Theorem 6.1 shows that vsp
can estimate this model.

C.4 Latent Dirichlet Allocation

In the setting of text analysis and natural language processing, let A ∈ Nn×d be a document-
term matrix on n documents and d unique words,

Aij = number of times that word j appears in document i. (19)

Latent Dirichlet Allocation (LDA) is a popular generative model for A that is used for
modeling the topics of documents [Blei et al., 2003].

The LDA model has parameters ξ > 0, α ∈ Rk+, and β ∈ Rd×k+ with 1Td β = 1k. The
rows of β index the unique words 1, . . . , d. Because the elements of β are positive and each
column sums to one, each column makes a probability distribution on the unique words.
LDA generates a single document i = 1, . . . , n with the following steps, (1) choose Zi ∼
Dirichlet(α) to be the topic distribution for that document, (2) sample Ni ∼ Poisson(ξ)
to be the number of words in the document, (3) for each of the words in the document
w = 1, . . . , Ni, choose the topic for that word zw ∼ Multinomial(Zi) ∈ {1, . . . , k}, and
then sample the word w as multinomial with probabilities specified by the zw column of β
(i.e., w is the jth unique word with probability βj,zw).

Lemma C.1. Under the LDA model, conditionally on the Dirichlet variables Z1, . . . , Zn,
the document-term matrix A has independent Poisson entries with

E(A|Z) = ξZβT , (20)

where Z ∈ Rn×k+ has rows Z1, . . . , Zn.

A short proof in Section F.2 relies upon the Poisson-Multinomial relationship. While
Equation (21) has the form of the semi-parametric factor model (e.g. set B = I and
Y = β), it does not satisfy the identification assumptions for Varimax because the elements
in Zi sum to one and as such, they must be dependent. Moreover, this has the unnatural
consequence of making E(A|Z) have rank k−1 or less. However, the following modification
makes E(A|Z) have rank k and enables the application of Theorem 6.1.

In the original formulation of LDA, the number of words in document i is Ni ∼
Poisson(ξ), for ξ ∈ R+. About this step, Blei et al. [2003] says, “more realistic document
length distributions can be used as needed.” If document lengths are more heterogenous
than what is modeled by Poisson(ξ), then a convenient way to increase the heterogeneity
is to use Poisson overdispersion; first sampling ξi, then sampling Ni ∼ Poisson(ξi).

Natural modification to LDA: Sample Ni, the number of words in docu-
ment i, as overdispersed Poisson via (1) ξi ∼ Gamma(

∑
iαi, s) for some scale

parameter s > 0 and (2) Ni ∼ Poisson(ξi).
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This “Gamma-Poisson mixture” is a well studied model of Poisson overdispersion; under
this model, Ni has the negative binomial distribution. Define Ξ ∈ Rn×n as a diagonal
matrix with Ξii = ξi.

Lemma C.2. Under the LDA model with the natural modification to Ni, conditionally on
Z1, . . . , Zn and Ξ, the document-term matrix A has independent Poisson entries satisfying

E(A|Ξ, Z) = (ΞZ)βT . (21)

Moreover, each element (ΞZ)ij is independent Gamma(αj , s) and this distribution is lep-
tokurtic. Define Σ as a diagonal matrix with Σjj = αjs

2, the variance of Gamma(αj , s).
Then, the factor matrix

Z∗ = (ΞZ)Σ−1/2 (22)

satisfies the identification assumptions for Varimax.

See Section F.2 for a short proof. The next result shows that vsp applied to the column
centered version of A (i.e., Ă = A − 1n(1TnA/n)) can estimate the LDA model with the
natural modification. Similar to Ă, define Ă be the column centered version of A .

Corollary C.2. Let A be generated from the natural modification to LDA given above with
k topics and let A = E(A|Ξ, Z). Define Z∗ as in Equation (22). Let Ẑ be the output of
vsp using Ă as input (and skipping step 1). In the asymptotic regime where

∆n � log15.1 n, σmin(β) ≥ c1,

for universal constant c1 ∈ (0, 1), almost surely there exists Pn ∈ P(k) s.t.

||Ẑ − (Z∗ − E(Z∗))Pn||2→∞ = Op(∆
−.24
n log2.75 n). (23)

Define the matrix Φ = ẐT Ă ∈ Rk×d and estimate β̂ = (Λ−1
b Φ)T ∈ Rd×k, where Λb is a

diagonal matrix with ith diagonal element equals to `1-norm of ith row of Φ. Under this
construction,

||β̂T − P Tn βT ||∞ = Op(∆
−.24
n log3.75 n). (24)

The elements of Z∗ are independent Gamma random variables that have been rescaled
by the diagonal matrix Σ−1/2 to ensure that they have unit variance. Corollary C.2 shows
that vsp using the column-centered matrix Ă estimates Z∗−E(Z∗); similar to the previous
results, this 2→∞ convergence implies that each row of Ẑ converges to the corresponding
row of Z∗ −E(Z∗). Using Ẑ, the corollary constructs β̂ ∈ Rd×k, a simple estimator for the
probability distribution of words within each of the k topics. Each of the k estimated topic

distributions converges in `1 norm just a little slower than ∆
−1/4
n . A proof of Corollary C.2

is given in Section J.2.

42



D Supplemental results for the Journal-Journal citation data

D.1 bff for Ẑ with k = 10

The list below is analogous to the list in Section 3.1.1, except this list is for Ẑ instead of
Ŷ . These are the largest seven elements of bff with Ẑ. One noticeable difference is that
arxiv is now the top term in the mathematics factor. Previously, it was the third.

1. surgery, medicine, clinical, oncology, cancer, cardiovascular, official

2. molecular, biology, cell, cancer, microbiology, immunology, cellular

3. neuroscience, psychology, psychiatry, brain, cognitive, neurology, behavior

4. materials, chemistry, physics, chemical, acs, science, physical

5. ecology, plant, biology, conservation, marine, evolution, environmental

6. earth, geology, geophysics, atmospheric, geophysical, sensing, remote

7. ieee, on, conference, transactions, processing, communications, systems

8. arxiv, mathematical, physics, mathematics, geometry, analysis, theory

9. economics, economic, finance, review, financial, business, management

10. oral, dentistry, dental, surgery, maxillofacial, orthodontics, journal

D.2 Top journals in Ŷ and Ẑ for k = 10

Here are the top journals in Ŷ .

1. jama, the new england journal of medicine, the lancet, annals of internal medicine,
bmj, archives of internal medicine, chest, circulation, radiology, the cochrane database
of systematic reviews, annals of surgery, the american journal of medicine

2. the embo journal, cell, molecular and cellular biology, febs letters, nucleic acids re-
search, the journal of cell biology, the journal of biological chemistry, biochimica et
biophysica acta, genes development, biochemical and biophysical research communi-
cations, molecular cell, biochemistry

3. psychological bulletin, the american journal of psychiatry, biological psychiatry, archives
of general psychiatry, psychological review, neuropsychologia, psychological science,
journal of abnormal psychology, trends in cognitive sciences, neuroimage, journal of
personality and social psychology, journal of cognitive neuroscience
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4. advanced materials, journal of materials chemistry, nano letters, journal of physical
chemistry c, chemistry of materials, langmuir the acs journal of surfaces and colloids,
journal of the american chemical society, cheminform, applied physics letters, journal
of applied physics, acs nano, chemical communications

5. ecology, oecologia, oikos, trends in ecology evolution, the american naturalist, annual
review of ecology evolution and systematics, journal of applied ecology, biological
conservation, ecology letters, molecular ecology, journal of ecology, conservation bi-
ology

6. earth and planetary science letters, geology, journal of geophysical research, geologi-
cal society of america bulletin, tectonophysics, geophysical research letters, geological
society london special publications, geochimica et cosmochimica acta, chemical ge-
ology, contributions to mineralogy and petrology, journal of petrology, geophysical
journal international

7. ieee transactions on pattern analysis and machine intelligence, arxiv, ieee transac-
tions on image processing, ieee trans pattern anal mach intell, proceedings of the
ieee, ieee transactions on signal processing, international journal of computer vision,
ieee communications magazine, ieee trans inf theory, ieee transactions on informa-
tion theory, ieee journal on selected areas in communications, ieee transactions on
communications

8. transactions of the american mathematical society, annals of mathematics, inven-
tiones mathematicae, advances in mathematics, duke mathematical journal, math-
ematische annalen, communications in mathematical physics, american journal of
mathematics, mathematische zeitschrift, bulletin of the london mathematical society,
journal of functional analysis, proceedings of the london mathematical society

9. the american economic review, journal of political economy, quarterly journal of
economics, national bureau of economic research, econometrica, the economic journal,
the review of economic studies, journal of monetary economics, journal of finance,
journal of econometrics, the review of economics and statistics, journal of financial
economics

10. the journal of prosthetic dentistry, journal of the american dental association, jour-
nal of periodontology, oral surgery oral medicine oral pathology oral radiology and
endodontics, journal of clinical periodontology, journal of dental research, journal of
dentistry, journal of oral rehabilitation, dental materials official publication of the
academy of dental materials, american journal of orthodontics and dentofacial ortho-
pedics official publication of the american association of orthodontists its constituent
societies and the american board of orthodontics, journal of endodontics, clinical oral
implants research
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Here are the top journals in Ẑ.

1. medicine, european radiology, the journal of bone and joint surgery american vol-
ume, world journal of surgery, clinical orthopaedics and related research, spine, bmj
open, skeletal radiology, annals of surgical oncology, bmc musculoskeletal disorders,
circulation, european spine journal

2. the journal of biological chemistry, biochimica et biophysica acta, international jour-
nal of molecular sciences, cellular and molecular life sciences, bmc genomics, nucleic
acids research, oncotarget, frontiers in immunology, cancer research, journal of cell
science, biochemical and biophysical research communications, cell

3. frontiers in psychology, frontiers in human neuroscience, neuroscience biobehavioral
reviews, neuropsychologia, neuroimage, psychological bulletin, journal of cognitive
neuroscience, frontiers in psychiatry, cerebral cortex, behavioural brain research, psy-
chopharmacology, experimental brain research

4. materials, journal of materials science, acs applied materials interfaces, nanomateri-
als, journal of nanomaterials, polymers, acs nano, nanoscale research letters, langmuir
the acs journal of surfaces and colloids, journal of physical chemistry c, journal of
nanoparticle research, journal of thermal analysis and calorimetry

5. oecologia, ecology and evolution, biological invasions, hydrobiologia, marine ecology
progress series, biological conservation, oikos, molecular ecology, global change biol-
ogy, biodiversity and conservation, behavioral ecology and sociobiology, ecology

6. earth and planetary science letters, international journal of earth sciences, journal
of geophysical research, geophysical research letters, tectonophysics, earthscience re-
views, geochemistry geophysics geosystems, tectonics, international geology review,
arabian journal of geosciences, lithos, journal of petrology

7. ieee access, arxiv, multimedia tools and applications, neurocomputing, ieee transac-
tions on image processing, ieee transactions on multimedia, mathematical problems
in engineering, pattern recognit, ieee transactions on cybernetics, international jour-
nal of computer applications, ieee transactions on circuits and systems for video
technology, ieee transactions on neural networks and learning systems

8. transactions of the american mathematical society, arxiv differential geometry, ad-
vances in mathematics, arxiv algebraic geometry, communications in mathematical
physics, arxiv representation theory, arxiv geometric topology, arxiv number the-
ory, arxiv analysis of pdes, arxiv dynamical systems, pacific journal of mathematics,
mathematische annalen
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9. social science research network, national bureau of economic research, the american
economic review, european economic review, applied economics, economics letters,
imf working papers, the economic journal, journal of economic dynamics and control,
journal of public economics, review of economics and statistics, journal of banking
and finance

10. the journal of contemporary dental practice, clinical oral investigations, brazilian
oral research, journal of applied oral science, journal of dentistry, european journal
of dentistry, international journal of dentistry, bdj, bmc oral health, the journal of
prosthetic dentistry, journal of clinical and experimental dentistry, brazilian dental
journal

D.3 Leading journals for k = 100

The list below gives the leading five journals in the k = 100 factors of Ŷ . The bold font
at the beginning of each line gives the first two bff terms for this factor; only the first
appears in Table 2 of the main text.
gastroenterology–hepatology: clinical gastroenterology and hepatology the official clin-
ical practice journal of the american gastroenterological association, alimentary pharma-
cology therapeutics, american journal of gastroenterology, endoscopy, journal of clinical
gastroenterology
cardiovascular–cardiology: heart, international journal of cardiology, american heart
journal, european heart journal, catheterization and cardiovascular interventions official
journal of the society for cardiac angiography interventions
communications–ieee: ieee transactions on wireless communications, ieee communica-
tions magazine, ieee transactions on communications, ieee journal on selected areas in
communications, ieee transactions on vehicular technology
pharmaceutical–drug: european journal of pharmaceutics and biopharmaceutics offi-
cial journal of arbeitsgemeinschaft fur pharmazeutische verfahrenstechnik ev, international
journal of pharmaceutics, journal of pharmaceutical sciences, journal of controlled release
official journal of the controlled release society, pharmaceutical research
otolaryngology–neck: european archives of otorhinolaryngology, the journal of laryngol-
ogy and otology, annals of otology rhinology laryngology, otolaryngology–head and neck
surgery, otology neurotology official publication of the american otological society american
neurotology society and european academy of otology and neurotology
rehabilitation–occupational: physical therapy, archives of physical medicine and reha-
bilitation, disability and rehabilitation, gait posture, clinical rehabilitation
transportation–part: transportation research record, transportation research part apol-
icy and practice, transportation research part bmethodological, transportation, transport
reviews
communication–media: journal of communication, communication research, journalism
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mass communication quarterly, journal of broadcasting electronic media, j computermedi-
ated communication
endocrinology–physiology: biology of reproduction, journal of reproduction and fertil-
ity, the journal of endocrinology, molecular reproduction and development, reproduction
environmental–water: water research, chemosphere, journal of hazardous materials,
environmental science technology, the science of the total environment
ophthalmology–eye: journal of cataract and refractive surgery, eye, cornea, graefes
archive for clinical and experimental ophthalmology, retina
astrophysics–physics: astronomy and astrophysics, the astrophysical journal, monthly
notices of the royal astronomical society, the astronomical journal, icarus
geotechnical–engineering: journal of geotechnical and geoenvironmental engineering,
geotechnique, canadian geotechnical journal, journal of geotechnical engineering, computers
and geotechnics
mathematical–mathematics: inventiones mathematicae, annals of mathematics, amer-
ican journal of mathematics, mathematische annalen, duke mathematical journal
mathematical–analysis: journal of differential equations, archive for rational mechan-
ics and analysis, nonlinear analysistheory methods applications, journal of mathematical
analysis and applications, arxiv analysis of pdes
microbiology–biotechnology: applied microbiology and biotechnology, journal of biotech-
nology, fems microbiology letters, microbiology, archives of microbiology
microbiology–plant: mycologia, fungal biology, plant disease, phytopathology, studies
in mycology
neuroscience–brain: the european journal of neuroscience, trends in neurosciences, be-
havioural brain research, neuroreport, progress in neurobiology
parasitology–tropical: acta tropica, parasitology research, the journal of parasitology,
parasitology, memorias do instituto oswaldo cruz
pharmacology–toxicology: journal of ethnopharmacology, planta medica, phytother-
apy research ptr, fitoterapia, phytomedicine international journal of phytotherapy and
phytopharmacology
rheumatology–arthritis: clinical and experimental rheumatology, clinical rheumatology,
rheumatology, seminars in arthritis and rheumatism, arthritis care research
atmospheric–meteorology: monthly weather review, quarterly journal of the royal me-
teorological society, journal of the atmospheric sciences, bulletin of the american meteoro-
logical society, journal of climate
dermatology–dermatologic: dermatology, journal of the european academy of derma-
tology and venereology jeadv, clinical and experimental dermatology, international journal
of dermatology, acta dermatovenereologica
probability–annals: stochastic processes and their applications, annals of applied proba-
bility, annals of probability, theory of probability and its applications, advances in applied
probability
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accounting–financial: journal of financial economics, journal of accounting and eco-
nomics, journal of accounting research, journal of finance, review of financial studies
anesthesia–anaesthesia: anaesthesia, acta anaesthesiologica scandinavica, european jour-
nal of anaesthesiology, british journal of anaesthesia, canadian journal of anaesthesia
analytical–chromatography: analytical and bioanalytical chemistry, analytica chimica
acta, journal of pharmaceutical and biomedical analysis, journal of chromatography b
analytical technologies in the biomedical and life sciences, journal of chromatography a
entomology–insect: journal of economic entomology, environmental entomology, journal
of applied entomology, entomologia experimentalis et applicata, annals of the entomological
society of america
immunology–allergy: clinical and experimental allergy journal of the british society for
allergy and clinical immunology, annals of allergy asthma immunology official publication
of the american college of allergy asthma immunology, allergy, respiratory medicine, the
european respiratory journal
immunology–cell: immunity, nature immunology, nature reviews immunology, european
journal of immunology, annual review of immunology
infectious–microbiology: clinical microbiology and infection the official publication of
the european society of clinical microbiology and infectious diseases, clinical infectious
diseases an official publication of the infectious diseases society of america, the journal of
antimicrobial chemotherapy, the lancet infectious diseases, bmc infectious diseases
management–business: academy of management journal, academy of management re-
view, journal of management, administrative science quarterly, strategic management jour-
nal
nephrology–transplantation: clinical journal of the american society of nephrology
cjasn, peritoneal dialysis international journal of the international society for peritoneal
dialysis, clinical nephrology, nephrology dialysis transplantation official publication of the
european dialysis and transplant association european renal association, american journal
of nephrology
obstetrics–gynecology: european journal of obstetrics gynecology and reproductive bi-
ology, bjog an international journal of obstetrics and gynaecology, ultrasound in obstetrics
gynecology the official journal of the international society of ultrasound in obstetrics and
gynecology, acta obstetricia et gynecologica scandinavica, international journal of gynae-
cology and obstetrics the official organ of the international federation of gynaecology and
obstetrics
psychiatry–psychiatric: acta psychiatrica scandinavica, schizophrenia bulletin, the jour-
nal of clinical psychiatry, journal of affective disorders, the british journal of psychiatry the
journal of mental science
psychology–cognition: memory cognition, cognitive psychology, psychonomic bulletin
review, journal of experimental psychology human perception and performance, journal of
experimental psychology learning memory and cognition
psychology–social: personality and social psychology bulletin, journal of experimental
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social psychology, personality social psychology bulletin, european journal of social psy-
chology, advances in experimental social psychology
quaternary–geology: radiocarbon, quaternary science reviews, palaeogeography palaeo-
climatology palaeoecology, journal of archaeological science, quaternary international
statistics–statistical: annals of statistics, journal of statistical planning and inference,
biometrika, statistical science, journal of the royal statistical society series b statistical
methodology
toxicology–environmental: american journal of industrial medicine, occupational and
environmental medicine, scandinavian journal of work environment health, international
archives of occupational and environmental health, journal of occupational and environ-
mental medicine
veterinary–animal: journal of the american veterinary medical association, journal of
veterinary internal medicine, american journal of veterinary research, the veterinary record,
veterinary journal
chemistry–chemical: journal of physical chemistry c, angewandte chemie, physical chem-
istry chemical physics pccp, the journal of physical chemistry b, chemical communications
economics–economic: the economic journal, quarterly journal of economics, national
bureau of economic research, the review of economic studies, the american economic review
education–educational: review of educational research, journal of research in science
teaching, journal of educational psychology, international journal of science education,
science education
geography–planning: environment and planning a, progress in human geography, envi-
ronment and planning dsociety space, annals of the association of american geographers,
geoforum
marketing–management: journal of marketing, journal of the academy of marketing
science, journal of consumer research, journal of marketing research, journal of business
research
materials–engineering: materials science and engineering astructural materials proper-
ties microstructure and processing, acta materialia, scripta materialia, metallurgical and
materials transactions a, journal of materials processing technology
mechanics–structures: computers structures, international journal of solids and struc-
tures, journal of applied mechanics, journal of sound and vibration, engineering structures
neurology–neurosurgery: acta neurochirurgica, surgical neurology, neurosurgical focus,
neurosurgery, clinical neurology and neurosurgery
nutrition–obesity: international journal of obesity, journal of the american dietetic as-
sociation, public health nutrition, european journal of clinical nutrition, obesity
numerical–siam: numerische mathematik, siam journal on numerical analysis, siam j
scientific computing, mathematics of computation, math comput
political–politics: american political science review, american journal of political science,
the journal of politics, international organization, comparative political studies
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radiology–imaging: european radiology, european journal of radiology, radiographics a
review publication of the radiological society of north america inc, journal of magnetic
resonance imaging jmri, medical physics
sociology–sociological: american sociological review, american journal of sociology, so-
cial forces, review of sociology, journal of marriage and family
circuits–math: appl math comput, comput math appl, appl math lett, communications
in nonlinear science and numerical simulation, chaos solitons fractals
genetics–molecular: genome research, nature reviews genetics, plos genetics, genome
biology, trends in genetics tig
language–second: the modern language journal, language learning, tesol quarterly, stud-
ies in second language acquisition, applied linguistics
language–hearing: journal of speech language and hearing research jslhr, journal of
speech and hearing research, american journal of speechlanguage pathology, the journal of
speech and hearing disorders, clinical linguistics phonetics
robotics–automation: autonomous robots, the international journal of robotics research,
ieee transactions on robotics, robotics auton syst, 2011 ieee international conference on
robotics and automation
software–trans: ieee transactions on software engineering, ieee trans software eng, ieee
software, computer, commun acm
alcohol–health: addictive behaviors, journal of substance abuse treatment, addiction,
drug and alcohol dependence, journal of studies on alcohol
control–decision: international journal of control, ifac proceedings volumes, autom, ieee
trans automat contr, ieee transactions on automatic control
ecology–forest: forest ecology and management, journal of ecology, journal of applied
ecology, ecological applications, canadian journal of forest research
ecology–evolution: animal behaviour, journal of zoology, behavioral ecology and socio-
biology, behavioral ecology, behaviour
geology–earth: contributions to mineralogy and petrology, journal of petrology, lithos,
tectonophysics, precambrian research
nursing–nurse: journal of advanced nursing, journal of clinical nursing, nurse education
today, journal of professional nursing official journal of the american association of colleges
of nursing, international journal of nursing studies
optical–optics: optics express, optics letters, ieee photonics technology letters, journal of
lightwave technology, optics communications
physics–physical: journal of high energy physics, physics letters b, nuclear physics, phys-
ical review d, classical and quantum gravity
physics–fluids: physics of fluids, journal of fluid mechanics, annual review of fluid me-
chanics, aiaa journal, journal of computational physics
polymer–composites: journal of applied polymer science, polymer degradation and sta-
bility, composites part aapplied science and manufacturing, polymer, polymer engineering
and science
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sensing–remote: international journal of remote sensing, ieee trans geoscience and remote
sensing, ieee transactions on geoscience and remote sensing, photogrammetric engineering
and remote sensing, remote sensing of environment
surgery–orthopaedic: arthroscopy the journal of arthroscopic related surgery official
publication of the arthroscopy association of north america and the international arthroscopy
association, the journal of bone and joint surgery british volume, journal of shoulder and
elbow surgery, the journal of arthroplasty, journal of orthopaedic trauma
surgery–surgical: surgical endoscopy, journal of the american college of surgeons, world
journal of surgery, the american surgeon, american journal of surgery
surgery–plastic: annals of plastic surgery, clinics in plastic surgery, aesthetic plastic
surgery, british journal of plastic surgery, the journal of craniofacial surgery
tourism–hospitality: annals of tourism research, tourism management, journal of travel
research, international journal of hospitality management, international journal of contem-
porary hospitality management
urology–urological: journal of endourology, bju international, world journal of urology,
european urology, urology
animal–science: journal of animal science, poultry science, livestock production science,
animal feed science and technology, journal of dairy science
cancer–oncology: annals of oncology official journal of the european society for medical
oncology, the lancet oncology, european journal of cancer, journal of clinical oncology, the
oncologist
comput–j: j symb log, theor comput sci, inf comput, j acm, studia logica
energy–engineering: applied energy, energy, energy conversion and management, renew-
able sustainable energy reviews, applied thermal engineering
health–care: health affairs, academic medicine journal of the association of american
medical colleges, journal of general internal medicine, medical care, health services research
marine–fisheries: marine ecology progress series, marine biology, journal of experimental
marine biology and ecology, journal of fish biology, estuarine coastal and shelf science
nature–the: proceedings of the national academy of sciences of the united states of amer-
ica, the journal of biological chemistry, nature, science, cell
sports–sport: journal of strength and conditioning research, journal of sports sciences,
international journal of sports medicine, sports medicine, british journal of sports medicine
speech–processing: ieee trans speech and audio processing, ieee transactions on audio
speech and language processing, ieee trans signal process, speech commun, ieee signal
processing letters
vision–computer: acm trans graph, 2010 ieee computer society conference on computer
vision and pattern recognition, international journal of computer vision, cvpr 2011, 2015
ieee conference on computer vision and pattern recognition cvpr
aging–gerontology: the gerontologist, the journals of gerontology series b psychologi-
cal sciences and social sciences, international journal of geriatric psychiatry, international
psychogeriatrics, journal of gerontology
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child–psychology: child development, developmental psychology, development and psy-
chopathology, journal of consulting and clinical psychology, child abuse neglect
fuzzy–transactions: fuzzy sets syst, inf sci, ieee transactions on fuzzy systems, ieee trans
fuzzy systems, fuzzy sets and systems
plant–biology: journal of plant physiology, physiologia plantarum, plant science, journal
of experimental botany, plant cell reports
comb–j: discret math, j comb theory ser b, eur j comb, journal of graph theory, siam j
discret math
food–science: journal of food engineering, lwt food science and technology, food research
international, journal of food science, trends in food science and technology
ieee–communications: ieee network, comput commun, ieee transactions on parallel and
distributed systems, comput networks, wireless networks
ieee–power: ieee transactions on power electronics, ieee transactions on industry appli-
cations, ieee transactions on industrial electronics, ieee transactions on energy conversion,
ieee transactions on power delivery
ieee–transactions: ieee transactions on microwave theory and techniques, ieee transac-
tions on antennas and propagation, ieee antennas and wireless propagation letters, ieee
microwave and wireless components letters, electronics letters
oper–res: eur j oper res, european journal of operational research, oper res, comput oper
res, journal of the operational research society
oral–dentistry: journal of the american dental association, the journal of prosthetic den-
tistry, journal of dentistry, journal of clinical periodontology, journal of dental research
soil–water: soil science society of america journal, soil tillage research, agronomy journal,
soil science, geoderma
inf–syst: j manag inf syst, inf syst res, mis quarterly, inf manag, european journal of
information systems
de–enfermagem: ciencia saude coletiva, revista da escola de enfermagem da usp, revista
brasileira de enfermagem, texto contexto enfermagem, revista latinoamericana de enfer-
magem

E Other factors from analyzing the abstracts

E.1 Subject area factors

This section gives the 32 subject area factors in Ŷ ∈ R240,331×50, when analyzing the
document-term matrix of the abstracts. The term in bold is based upon our reading of the
terms.
oceans: assemblages, foraminiferal, assemblage, sea, benthic, foraminifera, ocean, sedi-
ment, sediments, planktonic
soil–chemistry: humic, excitation, fluorescence, dom, parafac, dissolved, eem, emission,
parallel, c1
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dietary–nutrition: dietary, vegetables, meat, intake, fruits, food, diet, foods, fish, intakes
education: students, teaching, teachers, learning, teacher, student, school, academic,
teach, education
metals–chemistry: zn, pb, cu, ni, cr, metals, cd, mn, fe, metal
consumer–purchase: consumers, consumer, purchase, shopping, brand, purchasing, fash-
ion, buying, store, products
air–polution: aerosol, dust, particulate, particles, combustion, aerosols, pm2, air, burn-
ing, atmospheric
water–chemistry: groundwater, cl, hco3, na, ca2, mg2, no3, hydrochemical, so42, ions
cancer–clinical: tumor, metastasis, lymph, prognostic, survival, node, prognosis, carci-
noma, cox, meier
health–measures: cholesterol, hdl, glucose, fasting, lipoprotein, triglycerides, metabolic,
waist, insulin, systolic
plant–genetics: genotypes, seed, breeding, plant, yield, genetic, traits, cultivars, replica-
tions, characters
genetics: gene, genes, transcription, expression, cells, cell, dna, protein, pcr, genome
agricultural–economics: farmers, income, economic, rural, household, farm, govern-
ment, farming, households, agricultural
psychiatric: disorder, symptoms, dsm, disorders, symptom, depression, diagnostic, de-
pressive, psychiatric, compulsive
chemometrics–spectrometry: spectra, alternating, resolution, chromatography, squares,
chromatographic, chemometric, calibration, spectral, mcr
patient–outcomes: care, patient, patients, medical, health, nurses, hospital, nursing,
quality, hospitals
electron–photon–spectroscopy: electron, diffraction, ray, photoelectron, auger, spec-
troscopy, x, schmid, films, xps
speech–recognition: speaker, nist, gmm, sre, jfa, speech, gaussian, vector, recognition,
ubm
geochemistry: geochemical, rocks, mineralization, ore, minerals, rock, deposits, au,
quartz, geological
traditional–chinese–medicine: qi, yin, tcm, stasis, spleen, phlegm, deficiency, yang,
dampness, stagnation
polution: pahs, polycyclic, hydrocarbons, aromatic, pah, pyrene, benzo, combustion,
anthracene, compounds
artery–imaging: artery, imaging, myocardial, coronary, cardiac, left, brain, infarction,
ventricular, heart
psychology–personalities: self, personality, negative, neuroticism, extraversion, inven-
tory, behaviors, positively, coping, predicted
family–children–parents: children, child, mothers, parents, parent, maternal, mother,
parental, birth, parenting
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memory–tests: memory, verbal, neuropsychological, battery, subtests, wechsler, execu-
tive, cognitive, intelligence, abilities
tourism: tourists, tourism, tourist, destination, travel, visitors, destinations, attractions,
visit, visitor
basic–chemistry–summaries: temperature, min, optimum, ph, acid, liquid, ml, condi-
tions, ethanol, water
ecology–forest: habitat, niche, species, enfa, ecological, habitats, forest, vegetation, con-
servation, forests
china–econ–development: china, province, cities, regional, provinces, forward, eco-
nomic, system, comprehensive, economy
finance: stock, financial, market, listed, companies, investors, returns, investment, prof-
itability, firms
organization–business: employees, job, organizational, employee, leadership, commit-
ment, managers, organization, organizations, satisfaction
clinical–infections: infection, risk, infections, logistic, incidence, antibiotics, staphylo-
coccus, aureus, cases, infected

E.2 Artifacts and anomalies detected by vsp

Section E.2.1 lists eight factors that illustrate how vsp can highlight text artifacts (e.g.
stop words, legal permissions, and html tags)

The final three factors in Section E.2.2 appear to be anomalies. Two of these factors
found a group of six papers with identical abstracts; this was due to a parsing failure at
Semantic Scholar. Each of these factors corresponds to a single page of a journal that
contained all six abstracts. Semantic Scholar recognized them as separate articles, but
pasted their abstracts together and assigned it to all six. The final factor appears to find
papers in a Korean content farm.

E.2.1 Strange artifact factors

numbers: 4, 6, 5, 7, 9, 1, 3, 8, 2, 11
stop–words: not, they, it, or, more, but, if, many, have, what
permission–to–distribute–words: reproductions, edrs, supplied, eric, granted, repro-
duce, sld, oeri, permission, document
html–parse–errors: msonormaltable, tstyle, rowband, colband, noshow, 4pt, 0pt, pagi-
nation, padding, mso
french–stop–words: une, les, dans, des, pour, que, sont, factorielle, ont, etude
citations–in–abstract: j, al, et, c, l, psychology, g, 1993, his, 1990
Turkish: analizi, faktor, bu, olarak, ozet, toplam, oldugu, ile, bir, guvenirlik
legal–license: http, org, creativecommons, ltd, license, licenses, doi, copyright, www,
wiley
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E.2.2 Factors that correspond to anomalies

parse–error1: rostral, amygdalar, wako, riken, jst, averted, mpfc, astrocyte, 58s, s63
parse–error2: val66met, appswe, extradimensional, prepulse, presenilin, bdnf, neures,
s117, k03, mayu
content–farm–korea: follows, seoul, third, spss, sports, second, frequency, amos, sport,
gyeonggi

F Proofs for Proposition 5.1 and Theorem 5.1

The following is a proof of Proposition 5.1.

Proof. With input A , recall that the row, column, and grand means are

µr = A 1d/d ∈ Rn, µc = 1TnA /n ∈ Rd, µ = 1TnA 1d/(nd) ∈ R.

The centered version of A is defined to be Ã = A −µr1Td −1nµc+µ1n1
T
d ∈ Rn×d. Define

the column means of Y and Z as

µY = Y T1d/d and µZ = 1TnZ/n.

Note that
µr = ZBµY µc = µZBY

T and µ = µZBµY .

Also note that Ȳ = 1dµ
T
Y and Z̄ = 1nµZ . Putting the pieces together gives the result.

Ã = A − µr1Td − 1nµc + µ1n1
T
d

= ZBY T − ZBµY 1Td − 1nµZBY + 1nµZBµY 1Td

= ZBY T − ZBȲ T − Z̄BY T + Z̄BȲ T

= (Z − Z̄)B(Y − Ȳ )T

The following is a proof of Theorem 5.1.

Proof. By the Assumption 1,

E(Zoi ) = 0,E((Zoi )2) = 1,E((Zoi )4) = ηi > 3, ∀i ∈ [k].

Thus,

E(v(R,ZoR̃T )) =

k∑
j=1

E[ZoR̃TR]4j .
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To simplify notation, the proof reparameterizes the optimization parameter R as fol-
lows. For the rotation matrix R, define O = R̃TR ∈ O(k). We want to choose O ∈ O(k)
to optimize the quantities

∑
j E[ZoO]4j =

∑
j E(ZoO·j)

4, where O·j ∈ Rk is the jth column
of O. Notice elements of Zo are independent and each has zero-mean. We have

∑
j

E(ZoO·j)
4 =

k∑
j=1

 k∑
i=1

E((Zoi )4)O4
ij + 3

∑
i 6=`

E((Zoi )2(zo` )
2)O2

ijO
2
`j


=

k∑
j=1

 k∑
i=1

ηiO
4
ij + 3

∑
i 6=`

O2
ijO

2
`j

 . (25)

The above equation only depends on the squared elements of O. Define O(2) ∈ Rk×k

such that O
(2)
ij = O2

ij . Because O ∈ O(k), O(2) is a doubly stochastic matrix, where each
element is non-negative and all row and column sums are equal to one. Define

Fη(Q) =
k∑
j=1

 k∑
i=1

ηiQ
2
ij + 3

∑
i 6=`

QijQ`j

 . (26)

Define S(k) as the set of k × k doubly stochastic matrices. Note that∑
j

E(ZoO·j)
4 = Fµ(O(2)) ≤ max

Q∈S(k)
Fη(Q).

In this way, the Varimax problem relaxes from orthonormal matrices to doubly stochastic
matrices.

The rest of the proof will show that

max
Q∈S(k)

Fη(Q) =

k∑
i=1

ηi. (27)

Because
∑

j E(ZoO·j)
4 evaluated with O as the identity matrix, is equal to

∑k
i=1 ηi, it

follows that O = I or R = R̃ obtains the maximum. Moreover, for P ∈ P(k), O = P (i.e.
R = R̃P ) obtains the maximum value. It only remains to show Equation (27).
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Fη(Q) =

k∑
j=1

 k∑
i=1

ηiQ
2
ij + 3

∑
i 6=`

QijQ`j


=

k∑
j=1

 k∑
i=1

ηiQ
2
ij + 3

(
k∑
i=1

Qij

)2

− 3
k∑
i=1

Q2
ij


=

k∑
j=1

(
k∑
i=1

ηiQ
2
ij − 3

k∑
i=1

Q2
ij

)
+ 3k

=
k∑
i=1

(ηi − 3)
k∑
j=1

Q2
ij + 3k

≤
k∑
i=1

(ηi − 3)
k∑
j=1

Qij + 3k

=
k∑
i=1

(ηi − 3) + 3k

=

k∑
i=1

ηi.

The inequality is because Qij ∈ [0, 1],∀i, j (this is because Q ∈ S(k)).

To see that the maximum of
∑

j E(ZoO·j)
4 is only attained by matrices in P(k), note

that for any rotation matrix O 6∈ P(k), then

∑
j

E(ZoO·j)
4 = Fµ(O(2)) =

k∑
i=1

(ηi − 3)
k∑
j=1

O4
ij + 3k <

k∑
i=1

(ηi − 3)
k∑
j=1

O2
ij + 3k =

k∑
i=1

ηi,

where the inequality is now strict.

F.1 A justification for the recentering step described in Remark 2.2

This section demonstrates how µ̂Z =
√
nµ̂cV̂ D̂

−1R
Û

can estimate µZ = 1TZ/n under
the Varimax assumptions on Z by studying the population behavior of µ̂Z . Define the
population version of the estimator as

µ∗Z =
√
nµcV D

−1R̃U ,
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where µc = 1TnA /n = 1TnZBY
T /n, V and D are defined in Proposition 5.2 with the SVD

of Ã as
D =

√
ndD̃, V = d−1/2Ỹ Σ̂

−1/2
Y R̃TV ,

and RU is the population Varimax rotation R̃U (as justified by Theorem 5.1). In the steps
below, it is presumed that Z satisfies the Varimax assumptions. It is only presumed that Y
is full rank. For simplicity, the ≈ correspond to approximating Σ̂Z as the identity matrix;
under the Varimax assumptions, this is a reasonable approximation for large n. Recall that

BΣ̂
1/2
Y ≈ R̃TUD̃R̃V .

Thereby,

µ∗Z =
√
nµcV D

−1R̃U

=
√
nµZ(BY T )V D−1R̃U

≈
√
nµZ(R̃TUD̃R̃V Σ̂

−1/2
Y Y T )d−1/2Ỹ Σ̂

−1/2
Y R̃TVD

−1R̃U .

Then, Σ̂
−1/2
Y Y T Ỹ Σ̂

−1/2
Y is d multiplied by the identity matrix. Substituting for D and

canceling out several terms yields the result,

µ∗Z ≈ (nd)1/2µZR̃
T
UD̃R̃V R̃

T
VD
−1R̃U

= (nd)1/2µZR̃
T
UD̃R̃V R̃

T
V (nd)1/2D̃−1R̃U

= µZR̃
T
UD̃R̃V R̃

T
V D̃
−1R̃U

= µZ .

The rigorous proof will be shown later in Proposition G.6 and Proposition G.7.

F.2 Proofs for Lemmas C.1 andC.2.

The following is a proof of Lemma C.1.

Proof. For ease of notation, refer to the topic for word w as z (instead of zw),

P(w = j|Zi) =

k∑
z=1

P(w = j|z, Zi)P(z|Zi) =

k∑
z=1

βj,zZi,z = 〈βj·, Zi〉.

So, step 3 in the LDA model is equivalent to choosing word w to be word j with probability
[βZi]j . So, conditional on Ni and Zi, the ith row of A is Multinomial(Ni, βZi). Then,
unconditional on Ni, due to the Poisson-Multinomial relationship, each element in the ith
row of A is independent, with the distribution Aij ∼ Poisson(ξ[βZi]j). So, E(A|Z) =
ξZβT .
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The following is a proof of Lemma C.2.

Proof. There are three elements of Lemma C.2. Part 1: conditionally on Z1, . . . , Zn and
Ξ, we need to show that the document-term matrix A has independent Poisson entries
satisfying

E(A|Ξ, Z) = (ΞZ)βT . (28)

The proof of this is equivalent to the proof of Lemma C.1.
Part 2: The second part is that each element (ΞZ)ij is independent Gamma(αj , s).

To see this, let Xi ∈ Rk+ have independent Gamma elements, Xij ∼ Gamma(αj , s). Define
ξ′i =

∑
j Xij and

Z ′i =
Xi

ξ′i
.

It is well known that (1) Z ′i ∼ Dirichlet(α), (2) ξ′i ∼ Gamma(
∑

j αj , s), and (3) ξ′i is
independent of Z ′i. So,

(ΞZ)i = ξiZi
d
= ξ′iZ

′
i = Xi.

Part 3: We need to show that ΞZΣ−1/2 satisfies the identification assumptions for
Varimax. From part 2 above, each row contains k independent random variables and each
row is iid. Then, each element of ΞZ is leptokurtic because the Gamma distribution is
always leptokurtic. Scaling by a constant Σ−1/2 does not change this. The fourth piece of
the identification assumptions for Varimax is ensured by the scaling Σ−1/2.
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G Proofs of Main Theorems

G.1 Proof of Theorem 4.1

Proof. Define the random variable B ∈ {0, 1} to be equal to 1 when X 6= 0 and equal to 0
when X = 0. For some 0 < p < 1/6, B ∼ Bernoulli(p). Define random variable S such
that when B = 1, S = X and when B = 0, then S is equal in distribution to X on the set
X 6= 0. So,

X = SB.

Under the conditions of the theorem and the construction above, S has some arbitrary
distribution with finite 4th moment and is also independent of B.

Let µi = E(Si). Then

θ := E(X) = (1− p)0 + pµ1 = pµ1, (29)

E[(X − θ)2] = pµ2 − p2µ2
1, (30)

E[(X − θ)4] = pµ4 − 4p2µ3µ1 + 6p3µ2µ
2
1 − 3p4µ4

1. (31)

So, in order to show that E[(X − θ)4] > 3E[(X − θ)2]2, it is enough to show that

(µ4 − 3pµ2
2) + 6p2µ2

1(µ2 − pµ2
1) > 4pµ3µ1 − 6p2µ2µ

2
1. (32)

Using Lemma G.1 with g = S2, h = 2pS, f being S’s pdf, we have

µ4 − µ2
2 + 4p2µ2

1(µ2 − µ2
1) ≥ 4pµ3µ1 − 4pµ2

1µ2. (33)

Subtract Equation (33) from Equation (32) we only need to show

(1− 3p)µ2
2 + p2µ2

1(2µ2 + 4µ2
1 − 6pµ2

1) > (4p− 6p2)µ2
1µ2. (34)

Notice p < 1/6, thus (6p − 1)(p − 1) > 0 ⇒ 1 − 3p > 4p − 6p2. Thus by Jensen’s
Inequality

(1− 3p)µ2
2 ≥ (4p− 6p2)µ2

2 ≥ (4p− 6p2)µ2
1µ2.

The first inequality is strict as long as µ2 > µ2
1. Also with p < 1/6 we have

p2µ2
1(2µ2 + 4µ2

1 − 6pµ2
1) ≥ p2µ2

1(2µ2 + 3µ2
1) ≥ 0.

The second inequality is strict as long as p > 0, µ1 6= 0.
If µ2 = µ1 = 0 then P(X = 0) = 1, contradiction. Thus X is leptokurtic.

Lemma G.1. Suppose f is any distribution pdf. g, h is any integrable functions. Then∫
g2fdx− (

∫
gfdx)2 + (

∫
hfdx)2(

∫
h2fdx− (

∫
hfdx)2)

≥ (

∫
ghfdx−

∫
gfdx

∫
hfdx)

∫
hfdx.
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Let g̃ = g −
∫
gfdx, h̃ = h−

∫
hfdx. Then∫

g2fdx− (

∫
gfdx)2 =

∫
g̃2fdx,∫

h2fdx− (

∫
hfdx)2 =

∫
h̃2fdx,∫

ghfdx−
∫
gfdx

∫
hfdx =

∫
g̃h̃fdx.

By Cauchy-Schwarz Inequality,∫
g2fdx− (

∫
gfdx)2 + (

∫
hfdx)2(

∫
h2fdx− (

∫
hfdx)2)

=

∫
g̃2fdx+ (

∫
hfdx)2

∫
h̃2fdx

≥ |
∫
hfdx|

√∫
g̃2fdx

∫
h̃2fdx

≥ |
∫
hfdx|

∫
|g̃h̃|fdx

≥ |
∫
hfdx|(|

∫
ghfdx−

∫
gfdx

∫
hfdx|)

≥ (

∫
ghfdx−

∫
gfdx

∫
hfdx)

∫
hfdx.

G.2 Leptokurtosis with soft sparsity

The random variable X in Theorem 4.1 satisfies a hard sparsity condition. Imagine X
as satisfying the conditions of Theorem 4.1. The next proposition studies X + W , where
W is any independent random variable with a small variance. So, if W has a probability
density, then P (X + W = 0) 6> 0, yet when W has expectation zero, then X + W is still
close to zero with high probability. In this regime, the next proposition shows that if X
has a sufficiently large kurtosis, then X +W is still leptokurtic, no matter the kurtosis of
W .

Proposition G.1. Let X and W be any independent random variables with four finite
moments. Let ηx,j = E(X − E(X))j and ηw,j = E(W − E(W ))j. Let ηx,2 = 1. For any
ε > 0, if ηw,2 < ε, and ηx,4 ≥ 3(1 + ε)2, then X +W is leptokurtic.

Note that both X and W can be rescaled to satisfy the assumption ηx,2 = 1. In this
way, it does not restrict the generality of the result. It only simplifies the notation.
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Proof. Note that ηx,1 = ηw,1 = 0. Using that fact,

E (X +W − E(X +W ))2 = ηx,2 + ηw,2 < 1 + ε

and

E (X +W − E(X +W ))4 = ηx,4 + 6ηx,2ηw,2 + ηw,4 > 3(1 + ε)2.

The result follows from the definition of leptokurtic.

G.3 Proofs for the main results, Theorem 6.1

Proof. We need six propositions listed below to prove Theorem 6.1. Before the proof we
clarify some notations. For a generic random matrix X, let RX be its sample Varimax
rotation, i.e.

RX ∈ arg max
R∈O(k)

v(R,X),

where v(R,X) is defined in Equation (2). Then, let R∗X the population Varimax rotation,
i.e.

R∗X ∈ arg max
R∈O(k)

VX(R),

where the expectation in VX(R) = E(v(R,XR̃)) is defined over the distribution of X and
the nuisance rotation R̃ can be understood from the context. Define

W = arg min
W0∈O(k)

‖Û − UW0‖2→∞.

P(k) is defined in Equation (13). Pn = P
(1)
n P

(2)
n P

(3)
n where P

(i)
n ∈ P(k), i = 1, 2, 3 are

defined in Proposition G.3, G.4, G.5 respectively. Let µZ = 1TnZ/n. Jn is n by n matrix
with every entry equal to 1. X† is the pseudo-inverse of X. Define ξ = 1+ ε for some small
positive ε < 0.01 for notation consistency with Cape et al. [2019a]. Recall ∆n = nρn, ∆̄n =
nρ̄n.

Define

γ
(n)
ij = sup

s≥2

(
E[(Aij −Aij)

s]

s!

)1/s

and γ(n) = sup
ij

γ
(n)
ij . (35)

The γ(n) reveals the tail behaviors of sub-exponential random variables. It is useful in
deriving matrix concentration results for sub-exponential random matrices later (Lemma
G.4).

See Sections G.3.1 through G.3.6 for proofs to the following propositions G.2 through
G.7. Several lemmas and technical details for these proofs are then delayed further into
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Sections H and I.

Proposition G.2. Let Σ̂Z = Z̃T Z̃/n. Under the settings of Theorem 6.1,

‖UR̃U − UR̃U Σ̂
1/2
Z ‖2→∞ = Op(

log n

n
). (36)

Proposition G.3. Under the settings of Theorem 6.1, there exists P
(1)
n ∈ P(k) s.t.

‖ÛR∗UW − UR̃UP (1)
n ‖2→∞ = Op

(
(nρn)−1/2n−1/2 log

5
2 n
)
. (37)

Proposition G.4. Under the settings of Theorem 6.1, there exists P
(2)
n ∈ P(k) such that

for any δ > 0,
‖ÛRUW − ÛR∗UWP (2)

n ‖2→∞ = Op(n
δ/2−3/4 log n). (38)

Proposition G.5. Under the settings of Theorem 6.1, there exists P
(3)
n ∈ P(k) s.t.

‖ÛR
Û
− ÛRUWP (3)

n ‖2→∞ = Op

(
(nρn)−1/4n−1/2 log

11
4 n
)
. (39)

Proposition G.6. Define Pn = P
(1)
n P

(2)
n P

(3)
n with P

(1)
n , P

(2)
n , P

(3)
n defined in Proposition

G.3, G.4, G.5 respectively. Under the settings of Theorem 6.1, for any δ > 0,

‖Jn(AV̂ D̂−1R
Û
−A V D−1R̃UPn)‖2→∞ = Op

(
nδ/2+1/4 + (nρn)−1/4n1/2 log

7
4 n
)
. (40)

Proposition G.7. Under the settings of Theorem 6.1,

‖Jn(
√
nA V D−1R̃U − Z)‖2→∞ = Op(

√
n log n). (41)
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We are going to show the bound for ‖
√
nÛR

Û
−Z̃Pn‖2→∞ by splitting it into four parts

using triangle inequalities. Proposition G.2, G.3, G.4, G.5 give the bound for each split
component. Similarly we show the bound for ‖1nµ̂Z−1nµ

T
ZPn‖2→∞ by decomposing it into

two parts and use Proposition G.6, G.7 to give bounds. The proofs of these propositions
are shown after the proof of Theorem 6.1. The propositions that justify the equalities
below are numbered on the left side of the equalities.

‖
√
nÛR

Û
− Z̃Pn‖2→∞

(Proposition 5.2) = ‖
√
nÛR

Û
−
√
nUR̃U Σ̂

1/2
Z Pn‖2→∞

= ‖
√
nÛR

Û
−
√
nÛRUWP

(3)
n +

√
nÛRUWP

(3)
n −

√
nÛR∗UWP

(2)
n P (3)

n

+
√
nÛR∗UWP

(2)
n P (3)

n −
√
nUR̃UPn +

√
nUR̃UPn −

√
nUR̃U Σ̂

1/2
Z Pn‖2→∞

≤ ‖
√
nÛR

Û
−
√
nÛRUWP

(3)
n ‖2→∞ + ‖

√
nÛRUWP

(3)
n −

√
nÛR∗UWP

(2)
n P (3)

n ‖2→∞
+‖
√
nÛR∗UWP

(2)
n P (3)

n −
√
nUR̃UPn‖2→∞ + ‖

√
nUR̃UPn −

√
nUR̃U Σ̂

1/2
Z Pn‖2→∞

(Proposition G.2) = ‖
√
nÛR

Û
−
√
nÛRUWP

(3)
n ‖2→∞ + ‖

√
nÛRUWP

(3)
n −

√
nÛR∗UWP

(2)
n P (3)

n ‖2→∞

+‖
√
nÛR∗UWP

(2)
n P (3)

n −
√
nUR̃UPn‖2→∞ +Op(

log n√
n

)

(Proposition G.3) = ‖
√
nÛR

Û
−
√
nÛRUWP

(3)
n ‖2→∞ + ‖

√
nÛRUWP

(3)
n −

√
nÛR∗UWP

(2)
n P (3)

n ‖2→∞

+Op

(
(nρn)−1/2 log

5
2 n
)

+Op(
log n√
n

)

(Proposition G.4) = ‖
√
nÛR

Û
−
√
nÛRUWP

(1)
n ‖2→∞ +Op(n

δ/2−1/4 log n)

+Op

(
(nρn)−1/2 log

5
2 n
)

+Op(
log n√
n

)

(Proposition G.5) = Op

(
(nρn)−1/4 log

11
4 n
)

+Op(n
δ/2−1/4 log n) +Op

(
(nρn)−1/2 log

5
2 n
)

+Op(
log n√
n

)

= Op

(
(nρn)−1/4 log

11
4 n
)

+Op(n
δ/2−1/4 log n)

= Op

(
∆−1/4+δ/2
n log

11
4 n
)
. (42)

For the recentering part, by Proposition G.6, G.7,

‖1nµ̂Z − 1nµZPn‖2→∞ =
1

n
‖JTn (

√
nAV̂ D̂−1R

Û
− ZPn)‖2→∞

≤ 1

n
‖Jn(
√
nAV̂ D̂−1R

Û
−
√
nA V D−1R̃UPn)‖2→∞ +

1

n
‖Jn(
√
nA V D−1R̃UPn − ZPn)‖2→∞

= Op(n
δ/2−1/4 + (nρn)−1/4 log

7
4 n+

log n√
n

)

= Op(∆
−1/4+δ/2
n log

7
4 n). (43)
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Take δ = 0.2. Equation (42), (43) and triangle inequality accomplish the proof.

Before the proofs for the six propositions, two useful lemmas are given. Lemma G.2
gives bound for the maximum absolute value of Z’s elements. Lemma G.3 borrows matrix
2→∞ norm’s property from Cape et al. [2019b].

Lemma G.2.
max
i,j
|Zij | = Op(log n), max

i,j
|Z̃ij | = Op(log n).

max
i,j
|Yij | = Op(log d), max

i,j
|Ỹij | = Op(log d).

Proof. Assumption 2 indicates Z’s columns are sub-exponential variables. Thus there exists
C0, λj > 0, j ∈ [k]’s s.t.

P(|Zij − EZij | > t) ≤ C0 exp(−λjt) ≤ C0 exp(−λt), (44)

with λ = min
j∈[k]

λj . Then

P(max
i,j
|Zij − EZij | > t) ≤

∑
i,j

P(|Zij − EZij | > t)

≤
∑
i,j

C0 exp(−λt)

≤ knC0 exp(−λt).

⇒
max
i,j
|Zij | = Op(log n), max

i,j
|Z̃ij | = Op(log n).

Similar conclusion also applies to Y .

With Lemma G.2, it could be trivially inferred that

ρ̄n = O(ρn log2 n). (45)

Lemma G.3. Suppose X1 ∈ Rn1×n2 , X2 ∈ Rn2×n3 are real matrices. Then

‖X1X2‖2→∞ ≤ ‖X1‖2→∞‖X2‖. (46)

This is a direct conclusion from Proposition 6.5 in Cape et al. [2019b].
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G.3.1 Proof of Proposition G.2

Proof. The (i, j) entry of Σ̂Z ∈ Rk×k is

Σ̂Z [i, j] =

{ 1
n

∑n
q=1(Zqi − µ̂Z [i])2 if i = j,

1
n

∑n
q=1(Zqi − µ̂Z [i])(Zqj − µ̂Z [j]) if i 6= j.

By LLN, ‖Σ̂Z − I‖max = Op(
k2
√
n

) = Op(
1√
n

), thus ‖Σ̂Z − I‖ ≤
√
k2‖Σ̂Z − I‖max = Op(

1√
n

).

Suppose eigendecomposition of Σ̂Z is Σ̂Z = ΨΛZΨT . Then

‖Σ̂Z − I‖ = ‖ΛZ − I‖ = Op(
1√
n

)⇒ ‖Σ̂1/2
Z − I‖ = ‖Λ1/2

Z − I‖ = Op(
1√
n

).

Also ‖Σ̂Z − I‖ = Op(
1√
n

) implies ‖Σ̂−1/2
Z ‖ = Op(1). By Proposition 5.2 and Lemma G.3,

G.2,

‖U‖2→∞ =
1√
n
‖Z̃Σ̂

−1/2
Z ‖2→∞ ≤

1√
n
‖Z̃‖2→∞‖Σ̂−1/2

Z ‖ = Op(
log n√
n

). (47)

Putting the above pieces together provides a bound on the quantity of interests.

‖UR̃U − UR̃U Σ̂
1/2
Z ‖2→∞ ≤ ‖UR̃U‖2→∞‖I − Σ̂

1/2
Z ‖

= ‖U‖2→∞‖I − Σ̂
1/2
Z ‖

= Op(
log n

n
).

G.3.2 Proof of Proposition G.3

We give the statement of Lemma G.4, G.5 below and use them to prove proposition G.3.
The proof of these two lemmas will be shown in Section H.

Lemma G.4. Define the symmetrized adjacent matrix as Ãsym =

(
0 Ã

ÃT 0

)
and its pop-

ulation version as Ãsym =

(
0 Ã

Ã T 0

)
. Under the settings in Theorem 6.1,

‖Asym −Asym‖ = Op((nρn log3 n)
1
2 ). (48)

Lemma G.5. Presume the conditions in Theorem 6.1. There exists W ∈ O(k), such that

‖Û − UW‖2→∞ = Op

(
(nρn)−1/2n−1/2 log

5
2 n
)
. (49)
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Lemma G.5 gives a row-wise bound for the eigenvectors’ fluctuations. This lemma
follows from Theorem 1 in Cape et al. [2019a], which requires several conditions. Lemma
G.4 is used for one of the conditions. The other conditions are either already satisfied by
the assumptions of Theorem 6.1 or checked inside the proof of Lemma G.5.

Proof. Notice the fact that 2→∞ norm is invariant to rotations. From Theorem 5.1 there

exist P
(1)
n ∈ P(k) s.t. R∗UW = W T R̃UP

(1)
n . Therefore

‖ÛR∗UW − UR̃UP (1)
n ‖2→∞ = ‖ÛW T R̃UP

(1)
n − UR̃UP (1)

n ‖2→∞
= ‖ÛW T − U‖2→∞
= ‖Û − UW‖2→∞

(Lemma G.5) = Op

(
(nρn)−1/2n−1/2 log

5
2 n
)
.

G.3.3 Proof of Proposition G.4

The proof of Proposition G.4 uses the following lemma to bound the distance between
sample and population Varimax solutions (modulo permutation and sign flip).

Lemma G.6. Recall that R
Z̃
∈ arg max

R0∈O(k)
v(R0, Z̃). There exists P

(2)
n ∈ P(k) s.t. for ∀δ > 0

‖R
Z̃
− P (2)

n ‖2→∞ = Op(n
δ/2−1/4).

The proof of Lemma G.6 is in Section H.

Proof. With some previous lemmas,

‖ÛRUW − ÛR∗UWP (2)
n ‖2→∞

= ‖Û(RUW −R∗UWP (2)
n )‖2→∞

(Lemma G.3) ≤ ‖Û‖2→∞‖RUW −R∗UWP (2)
n ‖

(Lemma G.6) = Op(n
δ/2−1/4‖Û‖2→∞)

≤ Op(n
δ/2−1/4‖Û − UW‖2→∞ + nδ/2−1/4‖UW‖2→∞)

(Lemma G.5) = Op

(
(nρn)−1/2n−3/4 log

5
2 n
)

+Op(n
δ/2−1/4‖UW‖2→∞)

≤ Op

(
(nρn)−1/2n−3/4 log

5
2 n
)

+Op(n
δ/2−1/4‖U‖2→∞)

(Equation (47)) ≤ Op

(
(nρn)−1/2n−3/4 log

5
2 n
)

+Op(n
δ/2−3/4 log n)

(nρn � log2ξ n) = Op(n
δ/2−3/4 log n).
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G.3.4 Proof of Proposition G.5

This proposition shows that R
Û

converges to RUW . The proof of Proposition G.5 is con-
tained in Section H. This proof uses the fact that the Varimax objective function is smooth
and each row of Û converges to the corresponding row of UW (i.e. ‖Û − UW‖2→∞ → 0).
This implies that the Varimax solution computed with Û (i.e. R

Û
) converges to the Vari-

max solution computed with UW (i.e. RUW ).

G.3.5 Proof of Proposition G.6

Proof.

‖Jn(AV̂ D̂−1R
Û
−A V D−1R̃UPn)‖2→∞

(Lemma G.3) ≤
√
n‖AV̂ D̂−1R

Û
−A V D−1R̃UPn‖

(WR∗UW = R̃UP
(1)
n ) =

√
n‖AV̂ D̂−1R

Û
−AVD−1WR

Û
+AVD−1WR

Û
−AVD−1WRUWP

(3)
n

+AVD−1WRUWP
(3)
n −AVD−1WR∗UWP

(2)
n P (3)

n

+AVD−1WR∗UWP
(2)
n P (3)

n −A V D−1WR∗UWP
(2)
n P (3)

n ‖
≤
√
n(‖AV̂ D̂−1R

Û
−AVD−1WR

Û
‖+ ‖AVD−1WR

Û
−AVD−1WRUWP

(3)
n ‖

+‖AVD−1WRUW −AVD−1WR∗UWP
(2)
n ‖

+‖AVD−1WR∗UW −A V D−1WR∗UW ‖). (50)

The fact that WR∗UW = R̃TUP
(1)
n is a direct result of Theorem 5.1. The remaining part

of the proof wants to show the bounds for each term of RHS of Equation (50).

First term of Equation (50) is ‖AV̂ D̂−1R
Û
−AVD−1R

Û
‖. By Lemma G.5

‖Û − UW‖2→∞ = Op

(
(nρn)−1/2n−1/2 log

5
2 n
)
,

and by the same virtue (notice Y also satisfies Assumption 2, it could be shown by trans-
posing the adjacency matrix) there exists W2 ∈ O(k) s.t.

‖V̂ − VW2‖2→∞ = Op

(
(nρn)−1/2n−1/2 log

5
2 n
)
.

By assumptions and Lemma G.4,

‖D−1‖ = Op((nρn)−1), ‖A−A ‖ = Op((nρn log3 n)
1
2 ).

Notice that ‖X‖ ≤ √m1‖X‖2→∞ for ∀X ∈ Rm1×m2 and ‖V ‖ = 1. Therefore
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‖AV̂ D̂−1R
Û
−AVD−1WR

Û
‖

= ‖AV̂ D̂−1 −AVD−1W‖
≤ ‖A‖‖V̂ D̂−1 − V D−1W‖
= ‖A−A + A ‖‖V̂ D̂−1 − VW2D̂

−1 + VW2D̂
−1 − V D−1W‖

≤ (‖A−A ‖+ ‖A ‖)(‖V̂ D̂−1 − VW2D̂
−1‖+ ‖VW2D̂

−1 − V D−1W‖)
≤ (‖A−A ‖+ ‖A ‖)(‖V̂ − VW2‖‖D̂−1‖+ ‖V ‖‖W2D̂

−1 −D−1W‖)

= Op(‖A ‖ × ‖D−1‖)× [Op

(
(nρn)−1/2n−1/2 log

5
2 n
)

+Op

(
(nρn)−1/2 log

5
2 n
)

]

= Op

(
(nρn)−1/2 log

5
2 n
)
. (51)

The third equation employs the bound of ‖W2D̂
−1 − D−1W‖ from the following de-

duction:

‖W2D̂
−1 −D−1W‖

= ‖D̂−1 −W T
2 D

−1W‖
= ‖V̂ D̂−1ÛT − V̂ W T

2 D
−1WÛT ‖

= ‖V̂ D̂−1ÛT − V D−1UT + (V − V̂ W T
2 )D−1WU + V̂ W T

2 D
−1(UT −WÛT )‖

≤ ‖V̂ D̂−1ÛT − V D−1UT ‖+ ‖(V − V̂ W T
2 )D−1WU‖+ ‖V̂ W T

2 D
−1(UT −WÛT )‖

≤ ‖A† −A †‖+
√
d‖V − V̂ W T

2 ‖2→∞‖D−1‖+
√
n‖D−1‖‖UT −WÛT ‖2→∞

≤ ‖A†‖‖A−A ‖‖A †‖+
√
d‖V − V̂ W T

2 ‖2→∞‖D−1‖+
√
n‖D−1‖‖UT −WÛT ‖2→∞

= Op(‖D−1‖)×
(
Op

(
(nρn)−1/2 log

3
2 n
)

+Op

(
(nρn)−1/2 log

5
2 n
))

= Op(‖D−1‖)×Op
(

(nρn)−1/2 log
5
2 n
)
.

Second term of Equation (50) is ‖AVD−1R
Û
− AVD−1WRUWP

(3)
n ‖. According to

Equation (98) (in the proof of Proposition G.5) there exists a P
(3)
n ∈ P(k) s.t.

‖R
Û
−RUWP (3)

n ‖2→∞ = Op

(
(nρn)−1/4 log

7
4 n
)
.

Therefore,

‖AVD−1WR
Û
−AVD−1WRUWP

(3)
n ‖

≤ ‖A‖‖V ‖‖D−1W‖
√
k‖R

Û
−RUWP (3)

n ‖2→∞
= Op(1)× ‖R

Û
−RUWP (3)

n ‖2→∞

= Op

(
(nρn)−1/4 log

7
4 n
)
. (52)
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Third term of Equation (50) is ‖AVD−1WRUW −AVD−1WR∗UWP
(2)
n ‖. Recall Propo-

sition G.4, Theorem 5.1, there is P
(2)
n ∈ P(k), s.t. for any δ > 0,

‖RUW −R∗UWP (2)
n ‖2→∞ = Op(n

δ/2−1/4).

Therefore,

‖AVD−1WRUW −AVD−1WR∗UWP
(2)
n ‖ ≤ ‖A‖‖V ‖‖D−1W‖

√
k‖RUW −R∗UWP (2)

n ‖2→∞
= Op(1)× ‖RUW −R∗UWP (2)

n ‖2→∞
= Op(n

δ/2−1/4). (53)

Fourth term of Equation (50) is ‖AVD−1WR∗UW − A V D−1WR∗UWP
(1)
n ‖. Reusing

Lemma G.4, we have

‖AVD−1WR∗UW −A V D−1WR∗UW ‖ = ‖AVD−1 −A V D−1‖
≤ ‖A−A ‖‖V ‖‖D−1‖
= Op((nρn)−

1
2 log

3
2 n). (54)

Plugging (51), (52), (53), (54) into (50) arrives our combined bound:

‖Jn(AV̂ D̂−1R
Û
−A V D−1R̃UPn)‖2→∞

= Op(
√
n× ((nρn)−1/2 log

5
2 n+ (nρn)−1/4 log

7
4 n+ nδ/2−1/4 + (nρn)−1/2 log

3
2 n))

= Op

(
nδ/2+1/4 + (nρn)−1/4n1/2 log

7
4 n
)
. (55)
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G.3.6 Proof of Proposition G.7

Proof. With Lemma G.3 and Proposition 5.2,

‖Jn(
√
nA V D−1R̃U − Z)‖2→∞

≤
√
n‖
√
nA V D−1R̃U − Z‖

=
√
n‖
√
nZBY TV D−1R̃U − Z‖

=
√
n‖ZB(Y T Ỹ /d)Σ̃

−1/2
Y R̃TV D̃

−1R̃U − Z‖

=
√
n‖ZB(Y T Ỹ /d)Σ̃−1

Y B−1Σ̃
−1/2
Z − Z‖

≤
√
n‖Z‖(‖B(Y T Ỹ /d)Σ̃−1

Y B−1Σ̃
−1/2
Z − I‖)

≤
√
n‖Z‖(‖B(Y T Ỹ /d)Σ̃−1

Y B−1Σ̃
−1/2
Z −B(Y T Ỹ /d)Σ̃−1

Y B−1‖+ ‖B(Y T Ỹ /d)Σ̃−1
Y B−1 − I‖)

≤
√
n‖Z‖(‖B‖‖B−1‖‖Y T Ỹ /d‖‖Σ̃−1

Y ‖‖Σ̃
−1/2
Z − I‖+ ‖B‖‖B−1‖‖(Y T Ỹ /d)Σ̃−1

Y − I‖).

By Lemma G.2, ‖Z‖ ≤
√
nkmax |Zij | = Op(

√
n log n). Conditions in main theorem

statement imply ‖B‖‖B−1‖ = Op(1). Using LLN results (similar to proofs in Proposition

G.2) there are ‖Σ̃−1
Y ‖ = Op(1), ‖Σ̃−1/2

Z − I‖ = Op(1/
√
n).

Notice that the (i, j) entry of Ȳ T Ỹ /d is 1
d µ̂Y [i]

∑n
q=1(Yqj − µ̂Y [j]) = 0. By LLN

‖Y T Ỹ /d‖ ≤ ‖Ỹ T Ỹ /d‖+ ‖Ȳ T Ỹ /d‖ = Op(1)

and
(Y T Ỹ /d)Σ̃−1

Y − I = (Ȳ T Ỹ /d)Σ̃−1
Y ,

is the zero matrix. Summarize these results and simplify the bounds give the desired
conclusion,

‖Jn(
√
nA V D−1R̃U − Z)‖2→∞ = Op(

√
n log n).

H Technical Proofs

Proof of Lemma G.4

This part of proof needs a matrix concentration bound for sub-exponential random vari-
ables. Here we cite an existing result shown below.

Lemma H.1 (Tropp [2012]). Let X1, X2, ..., Xn be independent random N×N self-adjoint
matrices. Assume that E(Xi) = 0 for all i, and E(Xp

i ) � p!
2 R

p−2A2
i for p ≥ 2. Compute

the variance parameter

σ2 := ‖
∑
k

A2
k‖.
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Then for any t > 0,

P(‖
n∑
i=1

Xi‖ ≥ t) ≤ N × exp(− t2

2σ2 + 2Rt
). (56)

Now we make use of Lemma H.1 to prove Lemma G.4.

Proof. Let Ei,j be the (n+ d)× (n+ d) matrix with 1 in the (i, j) and (j, i) entries and 0
elsewhere. γij , γ are defined in Equation (35) (for simplicity we ignore the (n)-superscripts).

To utilize Lemma H.1, we express Ãsym − Ãsym as the sum of matrices,

Yi,n+j = (Aij −Aij)E
i,n+j , i = 1, ..., n, j = 1, ..., d.

Noice that

‖Ãsym − Ãsym‖ = ‖
n∑
i=1

d∑
j=1

Yi,n+j‖,

and E(Yi,n+j) = 0. Moreover,

(Ei,n+j)p = Ei,i + En+j,n+j , p = 2, 4, ...,

(Ei,n+j)p = Ei,n+j , p = 3, 5, 7, ...,

and E[(Aij −Aij)
p] ≤ γpijp! ≤ γpp!, for ∀i, j, p ≥ 2. These relations indicate

E(Y p
i,n+j) �

p!

2
·γp−2
ij ·(

γ2
ij

2
(Ei,i+En+j,n+j)) � p!

2
·γp−2 ·(γ

2

2
(Ei,i+En+j,n+j)),∀p ≥ 2. (57)

When ρ̄n ≥ 1, we can treat Ai’s in Lemma H.1 as γ
2 (Ei,i + En+j,n+j) in our scenario.

Therefore,

σ2 =
γ

2
‖

n∑
i=1

d∑
j=1

(Ei,i + En+j,n+j)‖

=
ρ̄n
4
‖

n∑
i=1

d∑
j=1

(Ei,i + En+j,n+j)‖

=
ρ̄n
4
‖

n∑
i=1

[

d∑
j=1

Ei,i] +

d∑
j=1

[

n∑
i=1

En+j,n+j ]‖

≤ ρ̄n
4

(‖
n∑
i=1

[

d∑
j=1

Ei,i]‖+ ‖
d∑
j=1

[

n∑
i=1

En+j,n+j ]‖)

=
(n+ d)ρ̄n

4
.
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When ρ̄n ≤ 1, Assumption 3 suggests

E[(Aij −Aij)
p] ≤ (p− 1)!ρ̄n ≤

p!

2
· 1p−2 · ρ̄n,

thus

E(Y p
i,n+j) �

p!

2
· (Ei,i + En+j,n+j),∀p ≥ 2. (58)

Then a similar bound could be derived:

σ2 ≤ ρ̄n‖
n∑
i=1

d∑
j=1

(Ei,i + En+j,n+j)‖ ≤ (n+ d)ρ̄n.

Therefore, by Lemma H.1, the bound for ‖Ãsym − Ãsym‖ is obtained.

P(‖Ãsym − Ãsym‖ ≥ t) ≤

 (n+ d) exp(− t2
(n+d)ρ̄n

4
+2γt

) ρ̄n ≥ 1,

(n+ d) exp(− t2

(n+d)ρ̄n+2t) ρ̄n < 1.

With Assumption 3 and Equation (45) this also implies,

‖Ãsym − Ãsym‖ = O((nρn log3 n)
1
2 ).

Before we show the proof of Lemma G.5, we illustrate the following lemma that shows
important property of matrix with special structure and could be utilized to convert bounds
of eigenvectors’ perturbation of symmeticed matrices to original adjacency matrices’.

Lemma H.2. Suppose M =

(
M1 M2

M2 M1

)
is a blockwise symmetric matrix (M1,M2 ∈

Rk×k). Let M = UMDMV
T
M be M ’s singular vector decomposition. Then N = UMV

T
M has

the same blockwise symmetric structure: N =

(
N1 N2

N2 N1

)
.

Proof. Let M1 + M2 = S1Σ1T
T
1 ,M1 −M2 = S2Σ2T

T
2 be the singular decompositions of

them. Then

M1 =
1

2
(S1Σ1T

T
1 + S2Σ2T

T
2 ),M2 =

1

2
(S1Σ1T

T
1 − S2Σ2T

T
2 ).

Plug in the equations,

M =

(
M1 M2

M2 M1

)
=

1

2

(
S1Σ1T

T
1 + S2Σ2T

T
2 S1Σ1T

T
1 − S2Σ2T

T
2

S1Σ1T
T
1 − S2Σ2T

T
2 S1Σ1T

T
1 + S2Σ2T

T
2

)

=

(√
2

2 S1

√
2

2 S2√
2

2 S1 −
√

2
2 S2

)(
Σ1

Σ2

)(√
2

2 T1

√
2

2 T2√
2

2 T1 −
√

2
2 T2

)T
.
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Then UM =
√

2
2

(
S1 S2

S1 −S2

)
, VM =

√
2

2

(
T1 T2

T1 −T2

)
, DM =

(
Σ1

Σ2

)
. We prove the

result by the following observation.

UMV
T
M =

1

2

(
S1T

T
1 + S2T

T
2 S1T

T
1 − S2T

T
2

S1T
T
1 − S2T

T
2 S1T

T
1 + S2T

T
2

)
.

Lemma G.4 obtains the bound of spectral norm of Ãsym− Ãsym. Next lemma makes use of

this result to show the bound for distance between eigen-spaces of Ãsym and Ãsym. Some
theoretical results from Cape et al. [2019a] is borrowed to show row-wise bounds.

Proof of Lemma G.5

Proof. Let µ∗ = µr1
T
d +1nµ

T
c −µ1n1

T
d , µ̂∗ = µ̂r1

T
d +1nµ̂

T
c −µ̂1n1

T
d , we symmetrize centered

adjacent matrix as before: Ãsym =

(
0 Ã

ÃT 0

)
, Ãsym =

(
0 Ã

Ã T 0

)
.

Ãsym − Ãsym =

(
0 Ã

ÃT 0

)
−

(
0 Ã

Ã T 0

)

=

(
0 A− µ̂∗

(A− µ̂∗)T 0

)
−
(

0 A − µ∗
(A − µ∗)T 0

)
=

(
0 A− µ̂∗

(A− µ̂∗)T 0

)
−
(

0 A − µ̂∗
(A − µ̂∗)T 0

)
+(

0 A − µ̂∗
(A − µ̂∗)T 0

)
−
(

0 A − µ∗
(A − µ∗)T 0

)
:= A1 −A2 +A2 −A3.

From Proposition 5.2 we know A − µ∗ is of rank k. Suppose the eigen-decomposition
of A3 is U3D3U

T
3 . Then U3 ∈ R(n+d)×2k. D3 is diagonal matrix with 2k non-zero elements.

Let Ui ∈ R(n+d)×2k be Ai’s eigenvectors corresponding to Ai’s k largest and k smallest
eigenvalues and Di being diagonal matrix contains these eigenvalues, i = 1, 2.

Define
W(3→1) := arg min

W0∈O(2k)
‖U1 − U3W0‖2→∞,

W(2→1) := arg min
W0∈O(2k)

‖U1 − U2W0‖2→∞,

W(3→2) := arg min
W0∈O(2k)

‖U2 − U3W0‖2→∞,
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then

‖U1 − U3W(3→1)‖2→∞ ≤ ‖U1 − U3W(3→2)W(2→1)‖2→∞
= ‖U1 − U2W(2→1) + U2W(2→1) − U3W(3→2)W(2→1)‖2→∞
≤ ‖U1 − U2W(2→1)‖2→∞ + ‖U2W(2→1) − U3W(3→2)W(2→1)‖2→∞
= ‖U1 − U2W(2→1)‖2→∞ + ‖U2 − U3W(3→2)‖2→∞. (59)

In the following steps, we deal with the two terms in (59) separately.
We bound ‖U1−U2W(2→1)‖2→∞ by using Theorem 1 in Cape et al. [2019a]. There are

four conditions of Cape’s Theorem that should be evaluated. The first two conditions are
followed trivially from the statements of Theorem 6.1. Let σ̃max and σ̃min represent the
largest and kth largest singular values of Ã . Then with Equation (10), it is obvious to
show

σ̃min ≥ C1∆n = C1nρn, σ̃max/σ̃min ≤ C2, (60)

for some positive constants C1, C2.

The following part checks the fourth condition stated below. After confirming the
Cape’s fourth condition, the proof will address the third condition.

Cape’s 4th Condition: Write E1 = A1 − A2. There exist constants CE1 , v > 0, ν >
0, ξ > 1, such that for all integers 1 ≤ s ≤ s(n) := dlog n/ log(nρ̄n)e, for each fixed standard
basis vector ei and any fixed unit vector u, with probability at least 1 − exp(−ν logξ n)
(provided n ≥ n0(CE , ν, ξ))),

|〈Es1u, ei〉| ≤ CsE1
(nρ̄n)s/2(log n)sξ‖u‖∞. (61)

Using an argument in Lemma 7.10 of Erdős et al. [2013], Mao et al. [2017] shows that
the following Upper Bound Condition is sufficient for Cape’s 4th Condition. That appears
as Lemma 5.5 of Mao et al. [2017]. The key idea to show Cape’s 4th assumption is applying
the inequality of Upper Bound Condition to upper bound the number of non-zero tems in
the summation via a multigraph construction for paths counting. The difference is that
our main theorem allows sub-exponential random variables, which is possibly unbounded.
Thus, the only thing that needs to be checked is the following upper bound condition,
with the order of magnitude m ranges from 2 to the number of vertices in constructed
multigraph.

Upper Bound Condition Let H = A−A√
nρ̄n

and Hij represents its element on (i, j)th

entry. Then there exists a positive constant CE1 , such that eventually in n,

E(|Hij |m) ≤ CE1

n
, ∀ 2 ≤ m ≤ logξ n. (62)
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For any positive even number m ≤ logξ n. If ρ̄n ≤ 1, by Assumption 3,

E(|Hij |m) = E(Hm
ij ) ≤ (m− 1)!ρ̄n

(nρ̄n)m/2
=

(m− 1)!

(nρ̄n)m/2−1
× 1

n
,

therefore, Equation (62) is true for m = 2 when choosing CE1 = 1. When m ≥ 4, we want
to show

(m− 1)! ≤ (nρ̄n)m/2−1. (63)

For any positive integer N , we have N ! ≤ NN+1/2 exp{−N + 1}. Thus (m − 1)! ≤
(m− 1)m−1/2 exp{2−m} ≤ mm exp{2−m}. Then to show Equation (63) we only need to
show

m logm+ 2−m ≤ (
m

2
− 1) log(nρ̄n). (64)

Denote F (m) = m logm + 2 − m − (m2 − 1) log(nρ̄n). Then dF (m)/dm equals to

logm− log(nρ̄n)/2. Since m ≤ logξ n and nρ̄n ≥ nρn ≥ C0 log10 n for a positive C0. F (m)
obtains its maximum at m = 4 with proper selection of ξ and large enough n. Equation
(64) will be trivial with m = 4 and large enough n.

If ρ̄n ≥ 1, by Assumption 3,

E(|Hij |m) = E(Hm
ij ) ≤ (m− 1)!ρ̄

m/2
n

(nρ̄n)m/2
=

(m− 1)!

nm/2
.

The target boils down to (m − 1)! ≤ CE1n
m/2−1. Again, since for all positive integers

N , there is N ! ≤ NN+1/2 exp{−N + 1}. Then,

(m− 1)! ≤ nm/2−1 ⇐ (m− 1)m−1/2 exp{−m+ 2} ≤ nm/2−1CE1

⇔ (m− 1

2
) log(m− 1) + 2−m ≤ (

m

2
− 1) log n+ log(CE1)

(since log nξ ≥ m) ⇐ (m− 1

2
) log(m− 1) + 2−m ≤ (

m

2
− 1)m1/ξ + log(CE1). (65)

Since 1/ξ > 0, there exists a positive integerM , such that (m2 −1)m1/ξ > (m−1
2) log(m−

1)+2−m for all integer m > M . Choose CE1 such that log(CE1) > (m− 1
2) log(m−1)+2−m

for all integer 2 ≤ m ≤M . Then Equation (65) is proved.

Hence the upper bound condition holds for even m. For odd number m ≥ 3, by
Cauchy-Schwarz inequality,

(E(|Hij |m))2 ≤ E(|Hij |m−1)E(|Hij |m+1) ≤ 1

n2
.

Thus the upper bound condition holds for all integer m ≥ 2 and therefore Cape’s fourth
condition is valid.

76



We claim that Cape’s third condition could be relaxed from ‖E‖ = Op((nρn)
1
2 ) to

‖E‖ = Op((nρn log3 n)
1
2 ) as inferred from Lemma G.4, with only slight modifications in

Cape’s converge rate result. In the proof of Theorem 1 of Cape et al. [2019a], the bound

of LHS of (5) comes from three quantities: ‖EÛ Λ̂−1‖2→∞, ‖R(1)‖2→∞, ‖R(2)
W ‖2→∞ (these

three terms’ notations are from Cape et al. [2019a]). Our relaxation of ‖E‖ adds an extra

log
3
2 n term to ‖R(1)‖2→∞’s bound, while the third term remains the same because of

Cape’s 4th assumption (we have already checked). Therefore by Theorem 1 of Cape et al.
[2019a], we arrives the following conclusion.

‖U1 − U2W(2→1)‖2→∞ = Op

(
((nρ̄n)−1/2 logξ n+ (nρn)−1/2 log

3
2 n)× ‖U2‖2→∞

)
= Op

(
(nρn)−1/2 log

3
2 n× ‖U2‖2→∞

)
. (66)

To bound ‖U2 − U3W(3→2)‖2→∞, we employ Theorem 4.2 in Cape et al. [2019b].

Theorem H.1. [Theorem 4.2 in Cape et al. [2019b]] Suppose the diagonal elements of D3

are sorted in descending order. If |D3[k]| > 4‖E2‖∞, where E2 = A2 − A3, D3[j] is the
j-th diagonal element of D3. Then there exists W3 ∈ O(k) such that

‖U2 − U3W(3→2)‖max ≤ 14(
‖E2‖∞
|D3[k]|

)‖U3‖2→∞. (67)

Before applying Theorem H.1, we should check its assumptions. Reuse the notation
for the singular values of Ã as in Equation (60). Notice σ̃min � c1nρn and µ∗ = µr1

T
d +

1nµ
T
c − µ1n1

T
d . Denotes µr = A 1d/d := T/d. Similarly define T̂ := A1d. By Hoeffding’s

Concentration Inequality,

P(|T̂i − Ti| ≥ a) ≤ 2 exp{− a2

2
∑d

j=1 var(Aij)
} ≤ 2 exp{− a2

dρ̄n
}.

Therefore, T̂i − Ti = Op((nρ̄n)
1
2 ). The same bound applies to ‖µ̂c − µc‖, ‖µ̂ − µ‖.

These imply that any entry of E2 could be bounded by Op(
√
nρ̄n/n). Thus ‖E2‖∞ =

Op((nρn log2 n)
1
2 ). Then with large enough n, there must be |D3[k]| > 4‖E2‖∞.

With Theorem H.1,

‖U2 − U3W(3→2)‖2→∞ ≤
√
k‖U2 − U3W(3→2)‖max = Op((nρn)−

1
2 log n‖U3‖2→∞). (68)
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Combining (59), (66), (68) gives

‖U1 − U3W(3→1)‖2→∞
≤ ‖U1 − U2W(2→1)‖2→∞ + ‖U2 − U3W(3→2)‖2→∞

= Op

(
(nρn)−1/2 log

3
2 n× ‖U2‖2→∞ + (nρn)−

1
2 log n‖U3‖2→∞

)
.

� Op

(
(nρn)−1/2 log

3
2 n× (‖U2 − U3W(3→2)‖2→∞ + ‖U3‖2→∞) + (nρn)−

1
2 log n‖U3‖2→∞

)
= Op

(
(nρn)−1/2 log

3
2 n× ‖U3‖2→∞

)
. (69)

The next step is to convert the symmetrized adjacency matrices’ eigenvectors’ pertur-
bation bound to that of original adjacency matrices. Suppose the k-rank singular value
decompositions (only retains the top k singular values and corresponding eigenvectors) of
A− µ̂∗,A − µ̂∗ and A −µ∗ are F1Λ1L

T
1 , F2Λ2L

T
2 , F3Λ3L

T
3 repectively. Then, for i = 1, 2, 3

there must be

Ui =
1√
2

(
Fi −Fi
Li Li

)
.

Suppose

W(3→1) =

(
W 11 W 12

W 21 W 22

)
with each sub-matrix having k × k dimension.

Arguments in Cape et al. [2019a] (proof of Theorem 1) implies that if we have singular
value decomposition UT3 U1 = UoDoV

T
o , then W(3→1) = UoV

T
o . It is trivial to see that UT3 U1

has special block-wise structure

UT3 U1 =
1

2

(
F T3 F1 + LT3 L1 −F T3 F1 + LT3 L1

−F T3 F1 + LT3 L1 F T3 F1 + LT3 L1

)
.

Thus Lemma H.2 indicates

W 11 = W 22, W 12 = W 21. (70)

Notice W(3→1) is orthogonal matrix, therefore

W(3→1)W
T
(3→1) = I ⇒

(
W 11 W 12

W 21 W 22

)(
W 11 W 12

W 21 W 22

)T
= I

⇒
(
W 11 W 12

W 12 W 11

)(
W 11 W 12

W 12 W 11

)T
= I

⇒ W 11W 11T +W 12W 12T = I, W 11W 12T +W 12W 11T = 0,

(Equation (70)) ⇒ (W 21 −W 22)(W 21 −W 22)T = I, (W 11 −W 12)(W 11 −W 12)T = I.

78



These indicate W 21 −W 22 and W 11 −W 12 are both orthogonal matrices.

Notice ‖U‖2→∞ = Op(log n/
√
n) from Equation (47), similarly there is same upper

bound for ‖V ‖2→∞. Therefore

inf
W∈O(k)

‖Û − UW‖2→∞ = inf
R∈O(k)

‖F1 − F3R‖2→∞

≤ max{‖F1 − F3(W 11 −W 21)‖2→∞, ‖F1 − F3(W 12 −W 22)‖2→∞}
≤ ‖

(
F1 ,−F1

)
−
(
F3 ,−F3

)
W(3→1)‖2→∞

≤ ‖U1 − U3W(3→1)‖2→∞

= Op

(
(nρn)−1/2 log

3
2 n× ‖U3‖2→∞

)
= Op

(
(nρn)−1/2 log

3
2 n× (‖U‖2→∞ + ‖V ‖2→∞)

)
= Op

(
(nρn)−1/2n−1/2 log

5
2 n
)
.

Proof for requisite results of Lemma G.6

The proof of Lemma G.6 is decomposed into Lemmas H.3, H.4, H.5, H.6, and H.7. All of
which are stated below.

Lemmas H.3, H.4, H.5 bound the tail behavior of the sample Varimax objective function.
Lemmas H.6 and H.7 bound the difference between the sample and population versions of
the Varimax objective function, uniformly over the space of orthogonal matrices. Lemma
G.6 puts these pieces together with the first and second order conditions for Varimax
described in Section I to show that the optimum of the sample Varimax objective function
must be close to the optimum of the population Varimax function (modulo permutation
and sign-flip).

The next few lines show the existence of moment generating function (MGF) of linear
inner-product of sub-exponential random vectors. Recall Zi ∈ Rk contains sub-exponential
random variables. Following the notations in the proof of Lemma G.2 (Equation (44)) the
tail property of Z could be shown as

P(Zij − EZij > t) ≤ C0 exp(−λt), (71)

then for ∀r ∈ Rk, by independency

E exp(t〈Z̃i, r〉) = E exp(t
k∑
j=1

Z̃ijrj) = Πk
j=1E exp(tZ̃ijrj),
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⇒ 〈Z̃i, r〉 also has MGF.

Lemma H.3. Z̃i ∈ Rk is i-th row of Z̃. r ∈ Rk is arbitrary. λ is defined in Equation (71).
Let

Ji = 〈Z̃i, r〉4 − E[〈Z̃i, r〉4],

then for ∀t > 0, there exists a positive constant C1 s.t.

P(Ji > t) ≤ C1 exp(−λt
1
4 ). (72)

Proof. Write Xi = 〈Z̃i, r〉. By Markov Inequality,

P(Ji > t) = P(X4
i − E(X4

i ) > t)

= P(X4
i > t+ E(X4

i ))

= P(Xi − EXi > (t+ E(X4
i ))

1
4 − EXi)

≤ C ′0 exp(−λ((t+ E[X4
i ])

1
4 − EXi))

≤ C ′0 exp(λEXi) exp(−λt
1
4 )

:= C1 exp(−λt
1
4 ).

The following lemma makes use of Lemma H.3 and gives bound to the sum of sequence
|
∑n

i=1 Ji|.

Lemma H.4. With previous definitions, then for any δ > 0,

|
n∑
i=1

Ji| = Op(n
1
2

+δ).

Proof. For sequence αn ↑ ∞. Define J̃i = Ji1(Ji ≤ αn). Then J̃i’s are independent
bounded random variables. Let A = {

⋂n
i=1{Ji = J̃i}} and B = {|

∑n
i=1 Ji| > t}. Then

P(B) = P(B ∩ A) + P(B ∩ Ac)

≤ P({|
n∑
i=1

J̃i| > t}) + P(Ac). (73)

Notice J̃i ∈ [−c, αn] with c = −E(X4
1 ) is a bounded random variable. Therefore it

is sub-gaussian with domain interval length σ ≤ αn + c ≤ 2αn for large enough n. By
Hoeffding Concentration Inequality,

P({|
n∑
i=1

J̃i| > t}) ≤ 2 exp(− 2t2∑
i σ

2
) ≤ 2 exp(− t2

2nα2
n

). (74)
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By Lemma H.3 there is,

P(Ac) = P({∩i{Ji ≤ αn}}c)
= P(∪i{Ji > αn})
≤ nP(Ji > αn)

≤ nC2 exp(−λα
1
4
n ). (75)

Plugging (74)(75) in (73) and choosing ε > δ, t = n1/2+ε, αn = nδ gives

|
n∑
i=1

Ji| = Op(n
1
2

+δ). (76)

Similar conclusion applies to second moment terms.

Lemma H.5. With same notations as Lemma H.3. Define Yi = 〈Z̃i, r〉2−E[〈Z̃i, r〉2], then

|
n∑
i=1

Yi| = Op(n
1
2

+δ). (77)

Proof. This part employs the same strategy as the proof of Lemma H.4. The only difference
is the bound of (75). But the dominating bound (74) is the same. Thus we obtain the
similar bound for |

∑n
i=1 Yi|.

Lemma H.6. Suppose r1, r2, ...rn0 ∈ Rk. Denote

J` = |
n∑
i=1

〈Z̃i, r`〉4 − nE[〈Z̃i, r`〉4]|.

Assume n0 = anb with some positive constant a, b. Then for any δ > 0,

max
`

J` = Op(n
1
2

+δ). (78)

Similarly if we define
Y` = 〈Z̃i, r`〉2 − E[〈Z̃i, r`〉2],

we have
max
`

Y` = Op(n
1
2

+δ). (79)
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Proof. Take ε > δ, t = n1/2+ε, αn = nδ. Applying the same strategy in Lemma H.4
(Equation (74), (75)) and basic probability rules,

P(max
`

J` > t) ≤ 2n0 exp(− t2

2nα2
n

) + n0nC2 exp(−λα
1
4
n )

= 2n0 exp(− n1+2ε

2n1+2δ
) + n0nC2 exp(−λnδ/4)

Since

log(2n0)− 1

2
n2ε−2δ = log 2a+ b log n− n2ε−2δ → −∞,

log(C2n0n)− λnδ/4 = logC2 log a+ (b+ 1) log n− λnδ/4 → −∞,

they could be reduced to max` J` = Op(n
1
2

+δ). Similar approach gives max`Y` = Op(n
1
2

+δ).

Lemma H.7. Recall notations in equation (2), Section 2.1 and Section 1. For readability
we slightly abuse the notations and write V̂ (R) = v(R, Z̃). And

V (R) := V
Ũ

(R) =

k∑
j=1

V ar([Z̃iŨR]j).

Then for ∀δ > 0, there is a uniform bound between these two quantities,

sup
O∈O(k)

|V̂ (O)− V (O)| = Op(n
δ−1/2). (80)

Proof. This part of the proof adapts the covering balls strategy to give this uniform bound.
Let R = {R1, R2, ..., RN} be a ε-cover for orthogonal matrices. This means for ∀O ∈ O(k),
there exists ` s.t. d(O,R`) < ε where d(X,Y ) is the sin Θ distance. Let D(ε,O(k), d) be
the ε-packing number. Using the notes in Van de Geer [2000] and Lemma 4.1 in Pollard
[1990] we have,

N ≤ D(ε,O(k), d) ≤ D(ε,O(k), dF ) ≤ (
6

ε
)k

2
:= N0. (81)

dF is Frobenius norm distance. The second inequality is true because for any O1, O2 ∈
O(k),

‖ sin(O1, O2)‖2F ≤ inf
Q∈O(k)

‖O1 −O2Q‖2F ≤ ‖O1 −O2‖2F

Let ε = 1/n then N ≤ N0 = (6n)k
2
. For ∀O ∈ O(k), choose R` ∈ R such that

d(O,R`) < ε. Then by Triangle Inequality,

|V̂ (O)− V (O)| ≤ |V̂ (O)− V̂ (R`)|+ |V̂ (R`)− V (R`)|+ |V (O)− V (R`)|. (82)
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Lemma H.4, H.6 indicates

|V̂ (R`)− V (R`)| ≤ max
j
|V̂ (Rj)− V (Rj)| = Op(n

δ− 1
2 ). (83)

Notice V̂ (R) =
∑k

j=1

(
1
n

∑n
i=1[Z̃R]4ij −

(
1
n

∑n
i=1[Z̃R]2ij

)2
)

and max
ij
|Z̃ij | = O(log n)

(Lemma G.2). Also for ∀O,R ∈ O(k) such that d(O,R) < ε, there is fact that

d(O,R) ≥ 1√
2
‖O −R‖F ,∀O,R ∈ O(k),

then

|
∑
ij

([Z̃O]4ij − [Z̃R]4ij)| = |
∑
ij

([Z̃O]2ij + [Z̃R]2ij)([Z̃O]ij + [Z̃R]ij)([Z̃O]ij − [Z̃R]ij)|

≤
∑
ij

|([Z̃O]2ij + [Z̃R]2ij)([Z̃O]ij + [Z̃R]ij)([ZO]ij − [Z̃R]ij)|

≤ Op(log2 n)
∑
ij

|([Z̃O]ij + [Z̃R]ij)([Z̃O]ij − [Z̃R]ij)|

≤ Op(log3 n)
∑
ij

|[Z̃O]ij − [Z̃R]ij |

≤ Op(n log3 n)‖Z̃(O −R)‖1→∞
≤ Op(n log3 n)‖Z̃‖max(

∑
ij

|Oij −Rij |)

= Op(n log4 n)(
∑
ij

|Oij −Rij |)

≤ Op(n log4 n)× k
√∑

ij

|Oij −Rij |2

= Op(n log4 n)‖O −R‖F
≤ Op(n log4 n)×

√
2d(O,R)

= Op(εn log4 n)

= Op(log4 n), (84)
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and

|
∑
j

[(
∑
i

[Z̃O]2ij)
2 − (

∑
i

[Z̃R]2ij)
2]|

= |
∑
j

[(
∑
i

([Z̃O]2ij + [Z̃R]2ij))(
∑
i

([Z̃O]2ij − [Z̃R]2ij))]|

≤
∑
j

|(
∑
i

([Z̃O]2ij + [Z̃R]2ij))(
∑
i

([Z̃O]2ij − [Z̃R]2ij))|

≤
∑
j

|(2n‖Z̃‖2max)(
∑
i

([Z̃O]2ij − [Z̃R]2ij))|

≤ Op(n log2 n)
∑
j

|
∑
i

([Z̃O]ij + [Z̃R]ij)([Z̃O]ij − [Z̃R]ij)|

≤ Op(n log3 n)
∑
j

|
∑
i

[Z̃O]ij − [Z̃R]ij |

≤ Op(n
2 log3 n)‖Z̃(O −R)‖1→∞

≤ Op(n
2 log3 n)‖Z̃‖max(

∑
ij

|Oij −Rij |)

≤ Op(n
2 log4 n)× k‖O −R‖F

≤ Op(n
2 log4 n)×

√
2× d(O,R)

= Op(n
2ε log4 n)

= Op(n log4 n). (85)

With Equation (84), (85),

|V̂ (O)− V̂ (R`)|

≤ 1

n
|
∑
ij

([Z̃O]4ij − [Z̃R`]
4
ij |) +

1

n2
|
∑
j

[(
∑
i

[Z̃O]2ij)
2 − (

∑
i

[Z̃R`]
2
ij)

2]|

= Op(
log4 n

n
).
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Assume E(Z̃j1`) = µ
(`)
j refers to j-th moment of Z’s `-th column, similar to the proof of

Theorem 5.1 the population Varimax function could be expressed as,

V (Q) =
∑
j

(E([Z̃Q]4j )− E([Z̃Q]2j )
2) =

k∑
i=1

(µ
(i)
4 − 3)‖Qi·‖44 + 3k.

Write ξi = µ
(i)
4 − 3µ

(i)2
2 = µ

(i)
4 − 3 (is positive by leptokurtic assumption) and ξ0 = max

i
ξi

(is a finite positive constant). For ∀O,R ∈ O(k) such that d(O,R) < ε, there is

|V (O)− V (R)| = |
k∑
i=1

ξi(‖Oi·‖44 − ‖Ri·‖44)|

≤
k∑
i=1

|ξi(‖Oi·‖44 − ‖Ri·‖44)|

≤ ξ0

k∑
i=1

|‖Oi·‖44 − ‖Ri·‖44|

= ξ0

k∑
i=1

|
k∑
j=1

(O2
ij +R2

ij)(Oij +Rij)(Oij −Rij)|

≤ ξ0

k∑
i=1

k∑
j=1

|(O2
ij +R2

ij)(Oij +Rij)(Oij −Rij)|

≤ 4ξ0

k∑
i=1

k∑
j=1

|Oij −Rij |

≤ 4ξ0k‖O −R‖F

= Op(
1

n
).

Summing up three bounds of Equation (82) obtains a uniform bound of |V̂ (O)−V (O)|:

sup
O∈O(k)

|V̂ (O)− V (O)| = Op(n
δ− 1

2 ). (86)
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Proof of Lemma G.6

This part of proof needs first/second order condition of population varimax function here.
These two conditions are stated as Corollary H.1, H.2 below. For now the notations of
sample & population varimax functions follow the proofs of Lemma H.7.

Corollary H.1 (FOC). If identity matrix I is a stationary point of VI(R0) then Z satisfies
the following condition,

EZ2
1iE(Z1iZ1j)− E(Z3

1iZ1j) = EZ2
1jE(Z1iZ1j)− E(Z3

1jZ1i), ∀i 6= j. (87)

Corollary H.2 (SOC). Notate O = Z̃T1 Z̃1, if I is a local maxima of the population Varimax
VI(R0), then the following condition is true,

3E[tr(diag(OK)2)] ≤ E〈OdiagO,KKT 〉, (88)

for any skew-symmetric matrix K.

The proof of Corollary H.1 is trivial. Corollary H.2 is a direct result of Theorem I.2 in
Section I. Now we could proceed to the proof of Lemma G.6.

Proof. By Proposition G.4, R
Z̃

is converging to elements of P(k), WLOG we may assume

P
(2)
n = I and R

Z̃
→ I (i.e. let P

(2)
n = R̃TU ), since elements of P(k) are isolated to each

other (∀P1 6= P2 ∈ P(k), ‖P1 − P2‖ ≥ 2/
√
k). We may constrain our analysis on a fixed

neighborhood of I, B(I, δc) s.t. {I} = B(I, δc) ∩ P(k). Now we want to show,

‖R
Z̃
− I‖2→∞ = Op(n

δ/2−1/4).

By Lie algebra theory there is a k × k skew-symmetric matrix K s.t. R
Z̃

= exp(K).
Define

γ(t) = exp(tK).

Then γ(0) = I, γ(1) = R
Z̃

. We want to evaluate population varimax function’s first
order and second order condition at I (global optimal solution). To achieve that we should
show: R→ I ⇒ K → 0. This could be proved by using matrix logarithm algebra.

‖K‖ = ‖ logR
Z̃
− log I‖ ≤

∞∑
i=1

(−1)i+1

i
‖R

Z̃
− I‖i → 0.

Differential calculations indicates:

d

dt
V (γ(t))|t=0 = ∇V (γ(t))T

dγ

dt
|t=0 = 〈∇V (I),K〉, (89)
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d2

dt2
V (γ(t))|t=0 = 〈∇2V (

dγ(t)

dt
)|t=0,Kγ(t)〉+ 〈∇V,K2γ(0)〉

= 〈∇2V ·K,K〉+ 〈∇V,K2〉.

Equation (2) of Chu and Trendafilov [1998] is a reformulated version of Varimax func-
tion. Taking expectation of it (Lemma I.1 allows exchanging differential and expectation),
and notate E = Z̃T Z̃ − nZ̃T1 Z̃1. The varimax function could be rewritten as:

V (Q) := E[trace(diag(QTEQ)2)]⇒ ∇V (Q) = 4E[EQdiag(QTEQ], Q ∈ O(k). (90)

Let O = Z̃T1 Z̃1, then

∇V (I) = 4E[(I −O)diag(I −O)] = 4E(Odiag(O))− 4I. (91)

Thus by Corollary H.1, ∇V (I) is symmetric ⇒ 〈∇V (I),K〉 = 0.
By Frechet derivatives, for any H ∈ Rk×k and t > 0,

∇V (Q+ tH)−∇V (Q) = 4E[E(Q+ tH)diag((Q+ tH)TE(Q+ tH)]− 4E[EQdiag(QTEQ)]

= 4tE[EHdiag(QTEQ) + 2EQdiag(HTEQ)] +O(t2),

choose H = K,Q = I, which means the derivative of ∇V (Q) evaluated at I in the
direction of K is

∇2V (I) ·K = −4K + 4E[OKdiag(O)] + 8E[Odiag(OK)]. (92)

Theorem 5.1 indicates identity matrix I is one of the global maximas of population
Varimax function. Applying Second Order Condition result (Corollary H.2), Lemma I.2
and reusing 〈∇V (I),K〉 = 0 obtains

〈∇2V (I) ·K,K〉 = −4〈K,K〉+ 4E〈OKdiag(O),K〉+ 8E〈Odiag(OK),K〉
= −4‖K‖2F + 12E[trace(diag(OK)2)]

≤ −4‖K‖2F + 4E〈Odiag(O),KKT 〉,

and
〈∇V (I),K2〉 = −4E〈Odiag(O),KKT 〉+ 4‖K‖2F . (93)

Let Ku = K/‖K‖, then

∂2V

∂t2
|t=0 = 〈∇2V (I) ·K,K〉+ 〈∇V (I),K2〉

= −4‖K‖2F + 12E[trace(diag(OK)2)]− 4E〈Odiag(O),KKT 〉+ 4‖K‖2F
= 4× (3E[trace(diag(OK)2)− E〈Odiag(O),KKT 〉])
= 4× (3E[trace(diag(OKu)2)− E〈Odiag(O),KuKuT 〉])‖K‖2

≤ −Cs‖K‖2.
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Here

− Cs = max
‖Ku‖=1,Ku∈O(k)⊥

4× (3E[trace(diag(OKu)2)− E〈Odiag(O),KuKuT 〉]), (94)

is a negative constant (thus Cs is a positive constant) since RHS of Equation (94) is upper-
bounded and the set of skewed symmetric matrix with unit Frobenius norm is a bounded,
closed and compact space. With derived results and Taylor expansion,

V (R
Z̃

) = V (I) + 〈∇V (I),K〉+ 〈∇2V (I) ·K,K〉+ 〈∇V (I),K2〉+ o(‖K‖2)

= V (I) + 〈∇2V (I) ·K,K〉+ 〈∇V (I),K2〉+ o(‖K‖2)

≤ V (I)− Cs‖K‖2 + o(‖K‖2).

By Lemma H.7 there exists ε0 = Op(n
δ−1/2) s.t.

|V̂ (R
Z̃

)− V (R
Z̃

)| < ε0, |V̂ (I)− V (I)| < ε0,

⇒
V̂ (R

Z̃
)− ε0 < V (R

Z̃
) < V (I) < V̂ (I) + ε0,

⇒
V (I)− V (R

Z̃
) < 2ε0.

These implies

‖K‖2 < 2ε0 + o(‖K‖2)

Cs
. (95)

Therefore ‖K‖ = Op(n
δ/2−1/4). By matrix exponential algebra,

‖R
Z̃
− I‖2→∞ ≤ ‖RZ̃ − I‖ = ‖

∞∑
i=1

Ki

i!
‖ ≤

∞∑
i=1

‖K‖i

i!
= Op(n

δ/2−1/4). (96)

Detailed Proof of Proposition G.5

Proof. Write

V1(O) =

k∑
`=1

 1

n

n∑
i=1

[
√
nÛO]4i` −

(
1

n

n∑
i=1

[
√
nÛO]2i`

)2
 ,

V2(O) =

k∑
`=1

 1

n

n∑
i=1

[
√
nUWO]4i` −

(
1

n

n∑
i=1

[
√
nUWO]2i`

)2
 .

88



To be specific, V1 is the sample version of Varimax function with perturbed eigenvectors
as input. V2 is sample version of Varimax function with true eigenvectors rotated with W
(specified in Lemma G.5). The proof of Proposition G.5 could be described as two parts.
First part shows the uniform upper bound for difference between V1, V2 (Equation (97)).
Similar to the proof of Lemma G.6, the second part explores the first and second order
condition of Equation (99) to obtain the bound for the difference between solutions of V1

and V2 (modulo permutation and sign-flip).

Mathematically speaking, the first part (uniform upper bound for difference between
V1, V2) is equivalent to

sup
O∈O(k)

|V1(O)− V2(O)| ≤ Op
(

(nρn)−1/2 log
7
2 n
)
. (97)

In the proof of Proposition G.5 let Xi be the ith row of
√
nÛ , and ith row of

√
nUW

be Xi + εi. From Lemma G.5, for any unit length vector r ∈ Rk, we have

|(〈Xi, r〉 − 〈Xi + εi, r〉)| ≤ ‖εi‖‖r‖ ≤
√
n‖Û − UW‖2→∞ = Op((nρn)−1/2 log

5
2 n).

Therefore,

|
n∑
i=1

(〈Xi, r〉4 − 〈Xi + εi, r〉4)|

≤
n∑
i=1

|(〈Xi, r〉2 + 〈Xi + εi, r〉2)(〈Xi, r〉+ 〈Xi + εi, r〉)(〈Xi, r〉 − 〈Xi + εi, r〉)|

≤
n∑
i=1

(〈Xi, r〉2 + 〈Xi + εi, r〉2)(‖Xi‖2 + ‖Xi + εi‖2)|(〈Xi, r〉 − 〈Xi + εi, r〉)|

≤
n∑
i=1

(〈Xi, r〉2 + 〈Xi + εi, r〉2)Op(log n)|(〈Xi, r〉 − 〈Xi + εi, r〉)|

≤
n∑
i=1

(〈Xi, r〉2 + 〈Xi + εi, r〉2)Op(log n)
√
n‖Û − UW‖2→∞

≤
n∑
i=1

(〈Xi, r〉2 + 〈Xi + εi, r〉2)Op

(
(nρn)−1/2 log

7
2 n
)
.

Notice that columns of Û and UW have unit length and R is an orthogonal matrix.
Thus the columns of ÛR and UWR are all of unit length. Therefore

(
1

n

n∑
i=1

[
√
nÛR]2i`

)2

=

(
n∑
i=1

[ÛR]2i`

)2

= 12 =

(
n∑
i=1

[UWR]2i`

)2

=

(
1

n

n∑
i=1

[
√
nUWR]2i`

)2

.
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Let O` be the `th column of O. Then for any O ∈ O(k),

|V1(O)− V2(O)|

≤
k∑
`=1

|

 1

n

n∑
i=1

[
√
nÛO]4i` −

(
1

n

n∑
i=1

[
√
nÛO]2i`

)2


−

 1

n

n∑
i=1

[
√
nUWO]4i` −

(
1

n

n∑
i=1

[
√
nUWO]2i`

)2
 |

≤ 1

n

k∑
`=1

|
n∑
i=1

([
√
nÛO]4i` − [

√
nUWO]4i`)|

≤ 1

n

k∑
`=1

|
n∑
i=1

(〈Xi, O`〉4 − 〈Xi + εi, O`〉4)|

≤ 1

n

k∑
`=1

n∑
i=1

(〈Xi, O`〉2 + 〈Xi + εi, O`〉2)Op

(
(nρn)−1/2 log

7
2 n
)

=
k∑
`=1

Op

(
(nρn)−1/2 log

7
2 n
)

= Op

(
(nρn)−1/2 log

7
2 n
)
.

Since the orthogonal matrix O here is arbitrary, therefore the Equation (97) is proved.

For the next step, we want to show the upper bound of 2→∞ norm distance between

R
Û

and RUWP
(3)
n (P

(3)
n ∈ P(k) is defined in Proposition G.5),

‖R
Û
−RUWP (3)

n ‖2→∞ = Op

(
(nρn)−1/4 log

7
4 n
)
. (98)
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For simplicity notate R1 = R
Û

, R2 = RUW . There are k × k skew-symmetric matrices
K1, K2 s.t. R1 = exp(K1), R2 = exp(K2). Define

γ2(t) = exp((1− t)K2 + tK1), (99)

then γ2(0) = R2, γ2(1) = R1. Again, as in the proof of Lemma G.6 we assume

I = arg min
P0∈P(k)

‖R1 −R2P0‖2→∞,

and we constrain our analysis on a neighborhood of R2: B(R2, δp) := {P ∈ O(k)|‖P −
R2‖ < δp}, such that

B(R2, δp) ∩ {R2P0|P0 ∈ P(k)} = {R2}.

This indicates for any R ∈ B(R2, δp) there is V2(R) ≤ V2(R2).

Before Taylor expansion analysis, we should check that ‖R1 − R2‖
p→ 0 is true. After

that we should show ‖K1 −K2‖
p→ 0 is also true. By definition,

V1(R1) ≥ V1(R2)− op(1), |V1(R2)− V2(R2)| p→ 0⇒ V1(R1) ≥ V2(R2)− op(1). (100)

Then,

V2(R2)− V2(V1) ≤ V1(R1)− V2(R1) + op(1) (101)

≤ sup
R∈O(k)

|V1(R)− V2(R)|+ op(1)
p→ 0. (102)

By conditions, for any ε0 > 0, η0 > 0 such that V2(R) < V2(R2)−η0 for every R ∈ O(k)
with ‖R − R2‖ ≥ ε0. Thus the event {‖R2 − R1‖} is contained in the event {V2(R1) <

V2(R2) − η0}. The probability of the latter event goes to 0. Therefore ‖R1 − R2‖
p→ 0.

By Lemma G.6, with high probability, R1R
T
2 is converging to I as n grows. Variant of

Baker-Cambell-Hausdorff formula gives

‖K1 −K2‖ = ‖ logR1R
T
2 R2 − logR2‖

= ‖ logR1R
T
2 +

1

2
[logR1R

T
2 , logR2] + · · · ‖

≤ ‖ log(I +R1(RT2 −RT1 ))‖F + op(‖ logR2‖)
p→ 0.

With differential calculation results in Chu and Trendafilov [1998],

d

dt
V2(γ2(t))|t=0 = ∇V2(γ2(t))T

dγ2

dt
|t=0 = 〈∇V2(R2), R2(K1 −K2)〉, (103)
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d2

dt2
V2(γ2(t))|t=0 = 〈∇2V2(

dγ2(t)

dt
)|t=0, γ2(0)(K1 −K2)〉+ 〈∇V, γ2(0)(K1 −K2)2〉

= 〈∇2V2 ·R2(K1 −K2), R2(K1 −K2)〉+ 〈∇V2, R2(K1 −K2)2〉.

By Equation (7),(8) of Chu and Trendafilov [1998],

V2(Q) = n−3trace

[
n∑
i=1

diag(QTEiQ)2

]
, (104)

where Ei = (UW )TUW − n(Xi + εi)(Xi + εi)
T . And

∇V2(Q) = 4n−3

[
n∑
i=1

EiQdiag(QTEiQ)

]
. (105)

Theorem 3.1 in Chu and Trendafilov [1998] implies

RT2∇V2(R2) =

n∑
i=1

RT2 EiR2diag(RT2 E2Q2)

is symmetric, thus

〈∇V2(R2), (K1 −K2)R2〉 = trace[∇V2(K1 −K2)TRT2 ]

= trace[RT2∇V2(K1 −K2)T ]

= 〈RT2∇V2,K1 −K2〉
= 0. (106)

The last equality is because K is skew-symmetric and RT2∇V2(R2) is symmetric.

By Frechet derivatives, for any H ∈ Rk×k and t > 0, we have

∇V2(Q+ tH)−∇V2(Q)

= 4n−3

[
n∑
i=1

Ei(Q+ tH)diag((Q+ tH)TEi(Q+ tH))

]
− 4n−3

[
n∑
i=1

EiQdiag(QTEiQ)

]

= 4n−3

[
n∑
i=1

(EiHdiag(QTEiQ+ EiQ(diag(HTEiQ) + diag(QTEiH))

]
+O(t2).
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Choosing H = R2(K1−K2), Q = R2 gives the derivative of ∇V2(Q) evaluated at R2 in
the direction of R2(K1 −K2)

∇2V2(R2) ·R2(K1 −K2) = 4n−3
n∑
i=1

[EiR2(K1 −K2)diag(RT2 EiR2)

+ EiR2diag((K1 −K2)TRT2 EiR2)

+ EiR2diag(RT2 EiR2(K1 −K2))].

Applying Corollary 3.3 of Chu and Trendafilov [1998],

〈∇2V2(R2) ·R2(K1 −K2), R2(K1 −K2)〉+∇V,R2(K1 −K2)2〉

= 4n−3
n∑
i=1

[〈EiR2(K1 −K2)diag(RT2 EiR2), R2(K1 −K2)〉

+ 〈EiR2diag((K1 −K2)TRT2 EiR2), R2(K1 −K2)〉
+ 〈EiR2diag(RT2 EiR2(K1 −K2)), R2(K1 −K2)〉
+ 〈EiR2diag(RT2 EiR2), R2(K1 −K2)2〉]

= 4n−3
n∑
i=1

[〈RT2 EiR2(K1 −K2)diag(RT2 EiR2), (K1 −K2)〉

+ 2〈RT2 EiR2diag(RT2 EiR2(K1 −K2)),K1 −K2〉
+ 〈RT2 EiR2diag(RT2 EiR2), (K1 −K2)2〉] ≤ 0. (107)

Let Ku
o = (K1 −K2)/‖K1 −K2‖F , then

〈∇2V2(R2) ·R2(K1 −K2), R2(K1 −K2)〉+∇V,R2(K1 −K2)2〉

= 4n−3‖K1 −K2‖F
n∑
i=1

[〈RT2 EiR2K
u
o diag(RT2 EiR2),Ku

o 〉

+ 2〈RT2 EiR2diag(RT2 EiR2K
u
o ),Ku

o 〉
+ 〈RT2 EiR2diag(RT2 EiR2), (Ku

o )2〉]
≤ −Css‖K1 −K2‖F . (108)

Here

−Css = max
‖K‖F=1,K∈O(k)⊥

4n−3
n∑
i=1

[〈RT2 EiR2Kdiag(RT2 EiR2),K〉

+2〈RT2 EiR2diag(RT2 EiR2K),K〉+ 〈RT2 EiR2diag(RT2 EiR2),K2〉]

is a negative constant. With Taylor expansion and Equation (106), (107), (108), there is
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V2(R1) = V2(R2) + 〈∇V2(R2), (K1 −K2)R2〉+ 〈∇2V2(R2) ·R2(K1 −K2), R2(K1 −K2)〉+

〈∇V,R2(K1 −K2)2〉+ o(‖K1 −K2‖2F )

= V2(R2) + 〈∇2V2(R2) ·R2(K1 −K2), R2(K1 −K2)〉+

∇V,R2(K1 −K2)2〉+ o(‖K1 −K2‖2F )

≤ V2(R2)− Css‖K1 −K2‖2F + o(‖K1 −K2‖2F ). (109)

With Equation (97), there exists ε1 = Op((nρn)−1/2 log
7
2 n), s.t.

|V2(R1)− V1(R1)| < ε1, |V2(R2)− V1(R2)| < ε1,

⇒
V1(R1)− ε1 < V2(R1) < V2(R2) < V1(R2) + ε1,

⇒
V2(R2)− V2(R1) < 2ε1.

Then from Equation (109) there is

‖K1 −K2‖2F <
2ε1 + o(‖K1 −K2‖2F )

Css
. (110)

Thus ‖K1 − K2‖F = Op

(
(nρn)−1/4 log

7
4 n
)

. By Lie Product Formula, for any k × k
matrices S1, S2 the exponential of their sum could be expressed as

exp(S1 + S2) = lim
m→∞

(exp(
S1

m
) exp(

S2

m
))m.

Thus

R1 −R2

= exp(K2 +K1 −K2)− exp(K2)

= lim
m→∞

{[exp(
K2

m
) exp(

K1 −K2

m
)]m − (exp(

K2

m
))m}

= lim
m→∞

[exp(
K2

m
) exp(

K1 −K2

m
)− exp(

K2

m
)]

× [

m∑
i=1

(exp(
K2

m
) exp(

K1 −K2

m
))i(exp(

K2

m
))m−i].
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Since K1,K2 are skew-symmetric matrices, we have ‖ exp(K1−K2
m )‖ = ‖ exp(K2

m )‖ = 1,
and

‖R1 −R2‖2→∞
≤ ‖R1 −R2‖
= ‖ exp(K2 +K1 −K2)− exp(K2)‖

= lim
m→∞

‖[exp(
K2

m
) exp(

K1 −K2

m
)− exp(

K2

m
)][

m∑
i=1

(exp(
K2

m
) exp(

K1 −K2

m
))i(exp(

K2

m
))m−i]‖

≤ lim
m→∞

‖ exp(
K2

m
)‖ · ‖ exp(

K1 −K2

m
)− I‖(

m∑
i=1

‖ exp(
K2

m
)‖m−i · ‖ exp(

K1 −K2

m
)‖i)

= lim
m→∞

‖ exp(
K1 −K2

m
)− I‖(m− 1)

= lim
m→∞

‖
∞∑
i=1

(
K1 −K2

m
)i‖(m− 1)

≤ lim
m→∞

∞∑
i=1

‖K1 −K2

m
‖i(m− 1)

= Op(‖K1 −K2‖)
≤ Op(‖K1 −K2‖F )

= Op

(
(nρn)−1/4 log

7
4 n
)
. (111)

Therefore,

‖
√
nÛR

Û
−
√
nÛRUWP

(3)
n ‖2→∞

(Lemma G.3) ≤
√
n‖Û‖2→∞‖RÛ −RUWP

(3)
n ‖

≤
√
n(‖Û − UW‖2→∞ + ‖UW‖2→∞)‖R

Û
−RUWP (3)

n ‖
(Equation (47)) = Op(log n)× ‖R

Û
−RUWP (3)

n ‖

(Equation (111)) = Op

(
(nρn)−1/4 log

11
4 n
)
.
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I First and Second Order Condition for Population Varimax

This section exploits the first and second order condition of the population Varimax func-
tion based on the similar results of the sample Varimax function (Sherin [1966], Neudecker
[1981], Chu and Trendafilov [1998]). This section is self-contained and only reuses the
notations of (2) and the definition of Assumption 1. We redefine some notations here.

Assumption 4. U = ZRTU with RU ∈ O(k), Z ∈ Rn×k with Z satisfying Assumption 1.
Let z0 represents first row of Z. O = z0z

T
0 . zi is the ith element of z0 with E(zi) = 0,∀i ∈

[k]. Population Varimax function is V(R) = E(v(R,U)).

Optimization conditions for population Varimax function borrows conclusions from Chu
and Trendafilov [1998]. The math requires switching the order of expectation and differ-
ential operations. Lemma I.1 shows that this is valid for Varimax function. The proof of
the lemmas and Theorems in current section are all contained in Section I.3.

Lemma I.1. Under Assumption 4, the expectation operator and differential operator of
Varimax function are exchangeable,

∂Ev(R,U)

∂R
= E

∂v(R,U)

∂R
.

I.1 First Order Condition (FOC)

The First Order Condition for sample varimax function is (Sherin [1966], Neudecker [1981]):

(UTURD − UTH)RT = R(UTURD − UTH)T (112)

Where R is a stationary point of v(R,U). D is a diagonal matrix with j-th element equals
to 1

n

∑n
i=1(UR)2

ij . H is n× k matrix with (H)ij = (UR)3
ij .

Theorem I.1 (FOC). Under Assumption 4, if R ∈ O(k) is a stationary point of V(R),
then

Ez2
i E(zizj)− E(z3

i zj) = Ez2
jE(zizj)− E(z3

j zi),∀i 6= j. (113)

With Assumption 4, Theorem I.1 is a trivial result. The FOC only tells about local
stationary points. To consider curvature information and ensure the stationary point is
local maxima, we also need to figure out the Second Order Condition.
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I.2 Second Order Condition (SOC)

Chu and Trendafilov [1998] shows SOC result for sample Varimax function. The current
subsection is deriving counterpart results of the population Varimax function. To describe
the SOC on sample data, Chu and Trendafilov [1998] reformulate the Varimax criterion
and express the problem in a simultaneously diagonalizing symmetric matrices form (ten
Berge [1984]). The detailed SOC statement for sample Varimax is shown below.

Write Ei = UTU − nuiuTi with uTi being U ’s i-th row. The sufficient (necessary) SOC
of v(R,U) is:

n∑
i=1

(〈UTEiRdiag(RTEiR),K2〉+ 〈RTEiRKdiag(RTEiR),K〉

+2〈RTEiRdiag(RTEiRK),K〉) < (≤)0,

(114)

for any non-zero skew-symmetric matrix K. Since Varimax condition gives us a special
covariance structure of z0 (e.g. Cov(z0) = I), we could derive SOC for population Varimax
function from (114).

Theorem I.2 (SOC). Under Assumption 4, a sufficient (necessary) condition for RU to
be one of the maximas of the population Varimax is

3E[tr(diag(OK)2)] < (≤)E〈OdiagO,KKT 〉. (115)

I.3 Proofs in Section I

I.3.1 Proof of Lemma I.1

Proof. The main idea of the proof is applying Dominant Converge Theorem (DCT). For

simplicity, write E[U qij ] = µ
(j)
q as q-th moment of U ’s j-th column and Gi = UTU −nuiuTi ,

i ∈ [n], with uTi being the i-th row of U . By (8) of Chu and Trendafilov [1998],

∂v(R,U)

∂R
=

4

n3

n∑
i=1

GiRdiag(RTGiR). (116)

The goal is to bound the spectral norm of RHS of Equation (116). Notice for ∀i ∈ [n],

‖GiRdiag(RTGiR)‖ ≤ ‖GiR‖ · ‖diag(RTGiR)‖
= ‖Gi‖ · ‖diag(RTGiR)‖
= ‖UTU − nuiuTi ‖ · ‖diag(RTUTUR)− diag(nRTuiu

T
i R)‖

≤ (‖UTU‖+ n‖uiuTi ‖)×
(‖diag(RTUTUR)‖+ n‖diag(RTuiu

T
i R)‖). (117)
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Basic matrix algebra implies

‖UTU‖ ≤ ‖UT ‖ · ‖U‖ = ‖U‖2 ≤ ‖U‖2F , ‖uiuTi ‖ ≤ ‖ui‖2.

Notice that the i-th diagonal element of RTUTUR is

k∑
t=1

[(

k∑
s=1

UisRst)
2] ≤

k∑
t=1

[(

k∑
s=1

U2
is)(

k∑
s=1

R2
st)]

= k
k∑
s=1

U2
is

⇒

‖diag(RTUTUR)‖ ≤
n∑
i=1

k(
k∑
s=1

U2
is) = k‖U‖2F . (118)

Similarly,
‖diag(RTuiu

T
i R)‖ ≤ k‖ui‖2. (119)

Plugging Equation (118), (119) into Equation (117) yields

‖GiRdiag(RTGiR)‖ ≤ (‖U‖2F + n‖ui‖2)(k‖U‖2F + nk‖ui‖2)

= k‖U‖4F + 2kn‖ui‖2‖U‖2F + kn2‖ui‖4.

Getting back to Equation (116), we have

‖∂v(R,U)

∂R
‖ ≤ 4

n3

n∑
i=1

‖GiRdiag(RTGiR)‖

≤ 4

n3

n∑
i=1

(k‖U‖4F + 2kn‖ui‖2‖U‖2F + kn2‖ui‖4)

:= Fn.

The Fn is a random variable (depends on norms of random matrix and vectors). It will be
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sufficient to give constant bound to the expectation of each term of Fn. Notice

E‖U‖4F = E[(
∑
ij

U2
ij)

2]

= n
k∑
j=1

µ
(j)
4 +

(
n

2

) k∑
j=1

µ
(j)2
2 + n2

∑
1≤`6=j≤k

µ
(`)
2 µ

(j)
2 ,

E(‖ui‖2‖U‖2F ) = E[(
k∑
j=1

U2
ij)(
∑
i,j

U2
ij)]

=
k∑
j=1

µ
(j)
4 + (n− 1)

k∑
j=1

µ
(j)2
2 + n

∑
1≤`6=j≤k

µ
(`)
2 µ

(j)
2 ,

E(‖ui‖4) = E[(

k∑
j=1

U2
ij)

2]
k∑
j=1

µ
(j)
4 +

∑
1≤`6=j≤k

µ
(`)
2 µ

(j)
2 .

Therefore

E(Fn) =
4k

n2
E‖U‖4F +

8k

n2

n∑
i=1

E(‖ui‖2‖U‖2F ) +
4k

n

n∑
i=1

E(‖ui‖4)

= (4k +
12k

n
)M1 +

17k(n− 1)

n
M2 + 16kM3

≤ 5kM1 + 17kM2 + 16kM3

< ∞.

Here M1 =
∑k

j=1 µ
(j)
4 , M2 =

∑k
j=1 µ

(j)2
2 , M3 =

∑
1≤` 6=j≤k µ

(`)
2 µ

(j)
2 are all constants in our

settings. Then DCT accomplishes our proof.

I.3.2 Proof of Theorem I.2

The following Lemma is useful in the proof of Theorem I.2.

Lemma I.2. For any symmetric matrix S = vvT where v is a k-dimension vector. Any
k × k matrix P. We have

〈Sdiag(SP ), P 〉 = 〈SPdiag(S), P 〉. (120)

Proof. Let (S)i,j = vivj , (P )i,j = Pij . We only need to prove Sdiag(SP ) = SPdiag(S).
For diag(SP ). Its j-th diagonal element is vj

∑
k vkPkj . Multiplying a diagonal ma-

trix on right side is equal to multiplying i-th diagonal element to i-th column. Thus
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(Sdiag(SP ))ij = viv
2
j

∑
k vkPkj .

For SPdiag(S) we have (SP )ij = vi
∑

k vkPkj ⇒ (SPdiag(S))ij = viv
2
j

∑
k vkPkj .

Now we return to the proof of Theorem I.2

Proof. By Lemma I.1 and Slutsky Theorem,

E[RTUEiRUdiag(RTUEiRU )] = n2E[(I −O)diag(I −O)],

E[RTUEiRUKdiag(RTUEiRU )] = n2E[(I −O)Kdiag(I −O)],

E[RTUEiRUdiag(RTUEiRUK)] = n2E[(I −O)diag(K −OK)].

The expectation of the first term of Equation (114) equals to

n2E〈((I −O)diag(I −O),K2〉 = n2E〈I −O − diagO +OdiagO,K2〉
= n2(E〈Odiag(O),K2〉 − 〈I,K2〉). (121)

Similarly, the expectation of the second term of Equation (114) is

n2E〈(I −O)Kdiag(I −O),K〉 = n2(E〈OKdiag(O),K〉 − 〈K,K〉), (122)

and the expectation of the third term of Equation (114) is

n2E〈(I −O)diag((I −O)K),K〉 = n2(E〈Odiag(OK),K〉 − 〈diag(K),K〉). (123)

Notice K is skew-symmetric, there are

〈I,K2〉 = tr(K2) = −tr(KKT ) = −〈K,K〉, 〈diag(K),K〉 = 0. (124)

By Lemma I.2,
〈Odiag(OK),K〉 = 〈OKdiag(O),K〉. (125)

Properties of trace operator indicate that tr(Y diag(Y )) = tr((diag(Y )2) for any square
matrix Y . Then with Equation (121), (122), (123), (124), (125), the second order condition
(114) boils down to

3E[tr(diag(OK)2)] < (≤)E〈OdiagO,KKT 〉, (126)

for any non-zero skewed symmetric matrix K.
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J Proofs of Corollaries C.1 and C.2

As we pointed out in Section C.3, independent columns assumption does not hold in the
degree-corrected stochastic block model (DC-SBM). We could still make use of the first and
second order condition to show that vsp could estimate Z correctly. Similar to Proposition
5.2 we have

U =
1√
n
Z(ZTZ/n)−

1
2 R̃U , R̃U ∈ O(k). (127)

The proof of Corollary C.1, C.2 will focus on validating some key conditions and assump-
tions.

J.1 Proof of Corollary C.1

Proof. To borrow the conclusion from Theorem 6.1, it will be sufficient to check some
results. Notice we don’t have the centering step and symmetrized adjacency matrices in
SBM, such difference only simplifies the proof without introducing extra layers of pertur-
bation. The only things we have to check (because of the dependency of Z’s columns) are
conclusions of Theorem 5.1, Theorem I.1, I.2, Lemma G.4, Assumption 3 and the argu-
ments in the proof of Lemma G.6 that shows the existence of moment generating function
of linear inner-product of Zi (Z’s ith row).

J.1.1 Theorem 5.1 Under DC-SBM

Recall that in current setting,

V
R̃U

(Q) =
∑
j

(E([ZR̃UQ]4j )− E([ZR̃UQ]2j )
2).

We want to show
arg max
Q∈O(k)

V
Ũ

(Q) = {R̃TUP |P ∈ P(k)}.

Let X = Z1 − E(Z1), E(Xj
i ) = µ

(i)
j . Since there is exactly one non-zero entry in X’s

elements, we have

k∑
j=1

E([XQ]2j )
2 =

k∑
j=1

E(

k∑
i=1

X2
i Q

2
ij)

2 =

k∑
j=1

k∑
i=1

µ
(i)2
2 Q4

ij ,

and

k∑
j=1

E([XQ]4j ) =
k∑
j=1

k∑
i=1

E(X4
i Q

4
ij) =

k∑
i=1

µ
(i)
4 Q4

ij .
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Therefore

VI(Q) =
∑
j

(E([XQ]4j )− E([XQ]2j )
2)

=
k∑
i=1

(µ
(i)
4 − µ

(i)2
2 )‖Qi·‖44.

Jensen Inequality indicates that µ
(i)
4 −µ

(i)2
2 > 0 for ∀i ∈ [k]. The remaining part follows

the same approach as in the proof of Theorem 5.1.

J.1.2 Theorem I.1 Under DC-SBM

For ∀i ∈ [n] and j, ` ∈ [k], j 6= `, we have

ZijZi` = 0, Z3
ijZi` = 0⇒ E[ZijZi`] = 0,E[Z3

ijZi`] = 0.

J.1.3 Theorem I.2 Under DC-SBM

To show SOC. Let Ei = UTU − nuTi ui, ui is the ith row of U . It is sufficient to show

E[〈R̃UEiR̃TUdiag(R̃UEiR̃
T
U ),K2〉+ 〈R̃UEiR̃TUKdiag(R̃UEiR̃

T
U ),K〉

+2〈R̃UEiR̃TUdiag(R̃UEiR̃
T
UK),K〉] ≤ 0,

(128)

Let Ei,j be k by k matrix with 1 in (i, j) entry and 0’s elsewhere. Then

R̃UEiR̃
T
U = R̃U R̃

T
U − nR̃UuTi uiR̃TU = I − nZTi ZiEz(i),z(i). (129)

Let K =


0 K1,2 ... K1,k

K2,1 0 ... K2,k

... ... ... ...
Kk,1 Kk,2 ... 0

 with Ki,j = −Kj,i for i > j. Then diag(K2) =

diag(−
∑

i 6=1K
2
1i,−

∑
i 6=2K

2
2i, ...−

∑
i 6=kK

2
ki). Now we examine each term of (128),
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〈R̃UEiR̃TUdiag(R̃UEiR̃
T
U ),K2〉

= 〈〈diag(1, 1, ..., (1− nθ2
i,z(i))

2, ..., 1),K2〉

=
∑
`,j

K2
`j − [(nθ2

i,z(i))
2 − 2nθ2

i,z(i)]
k∑
`=1

K2
z(i)`, (130)

and (131)

〈R̃UEiR̃TUKdiag(R̃UEiR̃
T
U ),K〉

= 〈diag(1, 1, ..., 1− nθ2
i,z(i), ..., 1)Kdiag(1, 1, ..., 1− nθ2

i,z(i), ..., 1),K〉

=
∑
`,j

K2
`j − 2nθ2

i,z(i)

k∑
`

K2
z(i)`. (132)

Since K’s diagonal elements are all zero’s. diag(R̃UEiR̃
T
UK) will be zero matrix.

〈R̃UEiR̃TUdiag(R̃UEiR̃
T
UK),K〉 = 0 (133)

From Equations (130), (132), (133), to prove Equation (128) it will be suffice to show:

∑
i

(

k∑
`j

K2
`j + [(nθ2

i,z(i))
2 − 2nθ2

i,z(i)]

k∑
`=1

K2
z(i)`) ≥

∑
i

(
∑
`,j

K2
`j − 2nθ2

i

∑
j

K2
z(i)`),

⇔ ∑
i

([(nθ2
i,z(i))

2 − 2nθ2
i,z(i)]

k∑
`=1

K2
z(i)` + 2nθ2

i,z(i)

∑
j

K2
z(i)`) ≥ 0,

⇔ ∑
i

((nθ2
i,z(i))

2
k∑
`=1

K2
z(i)`) ≥ 0. (134)

The last inequality is strict as long as K is not zero matrix and θi’s are all positive.
We conclude that (128) is true.

J.1.4 Lemma G.4 Under DC-SBM

Under DC-SBM, elements of A are sub-gaussian variables. Thus we could utilize a simpler
concentration matrix inequality than Lemma H.1. We apply the following lemma to show
the bound for perturbation between A and A .
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Lemma J.1 ((Matrix Bernstein Inequality, Tropp [2012])). Let X1, X2, ..., Xm be in-
dependent random N × N symmetric matrix. Assume ‖Xi − E(Xi)‖ ≤ M,∀i. Write
v2 = ‖

∑
i var(Xi)‖, X =

∑
iXi. Then for any a > 0,

P(‖X − E(X)‖ ≥ a) ≤ 2N exp(− a2

2v2 + 2Ma/3
).

Let Eij be a n by n matrix with 1 in the (i, j) and (j, i) entries and 0 elsewhere. Write
pij = Aij . Then we could express A−A as sum of matrices,

Yij = (Aij − pij)Eij , i < j.

Notice that
‖A−A ‖ = ‖

∑
1≤i<j≤n

Yij‖,

and
‖Yij‖ ≤ ‖Eij‖ = 1.

Moreover,

E(Yij) = 0 and E(Y 2
ij) = (pij − p2

ij)(E
ii + Ejj),∀i < j.

Then we could get an upper bound for v2,

v2 = ‖
∑

1≤i<j≤n
E[Y 2

ij ]‖

= ‖
∑

1≤i<j≤n
(pij − p2

ij)(E
ii + Ejj)‖

=
1

2
‖
∑

1≤i,j≤n
(pij − p2

ij)(E
ii + Ejj)‖

=
1

2
‖
∑
i=1

∑
j 6=i

(pij − p2
ij)E

ii‖

≤ 1

2
max

1≤i≤n
(
∑
j 6=i

(pij − p2
ij))

≤ 1

2
max

1≤i≤n
(
∑
j 6=i

pij)

≤ n

2
.

From Lemma J.1 we obtain,

P(‖A−A ‖ > a) ≤ 2N exp(− a2

n+ 2a/3
). (135)
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J.1.5 Assumption 3 with Bernoulli Random Variables

Suppose Aij has m-th central moment being µm,ij and m-th moment being µ′m,ij . Since
Aij ∼ Bernoulli(Aij), then ρ̄n ≤ 1. For any m,

E[(Aij −Aij)
m] = µm,ij ≤ |µ′m,ij | = |Aij | ≤ ρ̄n, ∀i, j. (136)

J.1.6 Arguments of Lemma G.6 under DC-SBM

Since each Zi, i ∈ [k] has only one non-zero entry, for ∀r ∈ Rk, i ∈ [k], we have

E exp(t〈Zi, r〉) = E exp(t
k∑
j=1

Zijrj) = E exp(tZi,z(i)rz(i)) = Πk
j=1E exp(tZijrj).

J.2 Proofs for Corollary C.2

Proof. In current LDA settings, we need Assumption 2 in Theorem 6.1 on Z̃∗ = Z∗−E(Z∗),
which is already implied in Corollary C.2 setup. Recall that:

E(Ă|Ξ, Z) = Z̃∗(
√
nΣ1/2)(n−1/2βT ). (137)

Compared with the semi-parametric factor model in Definition 1,
√
nΣ1/2 plays the

role of block matrix B and satisfies all the conditions in Theorem 6.1. Other than that
Assumption 3 needs to be checked to prove Equation (23) and the 2 → ∞ norm of Y (in
Equation (137), this is (nρn)−1Σ1/2βT ) needs to be bounded by O(log d) � O(log n). After
that we will show the error bound for topics estimation.

Notice that s controls the scaling of the term-document matrix, the following inference
reflects its relation to ∆n. Recall that

ρn =
1

nd

∑
i,j

Aij , ∆ = nρn.

And,
1TnA 1d = 1TnΞZβT1d = 1TnΞZ1k = 1TnΞ1n. (138)

Equation (138) implies that

∆n = nρn =
n

nd
1TnA 1d =

1

d
1TnΞ1n � s. (139)
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J.2.1 Assumption 3 Under Poisson Random Variables

Suppose Aij has m-th central moment being µm,ij . Since Aij ∼ Poisson(Aij), recall the
recurrence relation of poisson distribution (Riordan [1937]),

µm+1,ij = Aij(
dµm,ij
dAij

+mµm−1,ij), µ1 = 0, µ2 = Aij , ∀i, j.

It could be shown by induction that

µm,ij ≤ (m− 1)!×max{A [m
2

]

ij ,Aij}. (140)

Thus, Assumption 3 is satisfied for Poisson.

J.2.2 Upper Bound for ‖n−1/2βT ‖2→∞

Notice for arbitrary j-th row of n−1/2βT , it has `2-norm

n−1/2

√√√√ k∑
`=1

β2
`j ≤ n

−1/2

√√√√ k∑
`=1

β`j = n−1/2.

Therefore, ‖n−1/2βT ‖2→∞ = O(n−
1
2 ), which is much smaller than O(log n).

J.2.3 Topics Estimation

For technical convenience, this proof uses an equivalent construction of β̂. Define Ω =
(ẐT Ẑ)−1ẐT Ă = Φ/n and β̂ = (Λ−1

o Ω)T ∈ Rd×k, where Λo is a diagonal matrix with ith
diagonal element equals to `1-norm of ith row of Ω.

For the topic estimation β̂, from Equation (137) there is,

Ă T Ă = nβΣ1/2(Z̃T∗ Z̃∗/n)Σ1/2βT .

By LLN we have (Z̃T∗ Z̃∗/n)[i, j] = 1{i = j} + O(1/
√
n). Notice that the jth diagonal

element of Σjj = αjs
2 � nρn. Also σmin(β) > c1 > 0, and

σmax(β) = ‖β‖ < ‖β‖F = (
∑
ij

β2
ij)

1
2 ≤ (

∑
ij

βij)
1
2 = k

1
2

is upper bounded. Therefore

σmin(Ă ) � σmin((nβΣβT )
1
2 ) �

√
ns � nρn.
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With conclusions of Proposition G.2, Lemma G.3, G.4, Davis-Kahan sin Θ Theorem,
Equation (23) and triangle inequality, there exists Pn ∈ P(k) (similar to the Pn in Equation
(23)) s.t. for any δ, ε > 0,

‖Ω− P Tn Σ1/2βT ‖2→∞ ≤ 1

n

[
‖(ẐT (Ă− Ă )‖2→∞ + ‖(ẐT Z̃∗ − P Tn )Σ1/2βT ‖2→∞

]
≤ 1

n

[
‖ẐT ‖‖Ă− Ă ‖+ ‖ẐT ‖‖Z̃∗ − ẐP Tn ‖‖Σ1/2βT ‖

]
=

1

n

[
‖ẐT ‖‖Ă− Ă ‖+ ‖ẐT ‖‖Ẑ − Z̃∗Pn‖‖Σ1/2βT ‖

]
≤ 1

n

[
‖ẐT ‖‖Ă− Ă ‖+

√
n‖ẐT ‖‖Ẑ − Z̃∗Pn‖2→∞‖Σ1/2βT ‖

]
= Op(

∆
1/2
n log5/2 n

n
) +Op(

∆
3/4+δ/2
n log15/4 n√

n
)

= Op(
∆

3/4+δ/2
n log15/4 n√

n
).

Let Ω` be the `th row of Ω, ζ` be the `th row of P Tn Σ1/2βT . Then for ∀` ∈ [k] there

exists εn = Op((∆
3/4+δ/2
n log15/4 n)/

√
n) s.t. with high probability,

‖Ω` − ζ`‖ ≤ εn ⇒ ‖Ω` − ζ`‖1 ≤
√
dεn. (141)

Notice any `-th column of β has unit norm: ‖β`‖1 = 1, ∀` ∈ [k]. Denotes αmin =
min
j
αj , αmax = max

j
αj , then RHS of Equation (141) reflects

s
√
αmin −

√
dεn ≤ ‖Ω`‖1 ≤ s

√
αmax +

√
dεn. (142)

With Equation (142) and notice the j-th diagonal element of Σ1/2 is s
√
αj , we also

have
max
j,`∈[k]

|Σ1/2
jj − ‖Ω`‖1| ≤

√
dεn. (143)

Since LHS of (142) is greater than 0 with large n. Let [X]` represents the `-th row of
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matrix X. Then for ∀` ∈ [k],

‖β̂T` − [P Tn β
T ]`‖1 = ‖ Ω`

‖Ω`‖1
− [P Tn β

T ]`‖1

≤ 1

‖Ω`‖1
‖Ω` − ζ`‖1 + ‖[P Tn (

Σ1/2

‖Ω`‖1
− 1)βT ]`|

≤
√
dεn

s
√
αmin −

√
dεn

+
1

‖Ω`‖1
×max

j∈[k]
|Σ1/2
jj − ‖Ω`‖1|

≤ 2
√
dεn

s
√
αmin −

√
dεn

= Op(
√
dεn/s)

= Op(∆
−1/4+δ/2
n log15/4 n).
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