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Summary. Weather-related risk makes the insurance industry inevitably concerned with

climate and climate change. Buildings hit by pluvial flooding is a key manifestation of this

risk, giving rise to compensations for the induced physical damages and business interrup-

tions. In this work, we establish a nationwide, building-specific risk score for water damage
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associated with pluvial flooding in Norway. We fit a generalized additive model that relates

the number of water damages to a wide range of explanatory variables that can be cate-

gorized into building attributes, climatological variables and topographical characteristics.

The model assigns a risk score to every location in Norway, based on local topography and

climate, which is not only useful for insurance companies, but also for city planning. Com-

bining our model with an ensemble of climate projections allows us to project the (spatially

varying) impacts of climate change on the risk of pluvial flooding towards the middle and

end of the 21st century.

Keywords: climate change risk, generalized additive model, non-life insurance,

pluvial flooding, topographical risk

1. Introduction

A recent report by the World Meteorological Organization found that floods were the

most common of weather-, climate- and water-related disaster types recorded in the

period 1970-2019 (Douris et al., 2021). While single events of large fluvial (river) floods

can cause damages worth billions of Euros (Barredo, 2007), a large proportion of overall

flood damages is caused by pluvial flooding—surface water flooding resulting from heavy

rainfall—due to the far greater reach of these events (Houston et al., 2011; Spekkers et al.,

2011). For instance, Houston et al. (2011) assess that around 2 million people in the UK

are at risk from pluvial flooding. Pluvial floods are commonly considered an invisible

hazard, as they can strike with little warning in areas with no recent record of flooding

(Netzel et al., 2021), and the risk of pluvial flooding may increase in the future due

to a combination of climate change, urbanization and lack of investment in sewer and

drainage infrastructure (Skougaard Kaspersen et al., 2017).

A building’s exposure to pluvial flood risk depends on a range of factors such as the

building’s attributes, local weather and topography. The extent to which these factors

influence the risk exposure is commonly assessed based on insurance claims data on

reported flood damages, see Gradeci et al. (2019) for a systematic review of the use

of insurance claims data in analyzing pluvial flood events. A critical challenge when

assessing flood impact is the lack of good quality flood impact data (Hammond et al.,

2015). One specific challenge is that insurance claims data may not separate between
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fluvial and pluvial flood damage (Bernet et al., 2017). In Norway, however, fluvial flood

damage is covered by a compulsory natural perils insurance linked to fire insurance and

managed by the Norwegian Natural Perils Pool, while pluvial flood and other rainfall-

induced damage is covered by a private insurance and managed directly by the primary

insurer. In the following, we do not separate between pluvial flood and other rainfall-

induced damage, and, for simplicity, we refer to these as water damages.

The study of water damage and its relationship to meteorological, hydrological and

topographical variables is nicely summarized in Lyubchich et al. (2019) and Gradeci

et al. (2019). A commonality among these studies is that the number of claims and

the claim size is aggregated in space (see Table 6 in Gradeci et al. (2019) and Table

3 in Lyubchich et al. (2019)), for example at the level of municipality or postal code.

Many papers also model daily claim frequency or severity and use meteorological and

hydrological variables that are associated with the specific daily event, see for example

Spekkers et al. (2014) and Haug et al. (2011). For assessing the risk of specific buildings,

or risk on an annual basis (for example, for pricing) there are two drawbacks of using

a daily model on spatially aggregated data. Firstly, spatially aggregated data disguise

building specific information, which makes it hard to assess the risk of a specific building

at a specific location. Variables such as topographical indices that are available at a high

spatial resolution will also lose their accuracy and thus potentially explanatory power

if spatially aggregated. A second challenge of a daily model that uses daily weather

variables is that predicting future claims beyond approximately two weeks is challenging

due to the high uncertainty of possible weather outcomes and a lack of skillful long-range

weather predictions for this time resolution (van Straaten et al., 2020).

The goal of this study is two-fold. Our first goal is to provide an estimation of

current, or near-term, water damage risk for any building or potential building site in

Norway. Our second goal is to project potential changes in water damage risk in a

future climate. To this aim, we employ detailed topographical information at a 20 ×

20 m resolution over Norway and a more general quarterly summary of local weather

statistics as detailed information of future weather is unlikely to be robustly projected

for a future climate. Insurance data from the insurance company Gjensidige, including
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information on building attributes—to account for building-specific risk—and reported

water damages, is available for 729,031 unique locations in Norway within the time

period 2009-2021. This data covers approximately a quarter of the national market.

The output of our analysis is the risk of water damages for a property located anywhere

in Norway. Here, we compare the use of a generalized additive model with either a

Poisson or a negative binomial likelihood. The parametric structure of the models is

such that the individual risk components related to topography, weather and building

characteristics can be extracted and assessed individually or combined.

2. Data

Our model incorporates several different datasets. Claims data from the insurance com-

pany Gjensidige are combined with topography data derived from a digital elevation

model and historical meteorological data provided by the Norwegian Meteorological In-

stitute. Moreover, regional climate projections provided by the EURO-CORDEX initia-

tive are used to project claim frequency for future climate scenarios. A brief description

of these datasets follows.

2.1. Insurance data

The insurance data were provided by the Norwegian insurance company Gjensidige and

contain customer information from January 1, 2009 to April 23, 2021. The dataset

contains insurance information for private houses, apartments, cabins, agricultural and

industrial buildings, as well as apartment complexes with a single coverage for the entire

complex, located in Norway. For each insured property, we have information on the exact

location, the insurance period, the value of the property, whether the building is used as

a rental property and building characteristics such as size, age, type of roof and whether

the building has a basement. In our analysis every building with its unique combination

of characteristics constitute one observation. Modification of any property attribute,

e.g. its size, over the building’s insurance period gives rise to separate observations

with associated coverage lengths. The dataset includes 32,534 water damage claims,

corrsponding to an average of 0.007 claims per insured year. Overall, the buildings in
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the dataset have between 0 and 15 claims. Out of 1, 740, 915 observations, 1, 712, 157

(99.5%) contain zero claims.

2.2. Topography data

Topographical information is obtained from the Norwegian Mapping Authority’s Digital

Elevation Model (DEM) corresponding to the bare-Earth surface where all natural and

built features are removed. The DEM is generated from data primarily collected via

airborne laser-scanning equipment and organises 10 m gridded elevation data into non-

overlapping 50 km square blocks. Rather than constructing one huge national dataset, we

assemble blocks into regional rectangles of manageable size, where each region typically

covers 1 – 3 counties (there are a total of 11 counties in Norway). The rectangular area

is chosen large enough so that it encompasses the full hydrological catchment area for

every single location within any of the counties that it represents. To further facilitate

processing of the regional DEM data, a coarser spatial resolution of 20 m is established

by averaging the elevation of the four 10 m cells underlying every 20 m cell.

From the 20 m gridded and regionalised DEM data, three topographical indices of

particular interest to precipitation-induced damage are calculated: Height Above Nearest

Drainage (HAND) (Nobre et al., 2011), which specifies for each grid cell in the DEM

the relative elevation between the cell and the nearest waterway cell (for example, river

or ocean) that it drains into. One interpretation of the HAND index is that it judges

the risk of a DEM cell being affected if its associated waterway overruns its banks. The

second index is the slope, β, of a DEM cell which specifies the local angle of inclination

in the water flow direction out of the cell and measures the capability that a grid cell

has to drain water away. A similar concept that also takes into account the amount of

water potentially flowing into the DEM cell, is the Topographical Wetness Index (TWI)

developed by Beven and Kirkby (1979). This is defined as TWI = log(a/ tan(β)) where

a is the size of the upslope contributing area and β is the slope. Grid cells with a high

TWI therefore indicate locally flat terrain or a large upslope area, both of which increase

the likelihood of accumulating water.
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2.3. Meteorological data

Historical meteorological information is derived from the gridded data product seNorge

version 2018 (Lussana, 2020). Using statistical interpolation of station observations,

seNorge contains estimates of daily near-surface air temperature and precipitation on

a grid with resolution 1 km covering all of Norway from 1957 to the present day. The

seNorge dataset is used to derive climatological indices on the same resolution, defined

as quarterly means of daily temperature and precipitation for the time period 1991-

2020. In addition to these climatological indices, several alternative climatological indices

were considered in an explorative stage of our research. This included high empirical

quantiles of the quarterly distributions of daily temperature, daily precipitation and

multi-day precipitation as well as high return period values from intensity-duration-

frequency curves for daily precipitation. However, as these did not improve the predictive

performance of our models and yielded less interpretable models, we have chosen to

focus on the quarterly means of precipitation and temperature, which are more robust

climatological indices.

2.4. Climate projections

Projections of the climatological indices for a future climate are provided by the EURO-

CORDEX initiative (Jacob et al., 2020). EURO-CORDEX provides a multi-model en-

semble of regional climate projections for Europe at a spatial resolution of 12 km, ob-

tained by running a limited-area regional climate model (RCM) using the output of

a global general circulation model (GCM) as boundary conditions. In addition, the

RCM output has been bias-corrected using a cumulative distribution function (CDF)

transformation (Michelangeli et al., 2009; Vrac et al., 2012) or distribution-based scaling

(DBS; Yang et al., 2010), using data from the regional reanalysis MESAN (Häggmark

et al., 2000; Landelius et al., 2016) or the observation-based gridded data product E-OBS

(Cornes et al., 2018) as calibration data.

Specifically, we consider 12 different combinations of GCMs, RCMs and bias-correction

approaches as listed in Table 1. This multi-model ensemble of climate projections in-
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Table 1. Overview of the EURO-CORDEX climate projection ensemble used

in this paper. For each ensemble member, the general circulation model

(GCM), the regional climate model (RCM) and the bias-correction method

(combination of method, data product and data period) is listed.

GCM RCM Bias-correction method

1 EC-EARTH CCLM4-8-17 CDFT22s-MESAN-1989-2005

2 EC-EARTH CCLM4-8-17 DBS45-MESAN-1989-2010

3 EC-EARTH HIRHAM5 CDFT22s-MESAN-1989-2005

4 EC-EARTH HIRHAM5 DBS45-MESAN-1989-2010

5 EC-EARTH HIRHAM5 CDFt-EOBS10-1971-2005

6 EC-EARTH RACMO22E CDFT22s-MESAN-1989-2005

7 EC-EARTH RACMO22E CDFt-EOBS10-1971-2005

8 EC-EARTH RCA4 DBS45-MESAN-1989-2010

9 MPI-ESM-LR CCLM4-8-17 CDFT22s-MESAN-1989-2005

10 MPI-ESM-LR CCLM4-8-17 DBS45-MESAN-1989-2010

11 MPI-ESM-LR RCA4 CDFT22s-MESAN-1989-2005

12 MPI-ESM-LR RCA4 DBS45-MESAN-1989-2010
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cludes two different GCMs (EC-EARTH (Hazeleger et al., 2012) and MPI-ESM-LR

(Giorgetta et al., 2013)), four different RCMs (CCLM4-8-17, HIRHAM5, RACMO22E

and RCA4, see Jacob et al. (2014) for details), as well as three different versions of the

bias-correction approaches described above. Considering such a variety of combinations

helps us better account for the uncertainties associated with each layer of modeling.

Additionally, we consider two representative carbon pathways (RCPs): RCP4.5 is an

intermediate scenario where emissions peak around 2040 and decline afterwards while

RCP8.5 presents a worst-case scenario where emissions continue to rise throughout the

entire 21st century (Jacob et al., 2014).

An ensemble of future climatological indices for two future periods, 2031-2060 and

2071-2100, are obtained by calculating the projected differences of the climatological

index between the future period and the historical period 1991-2020 from each climate

model. These projected differences are then added to the historical index, derived from

the seNorge data. Considering differences rather than absolute projections removes

potential (constant) biases of the climate models. The projected future indices are

therefore derived on the high-resolution spatial scale of 1 km provided by seNorge, but

for all grid cells lying within the same 12×12 km RCM grid cell the same changes apply.

3. Methods

3.1. Statistical modeling framework

The aim of the statistical modeling is to predict the number of claims, Ni, for contract

i. To this aim, we model the distribution of Ni as a function of various covariates

and use the length of the contract, li, as offset. Our covariates can be grouped in

four separate classes: (1) property specific characteristics, (2) topographical information

at the property location, (3) climatological information at the property location, and

(4) a fixed effect of which county the property is located in and a random effect over

municipalities to increase the flexibility of the model. This way, municipalities with little

information get regularized towards the mean of the county, which is important since

many municipalities contain only few observations. Currently, there are 11 counties and

356 municipalities in Norway.
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For the climatological indices we compare annual models based on annual averages of

precipitation and surface temperature to quarterly models based on quarterly averages.

For the latter, each contract i is split into (up to) four subcontracts. For example, a

contract from 2019-01-01 to 2020-01-20 would be split into four contracts, accounting for

the respective overlaps: a contract of three months and twenty days in quarter 1 (Q1),

and three contracts of 3 months each in Q2-Q4. The claims of the original contract

are then assigned to the subcontracts of the appropriate quarter. This increases the

temporal resolution of the climate statistics, enabling the model to pick up on quarterly

differences in claims connected to seasonal differences in weather. Note that we estimate

a single model over all quarters. That is, we assume the same effect of the climate

statistics throughout the year, only their value may vary by season.

For the distribution of Ni, we compare a Poisson and a negative binomial model,

denoted Ni ∼ Po(µi) and Ni ∼ NB(µi, θ), respectively. For both distributions, µi is the

expected number of claims for the ith contract. While the distribution of the Poisson

model is fully determined by its mean, the negative binomial model has an additional

parameter θ, specified by Var(Ni) = µi + µ2i /θ. In particular, the negative binomial

model exhibits larger variance than the Poisson model, and the parameter θ controls for

overdispersion.

For both models we employ a generalized additive model (GAM; Hastie and Tibshi-

rani, 1990). This allows for non-linear relationships between the covariates and the num-

ber of claims without needing to specify the functional form of these relationships, while

still being highly interpretable. The interpretability aspect is crucial for understanding

and explaining the risk structure to both potential insurance holders and decision-makers

in the context of climate change adaptation. We use a logarithmic link function, such

that the relationship between the expected number of claims and the available covariates

is specified by

logµi = zTi γ +

J∑
j=1

fj(xij) + uR[i] + log(li) + log(vi). (1)

Here, zTi represents the vector of categorical variables for contract i with parameter

vector γ and fj represents a smooth function modeling the effect of the jth continuous
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covariate xij . The variable uR[i] is a random effect assigned to each policy i belonging to

municipality R[i] ∈ {1, . . . ,K} with K = 355 in the current setting as one municipality

has no weather data available. The variables li and vi represent the length of the ith

contract and the value of the building, respectively, which are used as offsets in our

model. The final model contains 5 discrete and J = 7 continuous covariates. The dis-

crete variables include a fixed effect for the county and are otherwise property-specific,

e.g. whether a property has a basement and the quality of the building. The continu-

ous variables include climatological, topographical and property-specific covariates, see

Section 4.1 for details.

We assume that the effects, u1, . . . , uK , for all municipalities are independent and

normally distributed with a common variance σ2u, that is, uk
iid∼ N(0, σ2u). Normally

distributed random effects fit nicely into the GAM framework, as they can be expressed

as a smooth spline with a penalty matrix equal the identity matrix. They can therefore

be estimated simultaneously with the smooth splines in Equation (1) (Wood, 2017).

The offset log(li) accounts for the increase in expected claims over time as long as the

contract is active. The use of the property value, vi, as offset is convenient in insurance

risk modeling, where it is more natural to model the number of claims per time and

insured value, which is more closely connected to the expected payout. Since it would

be unreasonable to assume µi to increase linearly in vi, we additionally consider vi as a

property-specific covariate.

Each fj is represented as a weighted sum of basis functions,

fj(xij) =
K∑
k=1

βjkbjk(xij),

where the βjk are unknown parameters to be estimated from the data, and bj1, . . . , bjK

are known basis functions, here given by the truncated thin plate regression basis (Wood,

2003). It should be noted that, specifically for precipitation, a natural alternative to the

truncated thin plate basis would be a spline basis that enforces monotonicity, see (Meyer,

2018). This would ensure that the risk of water damage increases in the precipitation

amount. This methodology has been investigated using the package cgam (Liao and

Meyer, 2019), but is too computationally demanding given the size of our data and
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does, moreover, not support the negative binomial distribution.

3.2. Risk assessment

We define the risk of the ith contract as ri := µi

livi
, that is, the expected number of claims

per year and value of insured property. The structure of the GAM facilitates that the

risk ri can be decomposed into the product of partial risks corresponding to different

groups of covariates. For example, the non-standardized climatological risk for the ith

contract is defined as

log r̃climi :=
∑
j∈clim

fj(xij),

where the sum runs over the climatological covariates only (i.e., average precipitation and

surface temperature). The partial climatological risk is then obtained by standardization

rclimi :=
r̃climi

1
N

∑N
l=1 r̃

clim
l

, (2)

where the average in the denominator is taken with respect to all contracts. This stan-

dardization achieves that the average climatological risk equals 1, making it easy to see

whether a given contract has above- or below-average risk due to local climatology. Sim-

ilarly, we can define the partial topographical risk rtopoi and the partial building-specific

risk rb-si , by restricting the right hand side of Equation (1) to only the summands corre-

sponding to covariates of these groups. The covariates not belonging to either of these

three groups are the county fixed effect and the municipiality random effect, which we

group into the partial regional risk rregi . This yields a complete decomposition of the

total risk of the ith contract as

ri = r0r
clim
i rtopoi rb-si rregi , where r0 :=

(
1

N

N∑
l=1

r̃climl

)
. . .

(
1

N

N∑
l=1

r̃regl

)
.

This decomposition facilitates interpretation of the results. The factor r0 is the same

for all contracts and, therefore, represents base risk. Each of the four other factors

averages to 1, making it easy to identify prevailing risk drivers (or risk reductors) for a

specific property. The decomposition also allows visualization of spatially varying risk,

by plotting maps of the partial risks, see Section 4.2. Note that, after fitting a model,
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these risk factors can be calculated for all locations for which the corresponding covariate

information is available yielding national risk maps.

3.3. Inference

In order to avoid overfitting, we employ a penalized log-likelihood given by

l(φ)− 1

2

J+1∑
j=1

λjβ
T
j Sjβj , (3)

where l(φ) is the log-likelihood, φ = (γ,β) are the model parameters, λ = (λ1, . . . , λJ , λu)

are the smoothing parameters controlling the smoothness of the fjs and the preci-

sion (1/σu) of the random effect, and Sj is a matrix where the klth element equals∫
b′′jk(x)b′′jl(x)dx. The model parameters and smoothing parameters are estimated in

two steps. First Equation (3) is optimized w.r.t φ holding λ fixed using penalized

iteratively reweighted least square (PIRLS). Second, the smoothing parameters are es-

timated using Laplace approximated restricted maximum likelihood, holding φ fixed.

For the negative binomial model, the dispersion parameter θ is estimated alongside the

smoothing parameters.

All computations are performed with R version 4.0.5 (R Core Team, 2021) using the

package mgcv version 1.8-26 (Wood, 2011) for parameter estimation of the GAMs. As

our dataset contains millions of observations and hundreds of covariates (when all levels

are one-hot encoded) we use the methodology proposed for large datasets in Wood et al.

(2017), Wood et al. (2014) and Li and Wood (2020), as implemented in the bam function

in mgcv.

3.4. Model evaluation

We evaluate and compare competing models using two proper scoring rules (Gneiting

and Raftery, 2007), the mean square error (MSE) and the Brier score (Brier, 1950),

where a smaller value equals a better performance.

The MSE is defined as

MSE :=
1

N

N∑
i=1

1

li
(Ni − µ̂i)2,
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where Ni is the observed number of claims for the ith contract, li is the length of the

contract (in years) and µ̂i is the predicted expected number of claims for Ni. The

scaling factor 1
li

counteracts the fact that the variance of Ni grows with the length of

the contract. It can be shown that under this scaling, the rank of competing models is

equal for different time units in the contract length.

The distribution of the claims data is heavily skewed. While for the vast majority

of contracts we have Ni = 0, the data also contains many contracts with two or more

claims, some contracts even reaching more than 10 claims. The MSE is sensitive to

such outliers (Thorarinsdottir and Schuhen, 2018), and an evaluation using the MSE

therefore puts specific emphasis on the predictive performance for these outliers. To

complement the picture we therefore consider the Brier score as a second performance

metric. Specifically, we consider the mean Brier score for the event of observing at least

one claim,

BS :=
1

N

N∑
i=1

(1{Ni ≥ 1} − p̂i)2,

where 1 denotes the indicator function and p̂i is the predicted probability that the ith

contract files at least one claim. This metric is insensitive to outliers and shifts the focus

to predicting whether a given house will have a claim or not.

3.5. Model selection methodology

For assessing out-of-sample predictive performance, we perform a ten-fold cross-validation

where 10% of the contracts are removed at random during model fitting, and the fitted

model is used to predict the claims for the withheld 10%. This process is repeated ten

times with each contract left out exactly once during the model training.

We compare using either a Poisson or a negative binomial target distribution for

the regression model as well as four alternative configurations of the regression model in

Equation (1). The simplest baseline model includes only building-specific covariates. Ad-

ditionally, we consider a model including topographical indices (TWI, slope and HAND),

a model including climatological indices (mean temperature and mean precipitation) and

a model including both topographical and climatological indices.

For the climatological information, we consider both a quarterly and an annual model
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as discussed in Section 3.1 above. The splitting into quarterly subcontracts results in a

different set of contracts than for an annual model, which makes it difficult to directly

compare the MSE and the Brier score for these models. We address this by reversing the

quarterly split before evaluation. Specifically, for the quarterly model, the ith contract

is split into (up to) four contracts i1, ..., i4 during fitting, with corresponding numbers

of claims Ni1 , ..., Ni4 . After fitting the model, we obtain four different predicted means

µ̂i1 , ..., µ̂i4 . For evaluation, we recompute µ̂i = µ̂i1 + · · ·+ µ̂i4 and consider this quantity

a prediction for Ni. Similarly, for the Brier score we obtain four probabilities p̂i1 , ..., p̂i4

and can retrieve p̂i as p̂i = 1−
∏4
j=1(1− p̂ij ), assuming conditional independence of the

number of claims across different quarters.

Under the Poisson model, the sum of the four quarterly predictions is again Poisson

distributed. The only difference is that the quarterly model resolves seasonal variation

in the climatological indices. However, for the negative binomial model, a change in

model resolution yields a different model distribution (Diggle and Milne, 1983), so that

the annualized quarterly model is not directly comparable to the annual model.

3.6. Model diagnostic

After selecting a model as described above, we assess the fit of the final model using

conditional expectation diagrams. Such diagrams are obtained by sorting the prediction-

observation pairs (Ni, µi)i=1,...,n by their predicted expectation µi, and thereafter divid-

ing into k subgroups of equal size. The conditional expectation diagram then plots a

single point for each group, its x-coordinate being the mean predicted expectation, or

mean µi, for the group and its y-coordinate being the mean conditional expectation, or

mean Ni, for the group. Since the predictions were sorted before grouping, the predicted

expectation gradually increases in the group index from 1 to k. For example, the point

with the highest x-value corresponds to the group of n/k highest predicted risks. For

a perfectly calibrated prediction model, the k points are located on or near the diago-

nal. Systematic deviations from the diagonal reveal conditional biases of the predictive

model, see Section 4.1 for details. These diagrams constitute a straightforward general-

ization of reliability diagrams which are widely used as a diagnostic tool for prediction
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of categorical variables, see Wilks (2011).

4. Results

Here, we present the results of our analysis of Norwegian water damage data. In a cross-

validation study, we compare risk assessment models with different sets of covariates at

two temporal resolutions and under two different distributional assumptions. We then

present estimates of annual water damage risk under current and future climate.

4.1. Model selection
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Fig. 1. Comparison of models for water damage risk in Norway under a Poisson and a negative

binomial likelihood with property specific covariates only (baseline), additional climatological or

topographical information, or both. Annual risk is estimated based on four quarterly models, or

a single annual model. We assess predicted number of annual damage claims using MSE (left)

and predicted probability of seeing one or more claims per year using the Brier score (right).

Scores are given as mean scores over a tenfold cross-validation of the entire dataset.

Figure 1 shows the out-of-sample predictive performance of 16 different risk assess-

ment models based on a cross-validation study, where the models differ in distributional

assumptions, covariate selection and temporal resolution. A baseline model that only
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includes property specific information is outperformed by models that include topo-

graphical and/or climatological variables. Further, as expected, including topographical

information with high spatial precision gives a greater improvement in performance than

including more general climatological information. Concerning model distribution, we

see clear improvement in performance for the negative binomial model if the estimation

is performed at a quarterly temporal resolution, even for the baseline model where all

the covariates are identical. In the negative binomial model, the mean and the θ pa-

rameter are estimated jointly, and there is a non-linear relationship between the mean

and the variance. If the estimation is performed at a quarterly time resolution, the

variance of the resulting annualized model tends to be smaller than that of the original

annual model. This, in turn, affects the mean estimate and leads to slightly larger an-

nual mean estimates, in particular for contracts with large expected number of claims.

Consequently, the predictive errors are smaller for these contracts yielding an overall

smaller MSE.

While proper scoring rules favor the true data generating process by construction,

they may evaluate different aspects of competing models and thus not always yield

identical rankings when none of the models represent the true data generating process.

The best performance of each distributional model is obtained when both topographical

and climatological information is included in the model. However, the model rankings

for this setting are not consistent across the two types of evaluation in Figure 1. The

quarterly Poisson model ranks first under MSE and third under the Brier score, while

the quarterly negative binomial model ranks second under MSE and first under the

Brier score. As the overall highest ranked model, we continue our analysis with the

negative binomial model estimated on a quarterly basis with both topographical and

climatological covariates.

Risk models for the insurance industry are often perceived as not performing partic-

ularly well at predicting high numbers of claims, see Scheel et al. (2013) for an example.

In our case, out of the 6 million contracts, 99.5% have zero claims and 138 contracts

have between 3 and 7 claims. The mean predicted number of claims for these extreme

observations is 0.192, due to many observations with similar covariate values having
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Fig. 2. Conditional expectation diagrams for the quarterly negative binomial model using both

topographic and climatological covariates. The right hand side diagram is constructed from the

100,000 contracts with the highest predicted number of claims µi.

zero claims. While this is substantially higher than the overall mean of 0.005, it nev-

ertheless seems like a gross underestimation. For the most extreme observation with 7

claims the model predicts a chance of just under 0.05% of observing 7 or more claims,

and similarly small probabilities are achieved for almost all observations with 3 or more

claims. Unintuitively, however, this does not indicate a bad predictive fit in the context

of the full data set. In fact, out of 6 million observed contracts, roughly 3000 contracts

should fall above the 99.95th percentile of their predictive distribution. This highlights

the importance of perceiving the predictions as probabilistic, rather than expecting the

mean of the prediction to be always close to the observed number of contracts.

In order to avoid this fallacy associated with evaluating predictive performance of a

model based on only the most extreme observations (Lerch et al., 2017), we consider

conditional expectation diagrams. Figure 2 shows out-of-sample conditional expectation

diagrams for this model. Here, we consider the contracts on the quarterly time resolu-

tion, which results in roughly 6 million contracts. The left diagram considers k = 100

subgroups with 60,000 values in each. We observe an overall good fit of the model, except

that there appears to be a slight overestimation in the risk of the high-risk customers.
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The right diagram considers only the 100,000 contracts with the highest predicted num-

ber of claims. That is, it considers the contracts approximately corresponding to the two

rightmost points in the left diagram. Here, the model appears well calibrated except for

the rightmost five points which correspond to the 0.09% of the contracts with highest

risk. The model slightly overestimates the risk of these customers. The quarterly Pois-

son model with all covariates yields nearly identical conditional expectation diagrams

(results not shown). The shown diagrams are constructed from the cross-validation re-

sults and therefore assess the model fit out-of-sample, as is appropriate for our prediction

setting.

Figure 3 shows the estimated effect of the topographical and climatological covariates

for the quarterly negative binomial model. Specifically, we show the multiplicative effect

of these variables by taking the exponential of the additive effect. All response panels

share the same scale for the y-axis, but the range is suppressed to prevent adaptation

of the fitted model by direct competitors of Gjensidige. The top row shows the effect

of the three topographical indices. The topographical wetness index (TWI) has a clear

linear effect. The higher the wetness index the higher the expected number of claims.

The effect of the slope index is shaped as a parabola with a minimum at approximately

10 degrees and a higher risk for both a lower and a higher slope. The effect of the

slope index is difficult to interpret independently of the TWI which directly depends

on the slope. The estimated spline for slope having a clearly pronounced shape gives

evidence that information is added by considering both variables. The HAND index has

the largest effect when its value is between 0 and 100 meter. This is intuitive since, at

a certain point, it becomes irrelevant to move even higher above the nearest drainage

point. The effect of precipitation is clearly non-linear; for low values the effect is flat,

then close to linear between 3 and 9 mm of average daily precipitation in a quarter.

The decreasing effect for precipitation values above 9 mm is somewhat counterintuitive

and might be the result of little data in the upper tail, or signal a localized adaptation

to current climate in very wet areas. For temperature, the effect is small for average

quarterly temperature of less than 10 degrees Celsius, while it is highly non-linear for

higher values. See Section 5 for a further discussion of the climatological effects. Lastly,
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Fig. 3. Multiplicative response effects of topographical (first row) and climatological (second

row) covariates on water damage risk under the quarterly negative binomial model indicated by

the mean effect (solid line) with a 95% confidence band (dashed lines), all on a joint y-axis scale.

In-sample covariate values are indicated by black tick marks along the x-axes. For temperature

and precipitation, dotted vertical lines show the 1st and 99th percentile, cf. Section 4.3. Bottom

right: QQ-plot of the municipality random effect.

we show a QQ-plot of the random effect of municipality which shows that the Gaussian

assumption is fulfilled.

During model selection, we also investigated various subsets of property attributes

for the building risk component. Of the considered building characteristics, only the

variable “type of roof” did not yield predictive power and was removed from the anal-

ysis. A basement variable is highly significant, properties with basement exhibiting a

substantially higher risk than those without. Moreover, privately inhabited properties

such as houses and cabins are at a higher risk of experiencing water damage than indus-
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Fig. 4. Climatological, topographical and combined risk factor for the greater Bergen area (top

row) and greater Tromsø area (bottom row), see the small maps on the right hand side for the

location of Bergen and Tromsø, respectively. The colorscale is centered at white, corresponding

to the average risk, with below-average risk in blue and above-average risk in red.

trial or agricultural buildings by approximately an order of magnitude. Finally, the risk

contribution from the construction year peaks in the early 1960s. This indicates both

that building regulations have improved and that older properties are well capable of

withstanding today’s climatic exposure.

4.2. Risk assessment for a stationary climate

As described in Section 3.2, we can decompose our model into several risk factors,

corresponding to the groups of covariates. In particular, the model assigns a specific

topographical risk rtopoi and a specific climatological risk rclimi to each contract, see

Equation (2). These factors depend only on the location and not on any contract-

specific characteristics. They can therefore be calculated for any location for which

topographical/climatological indices are available. Figure 4 shows maps of the corre-
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sponding sub-risks, as well as a combined map showing the product rtopoi rclimi for two

example areas of 60 × 60 km, around the Norwegian cities of Bergen and Tromsø that

obtain different risk profiles. The greater Bergen area, famous for heavy rainfall, gets

assigned an above average (that is, > 1) climatological risk, resulting in an above average

combined risk. For Tromsø, the climatological risk and subsequently the combined risk

is more varied within the considered region.

4.3. Projected risk development due to climate change

We employ 12 regional climate projections under both RCP 4.5 and 8.5 for the two future

periods 2031-2060 and 2071-2100 in order to assess risk development due to climate

change. It can be observed in Figure 3 that the estimated splines for the climatological

variables exhibit implausible behavior towards the tail of the distribution of the training

data. For example, the spline for average daily precipitation decreases starting at 9.5

mm/day. Simultaneously, the uncertainty of the spline increases dramatically, suggesting

that this effect likely constitutes an artifact of the statistical model rather than reflecting

a causal relationship. This does not have much effect for the risk assessment in the

current climate, since only few data points are located within the affected range. In

climate projections for future time periods, however, the distribution of the climatological

variables is shifted. As a result, the tail estimates of the splines can have much higher

impact. To counteract an implausible extrapolation of the model beyond the range of the

training data, we regularize the model by freezing the two climatological splines before

the 1st percentile and past the 99th percentile of the training data, indicated as vertical

dotted lines in Figure 3. This extrapolation issue and associated model assumptions are

further discussed in Section 5.

To visualize future projected changes in risk, we consider the ratio of future and

present climatological risk factors. Figure 5 shows the 10th, 50th and 90th percentile of

projected risk ratios based on the 12 different climate models. The projections show a

significant increase in risk for the west coast up to and including the Lofoten archipelago,

as well as for the southeastern part of the country around the capital, Oslo. Towards the

end of the century, both RCP scenarios project large areas with increased risk of 25%
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Fig. 5. Ratio of projected future climatological risk for 2031-2060 (top) and 2071-2100 (bottom)

and historical 1991-2020 climatological risk, see Section 3.2 for a definition. Each column shows

pointwise 10th, 50th and 90th percentiles of the probabilistic projections based on 12 climate

models.
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Fig. 6. Projected relative change in number of claims for all municipalities in Norway based on

climate projections for 2031-2060 (top) and 2071-2100 (bottom) relative to estimates for 2009-

2021 based on 1991-2020 climatology. For each future period, the first row is based on climate

projections under RCP 4.5 and the second row under RCP 8.5. The columns shows the 10th,

50th and the 90th percentile (for each municipality) based on 12 climate models.
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and higher. Under RCP 8.5 an increase of more than 35% is projected for some areas.

None of the considered scenarios project a decrease in risk for any part of the country.

The maps shown in Figure 5 are exclusively based on the projected changes in mean

quarterly precipitation and surface temperature. Alternatively, we can use our full model

to project the change in number of claims per municipality. These projections incorpo-

rate topography and building-specific characteristics of the contracts within each mu-

nicipality and are thus more directly connected to Gjensidige’s portfolio. The resulting

projections are shown in Figure 6. These overall ratios are somewhat higher than for

the climatological risk in Figure 5, in that a larger overall area has a projected relative

change of more than 15% in Figure 6 compared to Figure 5. This effect can partly be

explained by the uneven spatial distribution of buildings within the considered munic-

ipalities: The majority of Norway’s population lives in coastal areas, where a higher

increase of risk is expected according to Figure 5.
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Fig. 7. Densities for relative risk factors derived from the climate projections compared to the

reference period 1991-2020. Each density represents one climate model configuration (see

Table 1), and shows the distribution of projected risk factors across all grid cells covering Norway.

The colors of the densities highlight the two different driving GCMs.

Figure 7 shows densities of projected relative climatological risk factors across all grid

cells covering Norway for the different climate model configurations. The figure shows

that these marginal distributions are rather similar between the different climate models

for each projection period and RCP scenario. All densities for the future period 2031-

2060 as well as densities for 2071-2100 under RCP 4.5 have a mode within the interval
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[1, 1.05] while the projections for 2071-2100 under RCP 8.5 are more diffuse with modes

within the interval [1, 1.3]. Furthermore, the densities are skewed with a heavy upper

tail and an increasing skewness for a more pessimistic RCP and/or a time period further

in the future.

We compare our findings to the results of Haug et al. (2011), who modeled the

number of claims on the level of municipalities at a daily temporal resolution. That is,

they consider a spatially aggregated insurance portfolio and meteorological information

at a higher temporal resolution compared to our analysis. This renders use of building-

specific covariates impossible, and even if they include hydrological variables like runoff,

they do not use topography in their model. Further, Haug et al. (2011) consider a single

climate model and are thus only able to capture model uncertainty and not uncertainty

due to differences between different climate models. We extend this by considering both

uncertainty in model parameters and variability resulting from different climate model

configurations (see Table 1). In Figure 8, we show projected future change in the number

of claims for three counties considered in Haug et al. (2011)†.

Figure 8 displays the point estimate and approximate 95% confidence intervals for the

ratio of expected number of claims in the historical time period compared to 2071-2100.

The estimates are based on 50 simulations from a multivariate normal approximation

of the posterior distribution of the model parameters. For all counties the variation

between the climate model configurations is greater than the variation due to parameter

uncertainty, showing that this is an essential part of the overall uncertainty quantifica-

tion. Our results are not directly comparable to those in Haug et al. (2011) as they use

different climate models, emission scenarios, statistical models and reference period, but

some comments are justified. While our projected ratios for Akershus are approximately

the same on average as the results reported in Haug et al. (2011), Buskerud, and espe-

cially Hordaland, have significantly higher projected ratios in the current setting than

previously reported.

†Haug et al. (2011) compare Akershus, Buskerud and Hordaland, counties that no longer exist

due to a restructuring of counties in 2020. For comparison, we derive predictions for these old

counties by averaging predictions for all properties lying within the old county borders.
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Fig. 8. Ratios of change in the number of claims due to climate change under RCP 8.5 and

RCP 4.5 for the period 2071-2100 for three counties in Norway. The climate model configuration

numbers on the x-axis correspond to the ordering in Table 1. The uncertainty bands are given

by twice the standard deviation based on 50 samples from the posterior distribution of the model

parameters.
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5. Discussion
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Fig. 9. Left: Densities of 90th percentile of relative change in number of claims due to climate

change under RCP 8.5 for the period 2071–2100 across all gridpoints in Norway. Right: Den-

sities of 10th percentile of relative change in number of claims due to climate change under

RCP 4.5 for the period 2031–2060 across all gridpoints in Norway. Each color represents pro-

jections from different regression models: spline represents the model described in Section 3,

linear means that the effect of precipitation and surface temperature is linear on log scale, trunc

means precipitation and surface temperature is truncated at the 1st and 99th percentile of the

training data and no st means that surface temperature is excluded from the model.

The projection of water damage risk to a future climate involves extrapolating the

model in Equation (3) beyond the range of the climatological indices for the refer-

ence period 1991-2020. As Norwegian climate is expected to get warmer and wetter

(Hanssen-Bauer et al., 2009), the extrapolation primarily involves an extrapolation be-

yond the upper limit of the in-sample values, see Figure 3. The projections presented in

Section 4.3 are based on splines truncated at the 1st and 99th percentile of the in-sample
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distribution of covariate values. In order to assess the effect of this modeling choice, we

have also formed water damage risk projections using a linear model for the climatolog-

ical covariate effect applied with or without truncation, as well as models that only use

a precipitation index rather than both precipitation and temperature indices. A model

comparison is shown in Figure 9. Figure 9 shows that the modeling choice presented in

Section 4.3 is the least conservative of the considered options. In particular, we see that

the projected increase in water damage risk is, to a large extent, driven by the inclusion

of a temperature index. However, a comparison of the predictive performance of these

models in the current climate through a cross-validation study as presented in Section 4.1

shows that the non-linear splines with both temperature- and precipitation-based indices

significantly outperforms the other modeling options (results not shown).

In Figure 3, we see a steep increase in the spline for high temperatures. Physically,

there is no immediate explanation why high temperatures should generate more claims.

Thus these temperatures most likely act as a proxy for some other phenomenon expressed

in the data. One hypothesis would be that high surface temperatures are associated with

more frequent cloud bursts typically seen during the warm season and in particular on

hot days (local, convective precipitation). In urban areas such events are known to bring

potential risk of vast water damage due to a high proportion of non-porous surfaces, often

in combination with limited capacity of the sewer system. Claims generated from such

conditions will possibly ascribe high values of the temperature variable as the key source

for their occurrence. Rural areas also experience hot days with cloud bursts, on average

to the same extent as urban areas. Buildings in rural areas are less vulnerable to these

events and, for these areas, we would expect the spline to have less of a steep increase for

high temperatures. However, as the majority of the buildings in the insurance portfolio

are situated in urban areas the model estimates are formed primarily from the pattern

of urban claims.

In a study of water damages in Switzerland, Bernet et al. (2019) show that criti-

cal thresholds for precipitation events vary substantially across complex terrain. The

models presented in Section 3 assume that a certain level of quarterly precipitation and

temperature has the same effect on damage risk everywhere in Norway, cf. Figure 3.
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Similar to Switzerland, there are substantial country-wide differences in climate. In

particular, the amount and type of precipitation observed along the west coast is quite

different from that observed e.g. in the Oslo region on the east side (Hanssen-Bauer

et al., 2009). To account for this, building traditions and wastewater collection systems

vary across the country. We thus investigated models with spatially varying effects of

precipitation and temperature. However, we found that this added model complexity

yields poorer predictive performance which we believe to be due to overfitting. The

climatic variability (and its impact on building and infrastructure traditions) is one of

several effects that are implicitly accounted for by the county and municipality effects.

Infrastructure adaptation to local climate might also partially explain why the response

effect of precipitation is not monotonically increasing, cf. Figure 3. It should be noted

that future projections for risk are made conditional on the current infrastructure in

each municipality or county.

The majority of studies that model the effect of weather on insurance risk consider

spatially aggregated claims data, see introduction for references. We take a different

approach, modeling each property and location separately, but aggregating weather

variables over longer time spans. This has the major advantage that it allows to in-

corporate building-specific covariates, such as whether the property has a basement or

not. Moreover, a spatially disaggregated model is required to include the effect of local

topography, since variables such as slope vary rapidly in space and quickly lose accuracy

when they are spatially averaged. Our analysis shows that including both topographic

and building-specific covariates substantially improves the predictive skill of the model.

Moreover, risk models applied by insurance companies generally include building specific

information. This makes it challenging in practice to include information from spatially

aggregated models into operational risk models.

On the other hand, using temporally aggregated weather data comes with the dis-

advantage that the model cannot learn from clusters of claims that are associated with

heavy rainfall events. However, the aggregation of weather data in time is appropriate

for predicting changes in risk due to climate change. Climate models generally aim to

project changes in the distribution of weather rather than to provide accurate predic-
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tions of daily future weather. We did explore models putting more emphasis on aggregate

measures of weather extremes rather than average weather variables (results not shown).

For example, we fitted models considering the 95th and 99th percentile of local rainfall.

Such models generally did not perform better than models based on average precipita-

tion. The likely reason is that such indices are generally strongly correlated with average

precipitation (in our data correlations were typically around ρ ≈ 0.99).

During our research we also experimented with models that neither aggregate in space

nor time, i.e., targeting the binary response whether a claim happened for a specific

property on a given day. While such models are in principle feasible for the data sets

considered here, they are much more computationally costly. Moreover, the resulting

models tended to be sensitive to outliers in the weather. This resulted in occasionally

unreasonably high probabilities for a claim of 90% or higher for single properties at

days with extreme precipitation, in particular when future climate projections were

considered.

6. Conclusions

This paper proposes a nationwide model for risk of rainfall-induced water damage in

Norway. The model incorporates local topographical and climatological information as

well as contract-specific property data. The overall risk assessment can be decomposed

into several factors which, in particular, allows for the derivation of topographical and

climatological risk maps covering the entire country. Climate projections yield projec-

tions for changes in water damage risk in future decades due to climate change. Based

on a multi-model ensemble of regional climate projections, we project a spatially varying

increase in risk of as much as 25% for large areas towards the end of this century.

Insurance companies’ risk models materialize in tariffs that price the individual cus-

tomer and the individual object. Historical damages and losses—including those caused

by pluvial flooding—form the basis for the tariffs, and trends together with knowledge of

future changes make the tariffs predictive. The results of this study improve the pricing

quality in multiple ways. Gjensidige will gain knowledge about future developments in

the overall level of losses, the geographical loss distribution related to present and future
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climate and the risk level of individual buildings due to their location in the terrain.

These are aspects that expand and challenge current risk assessment practice in the

insurance sector. The model provides not only precise risk information for Gjensidige’s

existing customers, but also any potential new object—built or planned—in Gjensidige’s

future portfolio. All of this is crucial information for pricing according to risk at both

portfolio and customer level.

Risk associated with climate and climate change plays a special role compared to

other risks due to global efforts for climate change adaptation and mitigation. The risk

models that have been developed here provide Gjensidige with a basis for redistribution

of premiums at building level (topography) and future redistribution and adaptation at

geographical level. More importantly, the new knowledge can be utilized to reduce risk

for both municipalities and individual customers, supporting and furthering a sustain-

able business strategy. Municipalities can gain valuable insights regarding investment

priorities such as upgrades of sewerage networks or planning of new residential or com-

mercial areas. Gjensidige will also seek to use the results to develop preventive measures

that customers can implement themselves.

After an earlier trial period, Norwegian insurance companies will from 2022 provide

claims data related to weather and climate to the Norwegian authorities. The purpose

of this program is for the municipalities to get an overview of areas with high risk

exposure so that measures can be taken where they are expected to have the greatest

effect. The results of the current study provide valuable knowledge regarding expected

future changes in this context. Models of the type presented here can help ensure

that measures are prioritized to provide the greatest possible societal benefit, both by

preventing economic and social costs and because every damage entails a CO2 cost.

The most effective climate change adaptation and mitigation strategy for an insurance

company is to prevent damage occurrence.
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