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Abstract

Exposure to fine particulate matter (PM2.5) poses significant health risks and accurately determining the shape
of the relationship between PM2.5 and health outcomes has crucial policy implications. Although various statisti-
cal methods exist to estimate this exposure-response curve (ERC), few studies have compared their performance
under plausible data-generating scenarios. This study compares seven commonly used ERC estimators across 72
exposure-response and confounding scenarios via simulation. Additionally, we apply these methods to estimate the
ERC between long-term PM2.5 exposure and all-cause mortality using data from over 68 million Medicare benefi-
ciaries in the United States. Our simulation indicates that regression methods not placed within a causal inference
framework are unsuitable when anticipating heterogeneous exposure effects. Under the setting of a large sample size
and unknown ERC functional form, we recommend utilizing causal inference methods that allow for nonlinear ERCs.
In our data application, we observe a nonlinear relationship between annual average PM2.5 and all-cause mortality in
the Medicare population, with a sharp increase in relative mortality at low PM2.5 concentrations. Our findings suggest
that stricter limits on PM2.5 could avert numerous premature deaths. To facilitate the utilization of our results, we
provide publicly available, reproducible code on Github for every step of the analysis.
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1 Introduction
In 2019, air pollution contributed to an estimated 6 million deaths worldwide, accounting for nearly 12% of total global
mortality (Health Effects Institute, 2020; Murray et al., 2020). As the leading environmental risk factor for premature
mortality, air pollution contributes to a higher number of estimated deaths each year than traffic collisions (Health
Effects Institute, 2020; Murray et al., 2020; Manisalidis et al., 2020). Long-term exposure to ambient fine particulate
matter (PM2.5) is the largest driver of the burden of disease from air pollution worldwide (Health Effects Institute,
2020). In the United States, more than 40% of the population resides in counties with unhealthy levels (above 35
µg/m3) of particle pollution (Ameircan Lung Association, 2022). Although the detrimental health effects of PM2.5 are
widely acknowledged, the shape of the relationship between particle pollution and adverse health outcomes, known
as the exposure-response curve (ERC), remains uncertain. Accurate characterization of the ERC, particularly at lower
exposure levels, has significant policy implications.

In 2021, guided by epidemiological findings on the relationship between fine particulate matter and mortality risk,
the World Health Organization (WHO) released new Global Air Quality Guidelines. These guidelines recommend
reducing the annual average limit of PM2.5 from 10 µg/m3 to 5 µg/m3 (World Health Organization, 2021). These
guidelines are widely used by decision makers and this change will influence the air quality standards implemented
by various international governing bodies. In the United States (USA), the Environmental Protection Agency (EPA)
relies on the estimated shape of the ERC between air pollution and health outcomes to determine whether to lower
the National Ambient Air Quality Standards (NAAQS). The establishment of the NAAQS was predicated on ensuring
public health safety within a sufficient “margin of safety,” a guideline that is significantly influenced by the form of
the ERC (US Environmental Protection Agency, 2015). For example, an ERC illustrating a reduced slope at lower
concentrations of PM2.5 relative to the average slope observed throughout the entire spectrum of recorded PM2.5 levels
could steer the determination of the NAAQS threshold towards the point where a notable change in slope is observed.
Similarly, identifying a threshold relationship in the ERC can play a crucial role in determining a suitable limit. On the
contrary, if the ERC exhibits a sublinear trend, it might require stricter measures to mitigate potential mortality risks.

Epidemiological evidence in the USA has found that health risks persist at PM2.5 levels below the current NAAQS
set at 12 µg/m3 for annual exposure, suggesting the need for a lower standard (Di, Dai, et al., 2017; Wei et al., 2020;
Shi et al., 2021; Ward-Caviness et al., 2021; EPA, 2019). In January 2023, the EPA requested public comment on a
proposal to lower the NAAQS for annual PM2.5 concentrations. The EPA estimates that adopting stricter standards
could prevent up to 4,200 premature deaths annually (Davenport, 2023). Recent evidence suggests that the effects of
PM2.5 can vary among marginalized subpopulations delineated by racial identity (Black vs. White) and income level
(Medicaid eligible vs. ineligible), underlining the potential benefits of reduced levels of PM2.5 for these communities
(Josey et al., 2023). However, a significant challenge in implementing more stringent ambient air quality standards,
through setting a lower emission threshold, lies in establishing conclusive evidence of the causal link between partic-
ulate matter and health outcomes based on epidemiological data. Estimating the shape of the ERC and quantifying its
uncertainty is complicated by the misaligned nature of the data, potential confounding factors, and effect heterogeneity.

To overcome these challenges, various methods have been proposed and implemented to characterize ERCs. In
the field of air pollution epidemiology, ERCs are traditionally fit using a multivariate regression model with the health
outcome as the dependent variable, air pollution exposure as an independent variable, and many potential confounders
as additional independent variables (Di, Wang, et al., 2017; Liu et al., 2019). Past research has often imposed the
assumption of linearity between the natural log of the hazard ratio with respect to PM2.5, restricting the ERC to rep-
resent an exponential increase in mortality per unit increase in pollutant concentration. Nonparametric or nonlinear
functional regression methods provide greater flexibility in describing the shape of the ERC but may not adequately
capture threshold effects (Nasari et al., 2016). Other developed methods like the Extended Shape Constrained Health
Impact Function (SCHIF) allow nonlinear association and can capture threshold behavior but impose more restrictive
model specifications (Burnett et al., 2018). Furthermore, some scientists argue against relying solely on regression-
based ERC estimation in epidemiological studies, citing a lack of causal evidence, and advocate for the use of causal
inference methods to inform air pollution policies (Chartered Clean Air Scientific Advisory Committee, 2018; Gold-
man et al., 2019). Indeed, the EPA prioritizes studies employing causal inference methods to determine the limits of
the NAAQS (Owens et al., 2017).

Causal inference methods are often placed in the potential outcomes framework (Rubin, 1974), which distinguishes
between the design and analysis stages (Imbens and Rubin, 2015). In the design stage, researchers define the causal
estimands and target population, and employ design-based methods like matching or weighting to construct a data set
that emulates an experimental setup, where units with similar characteristics are compared across various exposure
scenarios. After evaluating design quality using metrics such as covariate balance, researchers proceed to the analysis
stage to estimate causal effects. The field of environmental health has advocated for and incorporated causal inference
frameworks in analyzing the impact of environmental exposures on health outcomes (M.-A. Bind, 2019; M.-A. C.
Bind et al., 2019; Carone et al., 2020; National Academies of Sciences, Engineering, and Medicine, 2022). Numerous
recent studies have employed these frameworks to delineate the effects of air pollution on health, demonstrating the
growing importance and application of causal inference in this field (Zigler et al., 2016; Francesca Dominici et al.,
2017; National Academies of Sciences, Engineering, and Medicine, 2022; Brewer et al., 2023)

Causal inference methods, under certain assumptions, exhibit greater robustness to model misspecification com-
pared to traditional regression methods (Imbens and Rubin, 2015). However, many causal inference approaches make
the simplified assumption of a binary exposure (Robins, 2000; Hernán et al., 2000; van der Laan et al., 2011; Rosem-
baum et al., 1983; Rubin and Thomas, 1996). Many methods to estimate causal ERCs focused on approaches that
use the generalized propensity score (GPS) (Robins, 2000; Hirano et al., 2005; Robins et al., 1994; Imai et al., 2004).
These approaches include outcome modeling (Callaway et al., 2020; Imbens, 2004; Zhao et al., 2020), the use of
weighting techniques (Ai et al., 2022; C. Fong et al., 2018; Huber et al., 2020; Yiu et al., 2018), and the imple-
mentation of machine learning strategies (Kreif et al., 2015; Zhu et al., 2015). However, these methods are sensitive
to misspecification of the GPS model and extreme weights. Doubly robust approaches mitigate this issue and pro-
vide asymptotically unbiased estimates of the ERC when either the outcome model or GPS model are misspecified
(Kennedy et al., 2017; Colangelo et al., 2022; Schulz et al., 2021). Recently, weighting methods that directly op-
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timize covariate balance have been extended to the continuous exposure setting (Vegetabile et al., 2021; Tübbicke,
2022; Huling et al., 2023). Another contemporary development focuses on the extension of the matching framework
to the context of continuous exposures through a GPS caliper matching framework (Wu, Mealli, et al., 2022). Each
proposed method has been tailored to address specific requirements in causal inference. However, limited research has
compared the behavior of these methods under different assumed exposure-response relationships and confounding
mechanisms.

In this paper, we aim to fill this research gap by conducting a comprehensive simulation study to compare various
estimators of the exposure-response curve. We evaluate the performance of seven estimators, including both regression
and causal inference methods, in a range of plausible ERC scenarios and confounding relationships. Furthermore, we
apply these methods to estimate the ERC between long-term PM2.5 exposure levels and all-cause mortality in a large
observational administrative cohort comprising more than 68 million Medicare beneficiaries in the continental United
States from 2000 to 2016. In particular, this study represents the first application of multiple statistical approaches
to a data set that encompasses more than 500 million person-years of Medicare data. To ensure reproducibility and
facilitate public access, we utilize methods available on CRAN and provide code for each step of the analysis on
Github. The analysis code can be accessed at https://github.com/macork/ERC simulations, while the code detailing
the data processing for our data application can be found at https://github.com/NSAPH/National-Causal-Analysis.

2 Methods

2.1 Estimand and estimators
We begin by providing a formal definition of our target estimand. Let Ei ∈ R

+ represent a continuous nonnegative
treatment or exposure for the ith unit in our target population. In alignment with the potential outcomes framework
(Rubin, 1974) and adopting the notation established by Imbens and Hirano (Imbens, 2000; Imbens, 2004), the random
variable Yi(e) denotes the potential outcome for subject i when exposed to a level e ∈ E of exposure, where E denotes
all levels of the exposure. We are interested in the random variable Yi(e), which represents the potential outcome at
different levels of exposure. However, note that Yi(e) cannot be directly estimated between various exposure values
since Yi(e) is observed only for one exposure value for each unit, known as the fundamental problem of causal infer-
ence. Therefore, we shift our target estimand to the population ERC R(e), defined as the expected potential outcome
at each exposure level R(e) = E[Yi(e)], where the expectation is taken over the distribution of the counterfactual result
in the population of interest.

In most scenarios, treatments or exposures are not randomly allocated across the population of interest, even within
experimental settings. Consequently, to achieve consistent estimates of the ERC in observational studies, certain
identifiability assumptions are required. First, given the observed pretreatment covariates X, the potential outcomes
must be independent of the received treatment or exposure.

Yi(e) y Ei | Xi ∀e ∈ E (1)

This principle, often referred to as unconfoundedness, selection on observables (Heckman et al., 1985), or the con-
ditional independence assumption (Lechner, 2001), presupposes that the researcher has identified and measured all
covariates that influence both the assignment to exposure and the potential outcomes. The next assumption establishes
the need for a common support. Specifically, the conditional density of the treatment or exposure should maintain a
positive value across E.

fE|X (E = e | Xi) > 0 ∀e ∈ E (2)

Compared to a binary exposure scenario, this condition can be considerably more stringent, especially in areas with
limited exposure density. Under such conditions, trimming the sample and estimating the ERC from a subset of
observations may be necessary to avoid extrapolation (Crump et al., 2009; Lechner and Strittmatter, 2019). Finally, we
adopt the Stable Unit Treatment Value Assumption (SUTVA), stating that an individual’s outcome depends exclusively
on their specific exposure (Rubin, 1980), thus ruling out spillover effects. Although these assumptions are frequently
invoked to identify the ERC in observational studies, they might not be sufficient to ensure a particular estimator’s
accurate discernment of the ERC.

In this analysis, we compared the performance of seven different estimators in approximating R(e) across various
assumed exposure-response relationships and confounding mechanisms (Table 1). The first three estimators used to
approximate the ERC are regression methods often used in practice. These regression methods included a linear model
that adjusts for all variables in a linear manner (linear), a generalized additive model that accounts for confounders
linearly while allowing for a flexible nonlinear relationship between exposure and outcome through a spline basis
representation (GAM), and a change point model that fits a segmented linear model with a single break point (change
point). These traditional regression methods do not separate between a design and analysis stages. In contrast, the
remaining four estimators are design-based methods commonly used in the field of causal inference. Specifically, we
employed the same linear, GAM, and change point outcome models. However, instead of adjusting for confound-
ing using linear regression terms, we utilized entropy balancing to generate continuous treatment weights. Entropy
balancing is a method to create optimal weights to balance covariate distributions across exposure levels, thus flexi-
bly controlling for observed confounders in causal estimation (Hainmueller, 2012). This method works by solving a
convex optimization problem, with the aim of minimizing deviations from uniform base weights while ensuring zero
correlation and adhering to normalization constraints (Tübbicke, 2022; Vegetabile et al., 2021). In its simplest form
for a continuous exposure, entropy balancing generates weights that eliminate the correlation between the exposure
variable and all covariates. However, removing the correlation alone may not be enough to ensure independence.
Therefore, entropy balancing can be expanded to include higher moments of the treatment variable (Yiu et al., 2018;
Tübbicke, 2022). To mitigate the presence of extreme weights, we generated weights and then truncated the upper
0.5% of weights to the 99.5% percentile. Once we obtained the weights, we estimated the ERC using the same re-
gression techniques based on the weighted sample (linear entropy, GAM entropy, and change point entropy). The
seventh and final estimator, CausalGPS, extends the matching to the context of continuous exposure through a GPS
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caliper matching framework (Wu, Mealli, et al., 2022). Further details on this estimator can be found in the CausalGPS
package and the supplementary materials.

Estimator name Description Algorithm Software package

Linear Gaussian linear model that linearly adjusts
for expsoure (E) and covariates (C)

Chapter 4 (Chambers
et al., 1992)

stats
(R Core Team, 2021)

GAM Generalized linear model employing spline
with four degrees of freedom to adjust for E
and linearly adjusts for C

Chapter 3, 4
(Wood, 2017)

mgcv
(Wood, 2017)

Change point Segmented threshold regression model with
threshold value based on E, model linearly
adjusts for C

Implementation
section
(Y. Fong et al., 2017)

chngpt
(Y. Fong et al., 2017)

Linear entropy Same outcome model as linear with entropy-
based weight adjustment

Section 3
(Tübbicke, 2022)

WeightIt
(Greifer, 2022)

GAM entropy Same outcome model as GAM with entropy-
based weight adjustment

Section 3
(Tübbicke, 2022)

WeightIt
(Greifer, 2022)

Change point
entropy

Same outcome model as change point with
entropy-based weight adjustment

Section 3
(Tübbicke, 2022)

WeightIt
(Greifer, 2022)

GPS matching
(CausalGPS)

Causal inference method that uses GPS
matching in a continuous setting

Section 3.1 (Wu,
Mealli, et al., 2022)

CausalGPS (Wu,
Mealli, et al., 2022)

Table 1: Overview of Estimators for Analyzing the Exposure-Response Curve. The Algorithm column cites the
precise sections within a resource where the methodologies for each estimator are elaborated. The Software package
column identifies the R packages employed for implementing each estimator in this study.

2.2 Simulation setup
We conducted a comprehensive set of simulations to evaluate the performance of our methods in estimating the effect
of a continuous exposure on a continuous outcome under various data-generating mechanisms. In particular, we
examine how each estimator performed in different scenarios: (1) when the marginal relationship between exposure
and outcome changed, (2) when the relationship between the confounders and exposure shifted, (3) when there was an
interaction between the exposure and confounders in the outcome model, and (4) when the sample size varied.

2.2.1 Simulation settings

For each observation i = 1, . . . , n we generated a vector of six covariates Ci = (C1i,C2i, ...,C6i) with five continuous
components and one categorical component:

(C1i, ...,C4i)′ ∼ MVN(0, I4),C5i ∼ V {−2, 2},C6i ∼ U (−3, 3)

whereMVN(0, I4) denotes a multivariate normal distribution, I4 is the identity matrix, V {−2, 2} denotes a discrete
uniform distribution, and U(−3, 3) denotes a continuous uniform distribution. To generate exposure Ei, we outlined
four specifications of the relationship between confounders and exposure, which based on the cardinal function γ(C) =
−0.8 + (0.1, 0.1,−0.1, 0.2, 0.1, 0.1)C. The coefficients of the cardinal function γ(C) were similar to those used in
previous research (Kennedy et al., 2017; Wu, Mealli, et al., 2022). The relationship between the covariates and
the exposure (exposure model) varied in terms of error distribution and complexity, as described by the following
equations.

Elinear = 9 ∗ γ(C) + 18 + N(0, 10)

Eheavy-tail = 9 ∗ γ(C) + 18 +
√

5 × T (3)

Enonlinear = 9 ∗ γ(C) + 2 ∗C2
3 + 15 + N(0, 10)

Einteraction = 9 ∗ γ(C) + 2 ∗C2
3 + 2 ∗C1C4 + 15 + N(0, 10)

In the first scenario, denoted as Elinear, a linear relationship between E and C is assumed, with the addition of
normal noise characterized by N(0, 10), representing a normal distribution with a variance of 10. In the Eheavy−tail

scenario, the relationship between E and C remains linear, but the exposure values were heavy-tailed and include
extreme values. Specifically, we use T (3) to represent a Student’s t-distribution with 3 degrees of freedom. The
Enonlinear scenario introduced a nonlinear relationship between E and C while retaining normal noise. In the fourth
scenario, Einteraction, an interaction term was added to the relationship between exposure and confounders. The scale
(9) and location (18, 18, 15, 15) parameters were specified to ensure that more than 95% of the exposure values
exist between the range of [0, 20]. These simulation scenarios were designed to be comparable to the exposure range
observed in our data application. As a final step, we enforced that all exposure values be nonnegative to reflect plausible
air pollution exposure values and ensure the validity of all the data-generating mechanisms. This was achieved by
oversampling the number of exposure values, allowing us to remove any negative values and then randomly sample
the remaining exposure values to match the desired sample size.

In all scenarios, we generated the outcome variable Yi from a normal distribution Y |E,C ∼ N(µ(E,C), 102), where
the mean function µ(E,C) is determined by the exposure (E) and the confounders (C), and the standard deviation
σ is set to 10. We considered three different specifications of the exposure-response curves: linear, sublinear, and
threshold, denoted µlinear, µsublinear, and µthreshold, respectively. These three ERCs represent plausible relationships
between air pollution and adverse health outcomes. For each specification of the ERC, we examined two outcome
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models. The first model, denoted µERC, assumed a linear relationship between confounders and the result, independent
of exposure. The second model, denoted µERC,int, incorporated an interaction term between the confounders and the
exposure. This interaction term accounts for the presence of heterogeneous treatment effects, where the impact of the
exposure on the outcome is influenced by an individual’s covariate values. The formulations of the mean functions are
provided as follows:

µlinear(E,C) = 20 − (2, 2, 3,−1, 2, 2) ∗ C + E

µsublinear(E,C) = 20 − (2, 2, 3,−1, 2, 2) ∗ C + 5 log(E + 1)

µthreshold(E,C) = 20 − (2, 2, 3,−1, 2, 2) ∗ C + 1.5E[E > 5]

µlinear, int(E,C) = µlinear + E(−0.1C1 + 0.1C2
3 + 0.1C4 + 0.1C5)

µsublinear, int(E,C) = µsublinear + 3 log(E + 1)(−0.1C1 + 0.1C2
3 + 0.1C4 + 0.1C5)

µthreshold, int(E,C) = µthreshold + 1.5E[E > 5](−0.1C1 + 0.1C2
3 + 0.1C4 + 0.1C5)

In total, we generated data for 72 different scenarios combining four exposure specifications, six mean function
specifications for our outcome model, and three sample sizes (N = 200, 1000, 10,000). For each scenario, we con-
ducted 1000 simulations, where we simulated the exposure and outcome models in each iteration. We also conducted
an additional data-informed simulation where we sampled from the data set used in our application to provide further
evidence that our findings are applicable in real-world settings. Refer to Section 2.3.3 for more details.

2.2.2 Evaluation of estimators

Under every data-generating scenario we estimated the ERC using all seven estimators. We evaluated the goodness of
fit of the estimators by comparing the absolute bias and the root mean squared error (RMSE) of the estimated ERCs.
We estimated these two quantities empirically by first evaluating the metric at equally spaced values in the range Ê∗ for
all simulation replicates. We then averaged the metrics for each point across the exposure range Ê∗. Ê∗ is a restricted
support of Ê where we excluded some mass at the boundary to avoid boundary instability and only evaluated the ERC
from zero to twenty (Kennedy et al., 2017). The two quantities are formally defined as:

|Bias | = M−1
M∑

m=1

∣∣∣∣∣∣∣S −1
S∑

s=1

R̂s (em) − R (em)

∣∣∣∣∣∣∣
RMSE = M−1

M∑
m=1

S −1
S∑

s=1

(
R̂s (em) − R (em)

)21/2
(3)

Here, M = 100, and e1, ..., eM are equally spaced points in the restricted support Ê∗. R̂s represents the estimate of the
ERC in simulation s. We report bias and RMSE for each approach averaged across S = 1000 simulations.

For causal estimators, we evaluated the quality of the design setup by assessing the covariate balance. Covariate
balance measures the similarity of the distribution of observed preexposure covariates across all exposure levels to
avoid confounder bias. Previous literature suggests that achieving an absolute correlation of 0.1 or lower indicates
empirical covariate balance (Zhu et al., 2015). In the case of entropy balancing, we calculated the absolute correlation
by considering the weighted correlation between each covariate and the exposure, using the weights generated during
the design phase. The CausalGPS method follows a similar procedure to compute the measure of absolute correlation
(Wu, Mealli, et al., 2022).

2.3 Data application

2.3.1 Data set

We apply the proposed methods to estimate the effect of long-term PM2.5 exposure on all-cause mortality using a
previously identified data set (Josey et al., 2023). We used the Medicare enrollee cohort in the contiguous USA from
2000 to 2016, which includes demographic information such as age, sex, race/ethnicity, date of death, and residential
ZIP code. The study population consisted of over 68 million individuals residing in 31,414 ZIP codes, for which we
compiled the number of deaths among Medicare enrollees for each ZIP code and year. Annual estimates of PM2.5
exposure were obtained from a validated ensemble prediction model developed in previous research (Di, Amini, et al.,
2019). To obtain the annual average PM2.5 in each ZIP code, we aggregated the daily PM2.5 exposure estimates at
a 1km x 1km grid cell resolution using area-weighted averages (Di, Wang, et al., 2017). We assigned the annual
average PM2.5 value to individuals residing in each ZIP code for each calendar year. The predicted annual average
PM2.5 ranged from 0.01 to 30.92 µg/m3, with the 5th and 95th percentiles being 4.26 and 15.04, respectively. To avoid
extrapolation at the limits of the exposure range, we trimmed the highest 5% and lowest 5% of PM2.5 exposures in the
ERC. This trimming practice aligns with previous literature (Liu et al., 2019; Di, Wang, et al., 2017) and assists in
meeting the causal assumptions necessary to identify our estimand of interest (Petersen et al., 2012).

To address potential confounding factors, the data set incorporated 10 variables at the ZIP code and county level.
These variables included ZIP code-level socioeconomic status indicators (SES) obtained from the 2000 and 2010 Cen-
sus and the 2005-2012 American Community Surveys (ACS), as well as county-level information from the Centers
for Disease Control and Prevention’s Behavioral Risk Factor Surveillance System (BRFSS) (Wu, Braun, et al., 2020;
Josey et al., 2023). Specifically, potential confounders consisted of two county-level variables: average body mass in-
dex and smoking rate; and eight census variables at the ZIP code level: proportion of Hispanic residents, proportion of
Black residents, median household income, median home value, proportion of residents in poverty, proportion of res-
idents with a high school diploma, population density, and proportion of residents who own their home. Furthermore,
we include four meteorological variables at the ZIP code level: summer (June to September) and winter (December
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to February) averages of maximum daily temperatures and relative humidity. The data set also included two indica-
tor variables indicating (i) the four census geographic regions of the United States (Northeast, South, Midwest, and
West) and (ii) calendar years (2000-2016) to adjust, respectively, for any residual or unmeasured spatial and temporal
confounding.

2.3.2 Analysis

We used each of the methods described in our simulation to estimate the ERC between PM2.5 and all-cause mortality.
The outcome variable used was the log-transformed mortality rate, while the covariates at the ZIP code level, along
with the year and strata variables, were included in the models. To address zero rates, we replaced them with half the
minimum observed mortality rate across all ZIP codes and years. Following the proposed methodology, we fit each
model and exponentiated the mean estimates to obtain the estimated all-cause mortality rate as a function of PM2.5
concentration. The entire ERC was reconstructed using estimates at 100 equidistant levels of exposure, ranging from
the minimum to the maximum observed PM2.5 concentration in our sample.

We aggregated the data set in this study at the ZIP code-year level and then stratified based on age, sex, Medi-
caid eligibility (as a proxy for individual-level socioeconomic status) and follow-up year. Since each ZIP code-year
contained varying amounts of person-time contributing to each stratum, we employed a weighted regression with
person-time as weights to accurately estimate the population ERC. However, we adapted the general approach for
our causal inference estimators due to the misalignment between the exposure and outcome measurements. Exposure
and confounder data were measured at the ZIP code-year level, whereas mortality data incorporate demographic and
structural strata within ZIP code-years. To address this discrepancy, we modified our approach, drawing on previous
work (Josey et al., 2023; Balzer et al., 2019). First, to account for confounding, we generated weights (entropy balanc-
ing weights for entropy balancing estimators and “matching weights” for CausalGPS) that balanced the distribution
of covariates across different exposure levels at the ZIP code-year level. Note that for entropy balancing weights,
we required that the first and second moments of exposure PM2.5 be uncorrelated with all covariates. This mitigated
confounding effects by breaking the association between exposure and covariates in the weighted data. Second, we
specified an outcome model in which we modeled mortality rates specific to ZIP code and year as a function of both
individual-level and ZIP code-level covariates. Finally, we fit the outcome model by multiplying the balancing weights
from the design stage of our analysis with the observed person-time within each ZIP code-year stratum. The validity
of this weighting procedure has been outlined in the literature (Dong et al., 2020; Zanutto, 2006). Further details
regarding each step can be found in the supplementary materials.

We implemented the M-out-of-N bootstrap procedure, where M = N/log(N), to construct the point-wise Wald 95%
confidence band for the ERC (Politis et al., 1994; Bickel et al., 2012). In this procedure, we utilized a block bootstrap
with ZIP codes serving as block units. This approach allowed us to consider the correlation between observations
across different years but within the same ZIP code (Wu, Mealli, et al., 2022). For each bootstrap replicate, we
recalculated the GPS and entropy weights and refit the outcome model. This ensured that the bootstrap procedure
accounted for the variability associated with both the design and analysis stages of the causal inference estimators.

2.3.3 Data-informed simulation

We carried out an additional simulation exercise using Medicare data to emulate key attributes of the data set used
in our main application, with the aim of providing additional evidence that the findings of our simulation study are
applicable in empirical practice. In this simulation, we selected a random sample from the Medicare data set (N =
10,000), with each observation sampled according to zip code, year, age group, gender, race, and Medicaid eligibility
status. We then incorporated the observed annual average PM2.5 concentration along with six covariates from the
Medicare data: Mean BMI, Median Home Value, Percentage of Individuals Who Have Ever Smoked, Percentage with
Below High School Education, Percentage Below the Poverty Level, and Average Winter Temperature. Subsequently,
simulations were conducted based on the six mean models described in Section 2.2.1. The covariates were standardized
to have a mean of 0 and a standard deviation of 1 to ensure the outcome was within a plausible range.

3 Results

3.1 Simulation results

3.1.1 Covariate balance

Before assessing the results of our simulation, we first evaluated the performance of our causal inference estimators
in achieving covariate balance. Covariate balance is determined by the relationship between the covariates and the
exposure, and it should be similar across all outcome models in our simulation. Good covariate balance is demonstrated
when the average absolute correlation between the covariates and the exposure is below 0.1 in the reweighted data
set. In Supplementary Figure S1, we present the number of simulations that achieved covariate balance using either
entropy balancing weights or the CausalGPS estimator. Entropy balancing weights consistently achieved covariate
balance, regardless of the sample size, as they are designed to limit the absolute correlation. They only failed to
achieve covariate balance in the heavy-tailed exposure setting under large sample sizes, which can be attributed to
our truncation procedure. The GPS matching framework used in the CausalGPS estimator tended to achieve covariate
balance in larger sample sizes (N = 10,000) or in the linear and heavy-tailed exposure models. On the other hand, it
often failed to achieve balance in the nonlinear or interaction exposure scenarios at lower sample sizes. For example,
with a sample size of 200, only 26% of simulations across all exposure models had a mean absolute correlation below
0.1 for the CausalGPS estimator, compared to 67% and 93% with sample sizes of 1,000 and 10,000, respectively.
Additionally, in Supplementary Figure S2, we report the average and upper and lower bounds for the correlation
achieved for each individual covariate using both entropy weights and the CausalGPS package, based on a sample size
of 1,000. Note that a mean absolute correlation below 0.1 does not guarantee that the absolute correlation falls below
0.1 for each individual covariate.
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3.1.2 Linear outcome model

We begin by presenting our results for the linear ERC scenario (µlinear, µlinear,int). Figure 1 compares the absolute bias
and RMSE of the seven estimators for a sample size of 1,000. Supplementary Figures S3 and S4 provide the absolute
bias and RMSE across all sample sizes. In the absence of an interaction term (µlinear), all estimators exhibited relatively
low bias. The linear model demonstrated the least bias and RMSE across different confounder settings. On the other
hand, the CausalGPS estimator showed the highest bias and RMSE, which decreased with increasing sample size
(Supplementary Figure S3).

In contrast, under an interaction outcome setting (µlinear,int), we observed that causal inference methods gener-
ally outperformed regression methods in terms of absolute bias. The entropy weights effectively debiased the results
in the linear and heavy-tailed exposure settings. However, the use of entropy balancing weights resulted in an in-
crease in absolute bias when exposure was defined by a nonlinear function of the covariates (Enonlinear, Einteraction). In
the nonlinear and interaction exposure settings, the CausalGPS estimator exhibited lower absolute bias compared to
entropy-weighted or non-causal methods. Regarding RMSE, the causal inference methods generally yielded similar
results to regression methods, except for the CausalGPS estimator, which showed higher RMSE. However, the RMSE
of the CausalGPS method reached a level comparable to that of other estimators at larger sample sizes (Supplementary
Figure S4). Supplementary Figure S5 displays the ERCs in the µlinear,int model setting. These plots reveal that while
the CausalGPS estimator exhibited minimal bias in its mean ERC curve for the nonlinear and interaction exposure
setting, it displayed a higher level of variability. Additionally, the GAM and change point models underestimated the
response at higher exposure values.

µlinear µlinear, int

linear heavy tail nonlinear interaction linear heavy tail nonlinear interaction

0.0

0.5

1.0

1.5

2.0

A
bs

ol
ut

e 
bi

as

a

µlinear µlinear, int

linear heavy tail nonlinear interaction linear heavy tail nonlinear interaction

0

1

2

3

Exposure model

R
M

S
E

b

Linear
Linear
entropy

GAM
GAM
entropy

Change
Change
entropy

CausalGPS

Figure 1: Absolute bias and RMSE of ERC estimators in the linear outcome model setting. (a) Absolute bias and
(b) RMSE from simulations under different specifications of our estimator with sample size of 1000. We plot the mean
absolute bias and RMSE from 1000 simulations. Plots are faceted by the presence or absence of an interaction in the
linear outcome model.

3.1.3 Sublinear outcome model

Next, we present results under the sublinear outcome model settings (µsublinear, µsublinear,int). In Figure 2 we compare the
absolute bias and RMSE for the seven estimators with a sample size of 1000. In the sublinear outcome model setting
without interaction (µsublinear), the GAM, change point, and CausalGPS estimators demonstrated the least absolute
bias. The GAM models consistently showed the lowest RMSE in this setting, while CausalGPS exhibited a large
RMSE.

When considering the presence of heterogeneous treatment effects (µsublinear,int), the GAM, change point, and
CausalGPS estimators again resulted in the least absolute bias in the linear and heavy-tail exposure settings. In the
nonlinear and interaction exposure settings, entropy weighting did not debias the ERC, and only the CausalGPS esti-
mator exhibited low bias. The CausalGPS estimator tended to debias more effectively at larger sample sizes (Supple-
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mentary Figure S6). Regarding the RMSE, we also observed that the GAM model consistently had the lowest RMSE
in the µsublinear,int setting. This result is surprising given the known bias in the model. We observed that the CausalGPS
estimator had a larger RMSE, which decreased with the sample size (Supplementary Figure S7). Supplementary Fig-
ure S8 demonstrates that only CausalGPS captured the ERC in the nonlinear and interaction exposure setting when
assessing the mean ERC at low or high exposure levels.
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Figure 2: Absolute bias and RMSE of ERC estimators in the sublinear outcome model setting. (a) Absolute bias
and (b) RMSE from simulations under different specifications of our estimator with sample size of 1000. We plot the
mean absolute bias and RMSE from 1000 simulations. Plots are faceted by the presence or absence of an interaction
in the sublinear outcome model.

3.1.4 Threshold outcome model

We computed the same metrics in the threshold outcome model setting (Figure 3). In the absence of interaction
(µthreshold), we observed that the change point models, with and without entropy weighting, exhibited the least absolute
bias. When assessing RMSE, both the change point estimators and the GAM estimators performed well. At larger
sample sizes, the change point entropy models showed comparable RMSE (Supplementary Figure S10).

Under an interaction mean outcome model (µthreshold,int), the change point entropy model demonstrated the lowest
absolute bias in the linear or heavy-tailed exposure setting. The CausalGPS estimator exhibited low absolute bias
in all exposure settings. When comparing RMSE, the entropy balancing scheme generally led to increased RMSE
compared to the unweighted estimators. However, this disparity disappeared at larger sample sizes (Supplementary
Figure S10). The GAM and change point models tended to have the lowest RMSE across the four exposure scenarios.
When assessing the ERCs in Supplementary Figure S11, few estimators captured the threshold behavior. CausalGPS
did not capture an effect below 5 on average in the Enonlinear and Einteraction settings and did not attenuate effects at
higher exposure levels. The change point entropy estimator captured the threshold only in the Elinear and Eheavytail

settings.
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Figure 3: Absolute bias and RMSE of ERC estimators in the threshold outcome model setting. (a) Absolute bias
and (b) RMSE from simulations under different specifications of our estimator with sample size of 1000. We plot the
mean absolute bias and RMSE from 1000 simulations. Plots are faceted by the presence or absence of an interaction
in the threshold outcome model.

3.1.5 Data-informed simulation

Additional simulation results using Medicare data for exposure and six covariates under the six mean model specifi-
cations are presented in Figure 4. For a linear mean outcome model without an interaction term (µlinear), all estimators
showed minimal bias. The linear model had the lowest bias and RMSE across various confounder scenarios. How-
ever, in an interaction outcome model setting (µlinear,int), causal inference methods outperformed regression methods
in absolute bias. The RMSE for causal inference methods was comparable to that of traditional regression methods in
this sample size (N = 10,000).

In the non-interaction sublinear outcome model scenario (µsublinear), the GAM, change point, and CausalGPS
estimators had the smallest absolute bias. GAM models resulted in the lowest RMSE, while CausalGPS showed a
significant RMSE. In scenarios with heterogeneous treatment effects (µsublinear,int), change point estimators had the
least absolute bias. Notably, causal inference methods could not effectively reduce bias in this context. Regarding
RMSE, GAM models consistently presented the lowest RMSE in the µsublinear,int scenario.

In a threshold setting without interaction (µthreshold), the change point estimators, both with and without entropy
weighting, showed the least absolute bias. Under an interaction mean outcome model (µthreshold,int), the change point
entropy estimator showed the lowest absolute bias. The change point estimator had one of the highest RMSE among
all evaluated methods across all mean model scenarios, including the (µthreshold,int) setting. In this particular scenario,
causal inference methods outperform traditional regression methods in terms of bias and RMSE.
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Figure 4: Absolute bias and RMSE of ERC estimators in all outcome model setting under data-informed sim-
ulation setting. (a) Absolute bias and (b) RMSE of estimators from simulations under different specifications of the
mean function of the outcome model with a sample size of 10,000. We plot the mean absolute bias and RMSE from
1000 simulations. The x-axis denotes outcome model type, and the plots are faceted by the presence or absence of an
interaction in the mean model.

3.2 Data application
We present the covariate balance graphs for the causal inference estimators using the Medicare data in Figure 5.
Note that while the absolute correlation between each covariate and exposure was not below 0.1 for the CausalGPS
estimator, the mean absolute correlation fell below 0.1.

Figure 6 shows the estimated ERC for mortality rate as a function of the annual average PM2.5. The change point
models, which failed to converge for this large data set, were omitted from the plot. Figure 6 shows that nonlinear
causal inference methods (GAM entropy, CausalGPS) exhibited a more pronounced increase in mortality at lower
levels of annual average PM2.5 before attenuating at higher concentrations, similar to our sublinear outcome model in
our simulations.

Figure 7 presents the estimated relative mortality rates for the Medicare population. We compared the estimated
mortality rate for each estimator with the estimated mortality rate at the current EPA limit of 12 µg/m3. All estimators
projected a decrease in relative mortality for the Medicare population at concentrations lower than 12 µg/m3. The
CausalGPS estimator demonstrated a more gradual decrease in relative mortality from 9-12 µg/m3 compared to other
estimators, followed by a sharp decrease at concentrations lower than 9 µg/m3. The GAM, GAM entropy, linear, and
linear entropy estimators illustrated similar decreases with overlapping confidence intervals.
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Figure 5: Covariate balance plots of the absolute Pearson correlation coefficients in the unweighted Medicare
data (unadjusted) and after weighing. Absolute Pearson correlation between each covariates and PM2.5 unadjusted
(red), after CausalGPS matching adjustment (green), and after entropy weighting adjustment (blue). Absolute correla-
tion of 0.1 (solid black line) or lower is considered empirically achieving covariate balance achieved (Zhu et al., 2015).
Mean absolute correlation across all covariates is shown by the dotted line for unadjusted (red) CausalGPS (green)
and entropy weighting (blue).
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Figure 6: Estimated ERC relating mortality as a function of annual average PM2.5 on Medicare enrollee cohort
with 95% confidence intervals. Estimator are designated by color; models failed to converge for change point and
change point entropy models.

Figure 7: Point estimates and 95% confidence intervals of the relative mortality rate corresponding to decreases
in annual average PM2.5 with respect to 12 µg/m3 on average for the Medicare population. Estimator are desig-
nated by color; models failed to converge for change point and change point entropy models.
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4 Discussion
Air pollution remains a significant threat to human health. Determining the shape of the exposure-response curve
(ERC) between PM2.5 exposure and all-cause mortality, while difficult to determine from large-scale observational
studies, is crucial for informing policy decisions. Various approaches have been developed to confront this chal-
lenge, and our analysis represents one of the first comprehensive comparisons of these approaches under diverse
data-generating mechanisms that reflect real-world scenarios in air pollution epidemiology. Our analysis was de-
signed to be accessible to the public, and the code for each step of the analysis is available on GitHub. Furthermore,
we applied each method to data from the Medicare database, which represents the largest cohort to date encompassing
the contiguous United States.

4.1 Simulation

Evaluating regression estimators

We briefly summarize our findings and contextualize them within the existing literature. In our simulations, we ini-
tially examined commonly employed regression methods, including multivariate linear regression, generalized additive
models with smooth terms for nonlinear effects, and change point models for detecting threshold effects. Each of these
regression methods does not explicitly separate a design and analysis stage and is not formulated in a causal inference
framework (Imbens and Rubin, 2015). Regression methods tend to perform well under two conditions: when the
relationship between exposure and outcome is consistent with the regression model and there are no heterogeneous
treatment effects (i.e. the outcome model is correctly specified). For instance, when the true relationship between
exposure and outcome is linear (µlinear) the linear estimator exhibits the lowest absolute bias and RMSE across all
exposure scenarios. This finding is consistent with standard linear model theory, where the ordinary least squares
estimator is considered the best linear unbiased estimator of the average treatment effect when the outcome model is
specified correctly (Lehmann et al., 2006). However, our simulations explore various exposure models that introduce
different levels of confounding. Notably, even in scenarios where the exposure is a nonlinear function of confounders
or contains an interaction (Enonlinear, Einteraction), the linear estimator remains unbiased in our analyses. Similarly, the
change point regression method exhibited low absolute bias and RMSE when the ERC takes the form of a threshold
function (µthreshold).

However, in our simulation, regression methods proved inadequate when heterogeneous treatment effects were
present, particularly in cases involving nonlinear or interactive relationships between exposure and confounders (e.g.,
Enonlinear, Einteraction). When heterogeneous treatment effects were present, applying naive regression models often led
to the largest absolute bias. Given the relatively low variance in regression methods, especially linear models, we often
see them performing with RMSE comparable to causal inference methods at low sample sizes, even in the presence of
substantial bias. Although comparable RMSE might convey similar performance, an examination of the ERCs reveals
that regression methods misrepresented the exposure-response relationship. This finding underscores the importance
of caution when using single metrics to quantify ERCs. In the context of our simulation study, we demonstrate that
regression methods are appropriate only if the functional form of the ERC is known and if there is no interaction
between any of the covariates and the exposure in generating the outcome.

Evaluating causal inferences estimators

Our second class of estimators employed entropy balancing weights in a linear model, a generalized additive model
and a change point model for the outcome. In our simulations, entropy weighting methods emerged as the optimal
estimator in the presence of heterogeneous treatment effects when the exposure model takes the form of a linear func-
tion of the confounders (Elinear, Eheavy tail). Additionally, as the sample size in our simulation increased, the absolute
bias and RMSE of entropy weighting estimators decreased. For example, in the linear ERC setting, we observed that
the weighting methods performed well in the presence of heterogeneity (µlinear,int) under Elinear and Eheavy tail, showing
reduced bias compared to regression methods when the sample sizes exceeded 200. Larger sample sizes can allow
better covariate balance with a lower likelihood of generating extreme weights (Tübbicke, 2022). Extreme weights
can introduce greater variability in the estimated ERC (Lee et al., 2011). In the absence of heterogeneous effects, the
entropy balancing methods performed comparably to their regression counterparts. It is worth noting that entropy bal-
ancing weights tend to yield larger RMSE in these settings, likely due to the fact that balancing weights are constructed
prior to regression, reducing bias but introducing variability into estimates (Golinelli et al., 2012).

Nonetheless, entropy balancing methods did not produce unbiased results when the exposure followed a nonlinear
function of confounders Enonlinear, Einteraction. For example, in the linear ERC scenario µlinear, the bias and RMSE
increased for the entropy balancing methods compared to the unweighted regression methods. While entropy balancing
effectively eliminates the correlation between exposure and all covariates (Figure 2), this alone may not guarantee
satisfactory covariate balance (Yiu et al., 2018). Removing the correlation between covariates and exposure eliminates
the linear association between the covariate means and the continuous treatment, but it does not necessarily imply
independence between the reweighted covariates and exposure. To mitigate this problem, Tübbicke recommends the
additional condition of rendering higher moments of exposure uncorrelated with the covariates (Tübbicke, 2022). We
refer to the method that requires the second moment of the exposure to be uncorrelated with the covariates as second-
moment entropy balancing. In Supplementary Section S3 we illustrate that this approach corrects the bias noted in the
Enonlinear and Einteraction settings. This informs our use of second-moment entropy balancing in our data application.
However, it is important to note that second-moment entropy balancing might not always converge at smaller sample
sizes and, when not required, it can slightly elevate the RMSE as compared to first-order entropy balancing (see
supplementary materials).

Finally, we evaluated the performance of the continuous matching causal inference method implemented in the
CausalGPS package. Generally, the continuous matching estimator exhibited poor performance when the sample size
was small. However, its performance improved significantly as the sample size increased, especially in the presence
of heterogeneous treatment effects and complex exposure scenarios. Among the seven estimators, only CausalGPS
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and second-moment entropy balancing performed well in the scenarios Enonlinear and Einteraction with heterogeneous
treatment effects. However, CausalGPS demonstrated greater variability in the ERC fit and exhibited higher RMSE
values compared to other estimators. The superior performance of the CausalGPS method at larger sample sizes is
not surprising, as it employs gradient boosting to specify the generalized propensity score (GPS). Gradient boosting
allows for nonlinearities and interactions when estimating the relationship between confounders and the exposure,
and a larger sample size provides more data for training the machine learning algorithm, resulting in improved GPS
approximation. Moreover, larger sample sizes enhance the ability of the CausalGPS algorithm to identify appropriate
matches for imputing potential outcomes.

Bias persistence in sublinear ERC setting

We observed unexpected results in the sublinear ERC setting µsublinear. Surprisingly, the GAM entropy model exhibited
high bias and RMSE under heterogeneous treatment effects in the Elinear and Eheavy tail setting. We anticipated that the
entropy balancing weights would reduce the bias of the regression estimators, but the bias persisted. One possible
explanation for this observation is the placement of knots for the splines. In our study, the nonlinear component of
the sublinear ERC occurs at lower levels of exposure, while most GAM algorithms distribute knots at equally spaced
quantiles of the data. Since we fixed the number of knots in our GAM estimator to four (refer to supplementary
materials), it is likely that the knot placement is insufficient to capture the non-linearity that occurs at lower exposure
levels. We may expect improved performance if we include more knots at the exposure values where we anticipate
nonlinear behavior to occur.

Data-informed simulation

Our additional simulation using Medicare data corroborates the findings of our primary simulations. In scenarios
without an interaction term, regression methods demonstrated effectiveness, contingent on the accurate specification of
the exposure-outcome relationship. However, in cases with heterogeneous treatment effects, causal inference methods
showed a reduction in bias. For the µlinear,int and µthreshold,int scenarios, employing entropy weights proved beneficial in
mitigating bias. This effect was not observed in the µsublinear,int setting, aligning with our primary simulation results.
The RMSE of the causal inference methods generally is in parallel with that of the regression methods, although
with a slight increase likely attributable to the additional variability introduced by weight determination during the
design phase. Although the relationship between exposure and the six covariates is not explicitly defined in the data-
informed simulation, the results seem consistent with either the linear or heavy-tailed exposure scenarios observed in
our primary simulations. The congruence observed in this additional simulation and our primary simulations lends
further support to the applicability of the findings of our simulation study in empirical settings.

Key insights from simulation

Our findings underscore several important considerations for researchers interested in assessing the effect of a con-
tinuous exposure and generating an ERC. The first consideration pertains to the presence of heterogeneous treatment
effects. We generally find that regression methods, when not incorporated within a causal inference framework, are
unsuitable when anticipating heterogeneous treatment effects. In a regression setting, interactions are not accounted
for in the model specification, whereas achieving covariate balance mitigates this dependency. However, if there is
limited or no evidence of heterogeneous treatment effects, regression methods can be a viable framework, particularly
at smaller sample sizes. As the sample size increases, we recommend adopting a causal inference framework, such
as entropy balancing weights, to address potential confounding. Causal inference methods, such as weighting and
continuous matching, separate the design and analysis stages, improving the objectivity of the outcome data analysis
(Rubin, 2008).

When using entropy balancing weights, it is important to carefully consider rendering higher moments of the ex-
posure or treatment uncorrelated with the covariates to ensure the absence of residual confounding. In our analysis,
we initially only required uncorrelatedness between the first moment of exposure and the covariates. However, this
method proved to be inadequate in the Enonlinear and Einteraction scenarios. As demonstrated in the supplementary mate-
rials, requiring additional uncorrelatedness between the second moment of exposure and covariates (second-moment
entropy balancing) ameliorated this issue, provided that the sample size was sufficiently large to achieve convergence.
Based on these results and previous literature, we propose a two-step process: first, employing first-moment entropy
weighting and then assessing remaining dependencies by estimating the ERC between the exposure and covariates
using the generated weighting scheme. If the resulting ERC is completely flat and the derivative is zero, this indicates
sufficient balance in the weighting scheme (Tübbicke, 2022). If this is not the case, we recommend incorporating
higher moment entropy balancing by requiring that higher moments of the exposure be uncorrelated with the co-
variates. It is important to exercise caution when increasing the number of moments of the exposure required to be
uncorrelated with covariates, as it can reduce bias but increase the variance of the estimator (Tübbicke, 2022). Gen-
erally, we recommend implementing second-moment entropy balancing as endorsed by Tübbicke (Tübbicke, 2022)
given its efficacy in our simulations.

In the context of a large sample size where the functional form of the underlying ERC curve is unknown, we
recommend employing the continuous matching framework provided by the CausalGPS estimator or the GAM en-
tropy weighting scheme that requires uncorrelatedness between first- and second-moments of the exposure and the
covariates. The CausalGPS estimator demonstrates robustness against misspecification of either the GPS or outcome
models, and larger sample sizes enable machine learning methods to more accurately estimate the GPS. Moreover,
the matching step reduces the dependence between the exposure and potential confounders, resulting in causal effect
estimates that are less influenced by choices made during outcome modeling (Wu, Mealli, et al., 2022). However,
it is important to note that we observed considerable variability and inadequate covariate balance when using the
CausalGPS estimator with smaller sample sizes. As a result, we do not recommend using it in this setting.
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4.2 Data application
In our data application, we conducted the first application of five statistical approaches to a data set containing more
than 500 million person years of Medicare data, with the objective of estimating the impact of annual PM2.5 con-
centration on all-cause mortality (Figures 6, 7). Our findings reveal several notable results. Each of the estimators
demonstrated an increase in all-cause mortality in relation to annual average PM2.5 concentration, consistent with pre-
vious research (Josey et al., 2023; Wu, Mealli, et al., 2022; Wu, Braun, et al., 2020). From our nonlinear estimators
(GAM, GAM entropy, CausalGPS), we observed evidence of a nonlinear association between log mortality and PM2.5,
indicating the need to relax the linearity assumption. Furthermore, based on the results of our simulation study, the
ERC generated by the GAM entropy and CausalGPS estimators seem most plausible, given the substantial sample
size of our data, the presence of a nonlinear relationship between exposure and outcome, and the potential existence of
heterogeneous treatment effects (Josey et al., 2023). Both the GAM entropy and CausalGPS estimated ERCs displayed
a steep rise in the mortality rate at lower PM2.5 concentrations, followed by a gradual plateau at higher concentrations.
The GAM entropy and CausalGPS estimators exhibited a sublinear relationship between exposure and outcome at
concentrations below 9 µg/m3, though the ERC generated by the CausalGPS estimator leveled off at a lower concen-
tration of annual average PM2.5. Although the change point models failed to converge on this data set, the sublinear
shape exhibited by the nonlinear causal inference methods at low concentrations suggests that a threshold model is
unlikely.

Regarding the relative mortality rate associated with a decrease in annual average PM2.5 in relation to the current
NAAQS annual standard of 12 µg/m3, the CausalGPS estimator projected a more moderate reduction in relative mor-
tality for concentrations ranging from 9-12 µg/m3 compared to other estimators (Figure 7). Once again, considering
our simulations, the GAM entropy and CausalGPS estimators appeared most plausible, providing varying magnitudes
of evidence to establish a lower NAAQS on annual average PM2.5. The shape of the relative mortality curve for Causal-
GPS is consistent with other results (Josey et al., 2023) and offers evidence of a sublinear relationship between PM2.5
and all-cause mortality. This analysis contributes further evidence to support the implementation of stringent standards
for PM2.5 emissions, suggesting that a lower standard could prevent a significant number of premature deaths.

4.3 Conclusion
There are several limitations to our analysis. The primary limitation is that the evaluation of different estimators of
the ERC was conducted using simulations. Our study was restricted to examining a limited number of scenarios,
and it is possible that the results may vary under different data-generating processes. However, we included various
specifications of the ERC, covariates, and confounding scenarios that we believe represent a wide range of plausible
situations. Another limitation is the choice of estimators. Numerous estimators are available in the literature on
regression and causal inference. We selected our estimators based on their availability in standard software and their
widespread usage in practice. In our study, we evaluated the impact of the annual average PM2.5 on all-cause mortality
in the Medicare population. Like all non-experimental data methods, we relied on the conditional independence
assumption, which asserts that all factors affecting both the exposure and outcome have been considered, implying no
unmeasured confounders. This assumption is crucial, but unverifiable. To address potential unmeasured confounders,
we include year indicators for time-varying factors and census geographic region indicators for spatially varying
factors. However, unmeasured confounding may still affect our conclusions. Prior studies utilizing the same data
set (Wu, Braun, et al., 2020; F. Dominici et al., 2022) used the E-value method (VanderWeele et al., 2017) to gauge
sensitivity to unmeasured confounding. The E-value indicates the minimum strength that an unmeasured confounder
must have with both the exposure and the outcome to nullify the observed association. In these analyses, such a
confounder would require at least a 1.32-fold risk ratio with long-term PM2.5 exposure and mortality to counteract
the estimated effects. Despite differences in methodology, these insights lend confidence to the robustness of our
conclusions against unmeasured confounding.

Determining the causal relationship between a continuous exposure and outcome is a critical scientific endeavour.
In the context of air pollution epidemiology, understanding the shape of the ERC between air pollution and adverse
health effects has significant policy implications. Various modeling strategies have been employed to assess this rela-
tionship, and many researchers have advocated for the development and implementation of causal inference methods
to inform air pollution policies (Goldman et al., 2019; Peters et al., 2019; Carone et al., 2020). Although limited work
has compared the performance of these different estimators, our analysis provides valuable guidance for researchers
in choosing an appropriate method to estimate these consequential exposure-response curves accurately.
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