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Abstract

Many existing statistical models for networks overlook the fact that most real-world net-

works are formed through a growth process. To address this, we introduce the PAPER (Pref-

erential Attachment Plus Erdős–Rényi) model for random networks, where we let a random

network G be the union of a preferential attachment (PA) tree T and additional Erdős–Rényi

(ER) random edges. The PA tree component captures the underlying growth/recruitment pro-

cess of a network where vertices and edges are added sequentially, while the ER component can

be regarded as random noise. Given only a single snapshot of the final network G, we study the

problem of constructing confidence sets for the early history, in particular the root node, of the

unobserved growth process; the root node can be patient zero in a disease infection network or

the source of fake news in a social media network. We propose an inference algorithm based on

Gibbs sampling that scales to networks with millions of nodes and provide theoretical analysis

showing that the expected size of the confidence set is small so long as the noise level of the

ER edges is not too large. We also propose variations of the model in which multiple growth

processes occur simultaneously, reflecting the growth of multiple communities, and we use these

models to provide a new approach to community detection.

1 Introduction

Network data is ubiquitous. To analyze networks, there are a variety of statistical models such

as Erdős–Rényi, stochastic block model (SBM) (Abbe; 2017; Karrer and Newman; 2011; Amini

et al.; 2013; Xu et al.; 2018), graphon (Diaconis and Janson; 2007; Gao et al.; 2015), random dot

product graphs (Athreya et al.; 2017; Xie and Xu; 2019), latent space models (Hoff et al.; 2002),

configuration graphs (Aiello et al.; 2000), and more. These models usually operate by specifying

some structure, such as community structure in the case of SBM, and then adding independent

random edges in a way that reflects the structure. The order in which the edges are added is of no

importance to these models.

In contrast, real world networks are often formed from growth processes where vertices and edges

are added sequentially. This motivates the development of Markovian preferential attachment (PA)

models for networks (Barabási and Albert; 1999; Barabási; 2016) which produce a sequence of

networks G1,G2, . . . ,Gn where G1 starts as a single node which we call the root node and, at
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each iteration, we add a new node and new edges. PA models naturally produce networks with

sparse edges, heavy-tailed degree distributions, and strands of chains as well as pendants (several

degree 1 vertices linked to a single vertex), which are important features of real world networks that

are difficult to reproduce under a non-Markovian model, as observed by Bloem-Reddy and Orbanz

(2018).

Although Markovian models are often more realistic, they have not been as widely used in

network data analysis as, say SBM, because, whereas SBM is useful for recovering the community

structure of a network, it is not obvious what structural information Markovian models could extract

from a network. Recently however, seminal work from a series of applied probability papers (e.g.

Bubeck, Devroye and Lugosi (2017); Bubeck et al. (2015)) demonstrate that Markovian models can

indeed recover useful structure: these papers show that, surprisingly, when Gn is a random PA tree,

one can infer the early history of Gn, such as the root node, even as the size of the tree tends to

infinity. Although these results are elegant, they are theoretical; their confidence set construction

involves large constants that render the result too conservative. Moreover, most algorithms apply

only to tree-shaped networks, which prohibitively limits their application since trees are rarely

encountered in practice.

To overcome these problems, we propose a Markovian model for networks which we call Pref-

erential Attachment Plus Erdős–Rényi, or PAPER for short. We say that Gn has the PAPER

distribution if it is generated by adding independent random edges to a preferential attachment

tree T . The latent PA tree captures the growth process of the network whereas the ER random

edges can be interpreted as additional noise. Given only a single snapshot of the final graph Gn,

we study how to infer the early history of the latent tree T , focusing on the concrete problem of

constructing confidence sets for the root node that can attain the nominal coverage. We give a

visual illustration of the PAPER model and the inference problem in Figure 1.

Because we do not know which edges of Gn correspond to the tree and which are noise, most

existing methods are not directly applicable. We therefore propose a new approach in which we

first give the nodes new random labels which induce, for a given observation of the network Gn,

a posterior distribution of both the latent tree and the latent arrival ordering of the nodes. Then,

we sample from the posterior distribution to construct a credible set for the inferential target, e.g.

the root node. Bayesian inference statements usually do not have frequentist validity but we prove

in our setting that that the level 1 − ε credible set for the root node has frequentist coverage at

exactly the same level.

In order to efficiently sample from the posterior distribution of the latent ordering and the latent

tree, we present a scalable Gibbs sampler that alternatingly samples the ordering and the tree. The

algorithm to generate the latent ordering is based on our previous work (Crane and Xu; 2021) which

studies inference in the tree setting. The algorithm to generate the latent tree operates by updating

the parent of each of the nodes iteratively. The overall runtime complexity of one iteration of the

outer loop is generally O(m+n log n) (where m is the number of edges) and the algorithm can scale

to networks of up to a million nodes.

Since a trivial confidence set for the root node is the set of all the nodes, it is important to be

able to bound the size of a confidence set. In particular, the presence of noisy Erdős–Rényi edges

in the PAPER model motivates an interesting question: how does the size of the confidence set

increase with the noise level? In this paper, we give an initial answer to this question under two

specific settings of the preferential attachment mechanism: linear preferential attachment (LPA)

and uniform attachment (UA). For LPA, we prove that the size of our proposed confidence set does

not increase with the number of nodes n so long as the noisy edge probability is less than n−1/2

and for UA, we prove that the size is bounded by nγ for some γ < 1 so long as the noisy edge
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Figure 1: Left: illustration of PAPER model; nodes have latent time ordering (only first 10

orderings shown); the red edges form the latent tree while gray edges are Erdős–Rényi. Right:

80% confidence set for the root node (node number 1) constructed from the unlabeled graph.

probability is less than log(n)/n. Our analysis shows that the phenomenon discovered by Bubeck,

Devroye and Lugosi (2017), that there exists confidence sets for the root node of O(1) size, is robust

to the presence of noise.

Many real world networks often have community structures. In such cases, it would be unrealistic

to assume that the network originates from a single root node. We therefore propose variations of

the PAPER model in which K growth processes occur simultaneously from K root nodes. Each of

K root nodes can be interpreted as being locally central with respect to a community subgraph. In

the multiple roots model, there is no longer a latent tree but rather a latent forest (union of disjoint

trees), where the components of the forest can naturally be interpreted as the different communities

of the network. We provide model formulation that allows K to be either be fixed or random. To

analyze networks with multiple roots, we use essentially the same inferential approach and Gibbs

sampling algorithm that that we develop for the single root setting, with minimal modifications.

By looking at the posterior probability that a node is in a particular tree–community, we can

estimate the community membership of each of the nodes. Compared with say the stochastic

block model, the PAPER model approach to community recovery has the advantage that the in-

ference quality improves with sparsity, that we can handle heavy-tailed degree distribution without

a high-dimensional degree correction parameter vector, and that the posterior root probabilities

also identify the important nodes in the community. Empirically, we show that our approach has

competitive performance on two benchmark datasets and we find that our community member-

ship estimate is more accurate for nodes with high posterior root probability than for the more

peripheral nodes. We also use the PAPER model to conduct an extensive analysis of a statistician

co-authorship network curated by Ji and Jin (2016) where we recover a large number of communities

that accurately reflect actual research communities in statistics.

We have implemented our inference algorithm in a Python package called paper-network, which

can be installed via command pip install paper-network. The code, example scripts, and doc-

umentation are all publicly available at https://github.com/nineisprime/PAPER.

Outline for the paper: In Section 2, we define the PAPER model in both the single root and
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multiple roots setting. We also formalize the problem of root inference and review related work. In

Section 3, we describe our approach to the root inference problem, which is to randomize the node

labels and analyze the resulting posterior distribution. We also show that the Bayesian inferential

statements have frequentist validity. In Section 4, we give a sampling algorithm for computing the

posterior probabilities. In Section 5, we provide theoretical bounds on the size of our proposed

confidence sets and in Section 6, we provide empirical study on both simulated and large scale real

world networks.

We use the following notation throughout the paper:

• We take all graphs to be undirected. Given two labeled graphs g and g′ defined on the same

set of nodes, we write g+ g′ as the resulting graph if we take the union of the edges in g and

g′ and collapse any multi-edges. We also write g ⊂ g′ if g is a subgraph of g′.

• For a labeled graph g, we write Dg(u) as the degree of node u in graph g and Ng(u) as the

set of neighbors of u (all nodes directly connected to u) with respect to g; we write V (g) and

E(g) as the set of vertices and edges of g respectively.

• For an integer n, we write [n] := {1, 2, . . . , n}. For a countable set A, we write |A| as the

cardinality of A. For two sets A,B of the same cardinality, we write Bi(A,B) as the set of

bijections between them. For a vector π, we let π1:K be the sub-vector (π1, π2, . . . , πK).

• Given a finite set V ′ of the same cardinality of V (g) and given a bijection ρ ∈ Bi(V (g), V ′),

we write ρg to denote a relabeled graph where a pair (u′, v′) ∈ V ′×V ′ is an edge in ρg if and

only if (u, v) ∈ V (g)× V (g) is an edge in g.

• Throughout the paper, we use capital font (e.g. G) to denote random objects and lower case

font to denote fixed objects. Graphs are represented via bold font.

2 Model and Problem

We first describe the model and inference problem in the single root setting and then extend the

definition to the setting of having fixed K roots and having random K roots.

2.1 PAPER model

Definition 1. The affine preferential attachment tree model, which we denote by APA(α, β) for

parameters α, β ∈ R, generates an increasing sequence T1 ⊂ T2 ⊂ . . . ⊂ Tn of random trees where

Tt is a tree with t nodes and where nodes are labeled by their arrival time so that V (Tt) = [t]. The

first tree T1 = {1} is a singleton node, which we refer to as the root node, and for t > 2, we define

the transition kernel P(Tt |Tt−1) in the following way: given Tt−1, we add a node labeled t and a

random edge (t, wt) to obtain Tt, where the existing node wt ∈ [t− 1] is chosen with probability

βDTt−1
(wt) + α

β2(t− 2) + α(t− 1)
. (1)

To ensure that (1) is always non-negative, we require either α, β ≥ 0 or, if β < 0, then α = −cβ
for some integer c > 0. We may verify that (1) describes a valid probability distribution by noting

that Tt−1 always has t − 2 edges and t − 1 nodes. Before continuing onto the PAPER model, we

consider some specific examples of APA trees:
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1. setting α = 1, β = 0 means that we select wt uniformly at random from V (Tt−1). This yields

the uniform attachment (UA) random tree. The resulting degree distribution has exponential

tail and the maximum degree is of order log n (Na and Rapoport; 1970; Addario-Berry and

Eslava; 2018).

2. Setting α = 0, β = 1 means that we select wt with probability proportional to the degree

DTk−1
(wt). This yields the linear preferential attachment random (LPA) tree. LPA has

heavy-tailed degree distribution and a maximum degree is of order
√
n (Bollobás et al.; 2001;

Peköz et al.; 2014).

3. We may also set β as −1 and α as some positive integer so that the maximum degree of

any node is α. This may be interpreted as an uniform attachment tree growing on top of a

background infinite α-regular tree (Khim and Loh; 2017).

We may generalize Definition 1 by defining a nonparametric function φ : N→ [0,∞) and choose

wt with probability proportional to φ(DTt−1
(wt)). In this paper however, we focus only on the case

where φ is an affine function.

Definition 2. To model a general network, we define the PAPER(α, β, θ) (Preferential Attachment

Plus Erdős–Rényi) model parametrized by α, β ∈ R and θ ∈ [0, 1]. We say that a random graph

Gn distributed according to the PAPER(α, β, θ) model if

Gn = Tn +Rn,

where Tn ∼ APA(α, β) and Rn ∼ Erdős–Rényi(θ) are independent random graphs defined on the

same set of vertices [n].

Since we collapse any multi-edges that occur when we add Rn to Tn, we may view Rn equiv-

alently as an ER random graph defined on potential edges excluding those already in the tree Tn.

The PAPER model can produce networks with either light tailed or heavy tailed degree distribu-

tion depending on the choice of the parameters α and β. It produces features that are commonly

seen in real world networks but absent from non-sequential models like SBM, such as pendants (a

node with several degree-1 node attached to it) and chains of nodes; see Figure 2. It also assigns

a non-zero probability to any connected graph, in contrast to the general preferential attachment

graph model where a fixed m > 1 edges are added at every iteration (Barabási and Albert; 1999).

In computer science terminology, Gn is a planted tree model where the signal Tn is planted in an

ER random graph Rn in the same sense that stochastic block model is often referred to as the

planted partition model.

An alternative way to define the PAPER model is to specify the total number of edges m in

the final graph and generate Rn as a uniformly random graph with m− (n− 1) edges (since a tree

with n nodes always has n − 1 edges). This is equivalent to the PAPER(α, β, θ) model where we

condition on the event that the final graph Gn has m edges. To simplify exposition, we use PAPER

to refer to this conditional model as well.

Remark 1. We may view the PAPER(α, β, θ) model as a Markovian process over a sequence of

networks G1,G2, . . . ,Gn. We define the transition kernel P(Gt |Gt−1) for t ≥ 3 by first adding a

new node labeled t, then adding a new tree edge (t, wt) where wt is chosen with probability (1),

and then, for each existing node j ∈ [t−1] not equal to wt, we independently add a noise edge (t, j)

with probability θ.

Interestingly, when α = 1 and β = 0, we see that the PAPER model is the conditional dis-

tribution of an Erdős–Rényi graph G conditional on the event that, for some fixed ordering ρ of
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Figure 2: Left: PAPER graph with α = 1, β = 1; Center: co-authorship graph from Ji and Jin

(2016); Right: protein-protein interaction graph from Jeong et al. (2001).

the nodes, the sequence of induced subgraphs G ∩ {ρ1, . . . , ρt} for t ∈ [n] are all connected. In

Section 2.3, we extend the PAPER model so that the noise edge probability is allowed to depend

on the time t and the state of the tree at time t.

Remark 2. Under APA(α, β) model, the probability of generating a given tree has a closed form

expression: P(Tn = tn) =
∏
v∈[n]

∏Dtn (v)−1

j=1 (βj+α)∏n
t=3 2(t−2)β+(t−1)α . The important consequence is that the likelihood

depends on the tree tn only through its degree distribution Dtn(·). Hence, any two trees with

the same degree distribution has the same likelihood; Crane and Xu (2021) refers to this property

as shape-exchangeability. We give the likelihood expression for the multiple roots models and the

PAPER model in Section S1.1 of the Appendix.

Remark 3. It is known that the degree distribution of an APA(α, β) tree has an asymptotic limit.

For example, if β = 1 and α > 0, then we have by Van Der Hofstad (2016, Theorem 8.2) that
1
n

∑n
t=1 1{DTn(t) = k} → 2+α

3+2α

∏k−1
j=1

j+α
j+3+2α as n → ∞ uniformly over all k. The limiting distri-

bution is approximately a power law where the number of nodes with degree k is proportional to

k−(3+α) (see Van Der Hofstad (2016, Section 8.4)). Since the ER graph Rn only adds an expected

additional degree of at most nθ to every node, we see that, when θ is small, the PAPER graph can

have heavy-tailed degree distribution without any additional degree correction parameters.

Single root inference problem: Let Gn ∼ PAPER(α, β, θ) be a random graph. As the nodes

of Gn are labeled by their arrival time, our observation is the unlabeled shape sh(Gn), that is, the

network Gn with the labels removed. Our goal is to construct a subset of nodes that is guaranteed

to contain the true root node (node with arrival time 1) with probability at least 1 − ε. Since we

need to refer to specific nodes of sh(Gn), we give the nodes of sh(Gn) names from an arbitrary

alphabet Un of n elements to form a labeled graph G∗n such that V (G∗n) = Un. We take G∗n as our

observation from this point on.

We note that there exists an unobserved label bijection ρ ∈ Bi([n],Un) such that ρGn = G∗n.

This unobserved ρ captures precisely the arrival time of the nodes in that for any time t ∈ [n], the

node with label ρt in G∗n is exactly node with arrival time t in Gn. In particular, node ρ1 of the

observed graph G∗n is the true root node. To illustrate the setting clearly, we provide a concrete

example in Figure 3.

Definition 3. For ε ∈ (0, 1), we say that a set Cε(G
∗
n) ⊂ Un is a level 1− ε confidence set for the

root node if

P
(
ρ1 ∈ Cε(G∗n)

)
≥ 1− ε. (2)
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Figure 3: Our observation is the unlabeled shape or alphabetically labeled G∗n instead of time

labeled Gn. There exists an unobserved ordering ρ ∈ Bi([n],Un) such that G∗n = ρGn.

One may construct a trivial confidence set for the root nodes by taking the set of all the nodes.

We aim therefore to make the confidence set Cε(·) as small as possible. Although we focus on the

problem of root inference, the approach that we develop is applicable to more general problems

such as inferring the first two or three nodes or inferring the arrival time of a particular node.

Remark 4. It is important to note that G∗n may have multiple nodes that are indistinguishable

once the node labels are removed, which may lead to the paradoxical scenario that which node

of G∗n correspond to the true root node depends on the choice of the label bijection ρ. Luckily,

this is a technical issue that does not pose a problem so long as we restrict ourselves to confidence

sets Cε(·) that are labeling equivariant in that they do not depend on the specific node labeling.

Labeling equivariance is a very weak condition that only rules out confidence sets that can access

side information about the nodes somehow.

Formally, we note that there may exist ρ, ρ′ ∈ Bi([n],Un) where ρ1 6= ρ′1 but both satisfy

G∗n = ρGn = ρ′Gn; in other words, root node can only be well-defined up to an automorphism. We

illustrate a concrete example in Figure 4. We define Cε(·) to be labeling equivariant if, for all τ ∈
Bi(Un,Un), we have τCε(G

∗
n) = Cε(τG

∗
n); if the confidence set algorithm contains randomization

(to break ties for example), then we say it is labeling equivariant if τCε(G
∗
n)

d
= Cε(τG

∗
n) for all

τ ∈ Bi(Un,Un). If a confidence set Cε(·) is labeling equivariant, then for any ρ, ρ′ ∈ Bi([n],Un) such

that G∗n = ρGn = ρ′Gn, we have that (ρ′ ◦ ρ−1)G∗n = G∗n and hence,

ρ1 ∈ Cε(G∗n)⇔ (ρ′ ◦ ρ−1)ρ1 ∈ (ρ′ ◦ ρ−1)Cε(G
∗
n)⇔ ρ′1 ∈ Cε((ρ′ ◦ ρ−1)G∗n)⇔ ρ′1 ∈ Cε(G∗n).

Therefore, the coverage probability (2) does not depend on the choice of ρ.

2.2 Multiple roots models

Many real world networks have multiple communities that grow simultaneously form multiple

sources. The APA model allows for only one root node in the graph but we can augment the

model to describe networks that grow from multiple roots. When there are K roots, we start the

growth process with an initial network of K singleton nodes and attach each new node to an existing

node wt with probability proportional to β · (degree of wt) + α as before.

However, one complication is that when α = 0, the probability of attaching to a singleton node

is 0. Thus, for convenience, we give each root node an unobserved imaginary self-loop edge for the

purpose of computing the attachment probabilities.
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Figure 4: Both ρ (red) and ρ′ (blue) are distinct bijections in Bi([n],Un) but they both satisfy

G∗n = ρGn = ρ′Gn. The root node is D according to ρ but A according to ρ′. Note that nodes A

and D are indistinguishable if the labels are removed.

Definition 4. We first define the APA(α, β,K) model for a random forest of K disjoint component

trees: let K ∈ N and for t ∈ S := {1, 2, . . . ,K} (the set S is the set of root nodes), let Ft be the

set of singleton nodes 1, 2, . . . , t. For t > K, we define the transition kernel P(Ft |Ft−1) in the

following way: given Ft−1, we add a new node t and a new random edge (t, wt) where the existing

node wt ∈ [t− 1] is chosen with probability

βDFt−1(wt) + 2β1{wt ∈ S}+ α

(2β + α)(t− 1)
. (3)

We then say that a random graph Gn ∼ PAPER(α, β,K, θ) if Gn = Fn + Rn where Fn ∼
APA(α, β,K) and Rn ∼ ERθ is an Erdős–Rényi random graph independent of Fn defined on the

same set of nodes [n]. We refer to this setting as the fixed K setting. In contrast, we refer to the

PAPER(α, β, θ) model in Section 2.1 as the single root setting.

We can verify the normalization term (3) by noting that each root node starts with one imag-

inary self-loop and that we add one node and one edge at every iteration. The theory of Polya’s

urn immediately implies that the number of nodes in each of the K component trees, divided by n,

has the asymptotic distribution of Dirichlet( 1
K , . . . ,

1
K ).

To deal with networks in which the number of roots K is unknown, we propose a variation of the

PAPER model with random K number of roots. We can express the model as a sequential growth

process where every newly arrived node has some probability of becoming a new root. Similar to

the fixed K setting, we give each new root node an imaginary self-loop edge for the purpose of

determining the attachment probabilities.

Definition 5. We first define the APA(α, β, α0) model for a random forest graph: let F1 be a

singleton node and let S = {1}. For k > 1, we define the transition kernel P(Ft |Ft−1) in the

following way: given Ft−1, we add a new node t. With probability

α0

(2β + α)(t− 1) + α0
,

we let t be a new root node to form Ft and add t to set S. Or, we add a new edge (t, wt) to Ft−1

to obtain Ft where the existing node wt ∈ [t− 1] is chosen with probability

βDFt−1(wt) + α+ 2β1{wt ∈ S}
(2β + α)(t− 1) + α0

.

Note that the resulting set of root nodes S ⊂ [n] of Fn is a random set.
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We then say that a random graph Gn has the PAPER(α, β, α0, θ) distribution if Gn = Fn+Rn

where Fn ∼ APA(α, β, α0) and Rn ∼ ER(θ) is an Erdős–Rényi random graph independent of Fn
defined on the same set of nodes [n]. We refer to this setting as the random K setting.

In the random K setting, each node has some probability of becoming a new root node and

creating a new component tree in the same way as the Dirichlet process mixture model, which is

often called the Chinese restaurant process. Therefore, the expected number of component trees is

(1 + o(1)) α0

(2β+α) log n (Crane; 2016, Section 2.2).

Multiple roots inference problem: We observe G∗n = ρGn for an unknown label bijection

ρ ∈ Bi([n],Un). In both the APA(α, β,K) and the APA(α, β, α0) models, the root nodes is a set

S which is fixed to be [K] in the first model and random in the second model. Intuitively, we

interpret S as a set of local roots, where each root is central with respect to a specific community

or sub-network represented by a component tree in the forest Fn in Definition 4 or 5. The root

inference problem is then, for a given ε ∈ (0, 1), to construct a confidence set Cε(G
∗
n) such that

P
(
ρS ⊆ Cε(G∗n)

)
≥ 1− ε.

We illustrate this notion of local roots in a synthetic example in Figure 6.

Remark 5. (Interpretation of community under the PAPER model)

The disjoint component trees of Fn induce a community structure on the graph Gn. This way

of modeling community by adding Erdős–Rényi noise to disjoint subgraphs follows the same spirit

as stochastic block model (SBM): a SBM with K communities, p as the within-community edge

probability, and q < p as the between-community edge probability can be similarly defined as first

generating K disjoint ER(p−q1−q ) graphs on each of the communities and then taking the union of

that with ER(q) noisy edges on all the nodes, collapsing multi-edges.

The PAPER notion of community is however different from that described by SBM. The PA-

PER notion of community is based on Markovian growth process and intuitively characterized by

the imbalance of spanning trees on a network, that is, we believe a network to contain multiple

communities if the spanning trees of the network tend to be highly imbalanced (see Figure 5), which

would suggest that the network is very unlikely to have been formed from a single homogeneous

growth process.

Figure 5: The karate club network (left) has two true communities. Most spanning trees of the

whole karate club network would be imbalanced (such as the tree on the right), showing that the

karate club network is very unlikely to have been formed from a single homogeneous growth process

and hence very likely to contain multiple communities.

The PAPER model also produces more within-community edges than between-community edges

because each community has a spanning tree. However, since a tree on n nodes only has n−1 edges,
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the difference in the within-community edge density and the between-community edge density is

diminishingly small when the noise level θ is of an order larger than ω( 1
n ). In this case, the peripheral

leaf nodes of a community-tree become impossible to cluster but it is still possible to recover the

root node of each of the community-trees, as our experimental results show. One disadvantage of

the PAPER notion of community is that it is not able to capture non-assortative clusters where

nodes in the same clusters are unlikely to form edges.

The PAPER notion of community is appropriate in many application. For example, for a

co-authorship network where there exists an underlying growth process, our empirical analysis in

Section 6.5 shows that the PAPER model captures clusters that accurately reflect salient research

communities. We can also combine both notions by a PAPER-SBM mixture model, where we

generate a preferential attachment forest Fn via the mechanism described in Definition 4 or 5,

then, for every pair of nodes u and v, we add a noisy edge (u, v) with probability θ1 if u and v

belong to the same tree in Fn and with a different probability θ2 if u and v belong to different

trees. The inference method and algorithm that we develop in this manuscript can extend to such

a PAPER-SBM mixture model, but the computational run-time would be substantially slower. We

relegate a detailed study of a PAPER-SBM mixture model to a future work.

37

Figure 6: Left: illustration of PAPER model with K = 2 underlying trees; nodes have latent time

ordering (only first 10 orderings shown); the red edges form the latent tree while gray edges are

Erdős–Rényi. Right: 80% confidence set for the set of root nodes (node number 1 for tree 1 and

node number 2 for tree 2) constructed from the unlabeled graph.

2.3 Sequential noise models

As suggested in Remark 1, PAPER model is a special case of a general Markovian process over

a sequence of networks G1,G2, . . . ,Gn based on a latent sequence of trees T1,T2, . . . ,Tn. In the

general framework, we specify the transition kernel P(Gt |Gt−1) by specifying two stages:

1. (tree stage) P(Tt |Tt−1,Gt−1) which adds one node t and one tree edge and

2. (noise stage) P(Gt |Tt,Gt−1) which adds more random edges to obtain Gt.

We can of course define P(Gt |Gt−1) without having an underlying tree but the key insight of

our approach is that augmenting the model with the latent tree Tn greatly facilitates the design

of tractable models and inference algorithms because calculations on trees are easy and fast. In
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addition, the latent tree has a real world interpretation as the recruitment history – a tree edge

between nodes (u, v) implies that node u recruited node v into the network.

In the noise stage, if we independently adds noise edges between the new node t and the existing

nodes with the same probability θ, then we get back the single root PAPER model. More generally,

we can let the noise edge probability depend on the time t and the state of the graph at time t.

We define the following extension which we refer to as the seq-PAPER model with parameters

(α, β, θ, α̃, β̃):

Definition 6. We start with a singleton root node T1 = G1 = {1}. At time t = 2, we add node 2

and attach it to node 1. At time t ≥ 3 :

1. (tree stage) We add new node t; we select node an existing node wt ∈ [t− 1] with probability
βDTt−1

(wt)+α

2(t−2)β+(t−1)α and add edge (t, wt) to Tt−1 to form Tt;

2. (noise stage) for each existing node j ∈ [t−1], we add edge (t, j) independently with probability

qj := θ
β̃DTt−1

(j) + α̃

2(t− 2)β̃ + (t− 1)α̃
∧ 1. (4)

It is possible that we add the tree edge (j, wt) in the noise stage in which case we collapse the

multi-edge.

In general, we may take β̃ = β and α̃ = α but we allow them to be distinct in the model definition

for greater flexibility. We discuss parameter estimation in Section S3.5.4 of the Appendix.

When t is large, the independent Bernoulli generative process approximates a Poisson growth

model (see e.g. Sheridan et al. (2008)) where we first generate M ∼ Poisson(θ), and then repeat

M times the procedure where we draw an existing node j ∈ [t − 1] with probability qj (also with

replacement) and then add the edge (t, j) to the random network, collapsing multi-edges if any are

formed. We thus add an average of approximately θ noise edges at each time step. In contrast,

under the PAPER model where the noise edge probability is θ, we add on average (t− 2) · θ noise

edges at time t.

The approximation error between the Bernoulli mechanism and the Poisson mechanism, in

each iteration t, converges to 0 in total variation distance as t increases; see rigorous statement

and proof in Proposition S4 of Section S1.2 in the Appendix. However, it is important to note

that the two mechanisms could still produce final random graphs whose overall distributions have

total variation distance bounded away from 0. For example, UA or LPA trees are known to be

sensitive to initialization so that different initial seeds could lead to very different distributions

over the final observed graph, see e.g. Bubeck et al. (2015) and Curien et al. (2015). In this

work, we prefer the Bernoulli generative process in order to simplify the inference algorithm. Even

with the Bernoulli approximation however, inference under the sequential setting is much more

computationally intensive than the vanilla PAPER model.

A more realistic extension of the seq-PAPER model is to replace the tree degree DTt−1
(j) with

the graph degree DGt−1
(j) in the noise probability 4. This small change unfortunately leads to

additional significant slowdown in the resulting inference algorithm; see Remark 9 for more detail.

We note that an even more sophisticated model of sequential noise is one where the additional noise

edges are generated by a random walk mechanism (Bloem-Reddy and Orbanz; 2018); Bloem-Reddy

and Orbanz (2018) proposes a sequential Monte Carlo inference method which may not scale well

to large networks.

We have so far considered additive noise where new edges are added to the network. We can

also model deletion noise where each tree edge is removed from the observed network independently
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with some probability η > 0. Having deletion noise under the vanilla PAPER model can adversely

increase the size of the confidence set for the root node. However, the seq-PAPER model is much

more resilient to deletion noise, especially when β̃ = β and α̃ = α since the noise edges also contain

sequential information. To be precisely, we define the seq-PAPER∗(α, β, θ, α̃, β̃, η) as the model

where we first generate Gn according to the seq-PAPER(α, β, θ, α̃, β̃) model with latent spanning

tree Tn; we then remove each edge of Tn from the final graph Gn independently with probability

η.

2.4 Related Work

Many researchers in statistics (Kolaczyk; 2009), computer science (Bollobás et al.; 2001), engineer-

ing, and physics (Callaway et al.; 2000) have been interested in the probabilistic properties of various

random growth processes of networks, including the preferential attachment model (Barabási and

Albert; 1999). Recently however, the specific problem of root inference on trees has received in-

creased attention.

These efforts began with the ground-breaking work of Bubeck, Devroye and Lugosi (2017);

Bubeck et al. (2015); Bubeck, Eldan, Mossel and Rácz (2017), which shows that, given an obser-

vation of an LPA or UA tree of size n, for any ε ∈ (0, 1], one can construct asymptotically valid

confidence sets for the root node with size KLPA(ε) and KUA(ε) for LPA or UA trees respectively.

Importantly and surprisingly, KLPA(ε) and KUA(ε) do not depend on n so that the confidence

set have size that is O(1). To construct the confidence sets, Bubeck, Devroye and Lugosi (2017)

computes a centrality value for every node, which can for instance be based on inverse of the size of

the maximum subtree of a node (a concepted sometimes called Jordan centrality on trees, different

from the notion of a Jordan center, which is the node with the minimum farthest distance to the

other nodes); they then sort the nodes by centrality and take the top K(ε) nodes where the size

K(ε) is determined by probabilistic bounds.

Khim and Loh (2017) further extends these results to the setting of uniform attachment over

an infinite regular tree. Banerjee and Bhamidi (2020) improves the analysis of Jordan centrality

on trees and derives tight upper and lower bounds on the confidence set size. Devroye and Reddad

(2018); Lugosi et al. (2019) study the more general problem of seed-tree inference instead of root

node inference. The aforementioned results apply only to tree shaped networks but very recently,

Banerjee and Huang (2021) studies confidence sets constructed from the degrees of the nodes which

applies to preferential attachment models in which a fixed m edges are added at every iteration.

After the completion of this paper, Briend et al. (2022) propose confidence sets for the root node

on a class of uniform-attachment-based general Markovian graphs by detecting anchors of double-

cycle subgraphs within the network; they show the confidence set sizes to be O(1) and give explicit

bounds in terms of confidence level ε.

A line of work in the physics literature also explores the problem of full or partial recovery

of a tree network history (Young et al.; 2019; Cantwell et al.; 2019; Sreedharan et al.; 2019). In

computer science and engineering, researchers have studied the related problem of estimating the

source of an infection spreading over a background network Shah and Zaman (2011); Fioriti et al.

(2014); Shelke and Attar (2019), with approaches that range from using Jordan centers, eigenvector

centrality, and belief propagation (see survey in Jiang et al. (2016)).
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Figure 7: Label randomization induces a random latent arrival ordering Π.

3 Methodology

Our approach to root inference and related problems is to randomize the node labels, which induces

a posterior distribution over the latent ordering.

3.1 Label randomization

Suppose Gn is a time labeled graph distributed according to a PAPER model and G∗n is the

alphabetically labeled observation where G∗n = ρGn for some label bijection ρ ∈ Bi([n],Un). We

may independently generate a random bijection Λ ∈ Bi(Un,Un) and apply it to G∗n to obtain a

randomly labeled graph

G̃n := ΛG∗n = (Λ ◦ ρ)︸ ︷︷ ︸
Π

Gn.

By defining Π = Λ ◦ ρ, we see that G̃n = ΠGn where Π is a random bijection drawn uniformly

in Bi([n],Un) independently of Gn (see Figure 7). We define the randomly labeled latent forest

F̃n = ΠFn. We may view label randomization as an augmentation of the probability space. An

outcome of a PAPER model is a time labeled graph gn whereas an outcome after label randomization

is a pair (g̃n, π) where g̃n is an alphabetically labeled graph and π is an ordering of the nodes. We

now make two simple but important observations regarding label randomization.

Our first key observation is that, with respect to G̃n, the random labeling Π describes the arrival

time of the nodes in the sense that if Πt = u, then the node with alphabetical label u in G̃n has

the true arrival time t. Therefore, in the single root setting, we may infer the root node if we can

infer Π1; in the multiple roots setting, we may infer the set of root nodes if we can infer ΠS.

Our second key observation is that label randomization allows us to define the posterior distri-

bution

P(Π = π | G̃n = g̃n) =
P(G̃n = g̃n |Π = π)∑

π′∈Bi([n],Un) P(G̃n = g̃n |Π = π′)
(5)

which follows because P(Π = π) = 1
n! . This posterior distribution is supported on the subset of

bijection π such that π−1g̃n has non-zero probability under the PAPER model. In the case of the

single root PAPER or seq-PAPER model, the support of (5) has a simple characterization: for
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Gn time labeled graph (unobserved) Fn latent time labeled forest

G∗n observed alpha. labeled graph F ∗n latent alpha. labeled forest

G̃n randomly alpha. labeled graph F̃n latent randomly alpha. labeled forest

ρ fixed unobserved ordering; G∗n = ρGn Π latent random ordering; G̃n = ΠGn

S time labeled root nodes of Gn S̃ latent alpha. labeled root nodes; S̃ = ΠS

Table 1: Quick reference of important notation and definitions.

every time point t ∈ [n], define π1:t ∩ g̃n as the subgraph of g̃n restricted to nodes in π1:t. Then,

P(Π = π | G̃n = g̃n) > 0 if and only if π1:t ∩ g̃n is connected for all t ∈ [n].

From a Bayesian perspective, label randomization adds a uniform prior distribution on the

arrival ordering of the nodes in the observed alphabetically labeled graph G∗n; this is sometimes

used in Bayesian parameter inference on network models (Sheridan et al.; 2012; Bloem-Reddy

et al.; 2018). This prior however is not subjective. Indeed, we will see in Theorem 7 that Bayesian

inference statements in our setting directly have frequentist validity as well and, from Section S2.1,

that the posterior root probability of a node is equal to the likelihood of that node being the root

node up to normalization.

We describe how to compute (5) tractably in Section 4. For computation, we will also be

interested in the posterior probability over both the ordering Π as well as the latent forest F̃n:

P(Π = π, F̃ = f̃n | G̃n = g̃n). (6)

In the single root setting, f̃n is actually a tree, which we may write as t̃n. It is then clear

that (6) is non-zero only if t̃n is a spanning tree of g̃n, i.e., t̃n is a connected subtree of g̃n that

contains all the vertices.

3.2 Confidence set for the single root

To make the idea clear, we first consider the single root model. Since the root node is the node

labeled Π1 after label randomization, a natural approach is to first construct a level 1− ε Bayesian

credible set for the node Π1 by using its posterior distribution, which we call the posterior root

distribution.

More concretely, let g̃n be an alphabetically labeled graph. For each node u ∈ Un of g̃n, we

define the posterior root probability as P(Π1 = u | G̃n = g̃n). We sort the nodes u1, . . . , un so that

P(Π1 = u1 | G̃n = g̃n) ≥ P(Π1 = u2 | G̃n = g̃n) . . . ≥ P(Π1 = un | G̃n = g̃n),

and define

Lε(g̃n) = min

{
k ∈ [n] :

k∑
i=1

P(Π1 = ui | G̃n = g̃n) ≥ 1− ε
}

(7)

We then define the ε-credible set as

Bε(g̃n) =
{
u1, u2, . . . , uLε(g̃n)

}
, (breaking ties at random). (8)

By definition, Bε(g̃) is the smallest set of nodes with Bayesian coverage at level 1 − ε in that

P(Π1 ∈ Bε(g̃n) | G̃n = g̃n) ≥ 1− ε. In general, credible sets do not have valid frequentist confidence

coverage. However, our next theorem shows that in our setting, the credible set Bε is in fact an

honest confidence set in that P{root node ∈ Bε(G∗n)} ≥ 1− ε.
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Theorem 7. Let Gn ∼ PAPER(α, β, θ) or seq-PAPER(α, β, θ, α̃, β̃) and let G∗n be the alphabetically

labeled observation. Let ρ ∈ Bi([n],Un) be any label bijection such that ρGn = G∗n. We have that,

for any ε ∈ (0, 1),

P
{
ρ1 ∈ Bε(G∗n)

}
≥ 1− ε.

The proof is very similar to that of Crane and Xu (2021, Theorem 1). Since the proof is short,

we provide it here for readers’ convenience.

Proof. We first claim that Bε(·) is labeling-equivariant (cf. Remark 4) in the sense that for any

τ ∈ Bi(Un,Un) and any alphabetically labeled graph g̃n, we have that τBε(g̃n)
d
= Bε(τ g̃n) (note

that Bε(·) uses randomization to break ties). Indeed, since (Π, G̃n)
d
= (τ−1 ◦ Π, τ−1G̃n), we have

that, for any u ∈ Un,

P(Π1 = u | G̃n = g̃n) = P(Π1 = τ(u) | G̃n = τ g̃n).

Therefore, for any u, v ∈ Un, we have that P(Π1 = u | G̃n = g̃n) ≥ P(Π1 = v | G̃n = g̃n) if and only

if P(Π1 = τ(u) | G̃n = τ g̃n) ≥ P(Π1 = τ(v) | G̃n = τ g̃n). Since Bε(G
∗
n) is constructed by taking

the top elements of Un that maximize the cumulative posterior root probability, the claim follows.

Now, let ρ ∈ Bi([n],Un) be such that ρGn = G∗n and let Λ be a random bijection drawn

uniformly in Bi(Un,Un) and let Π = Λ ◦ ρ. Then,

P(ρ1 ∈ Bε(G∗n)) = P(ρ1 ∈ Bε(ρGn))

= P
{

(Λ ◦ ρ)1 ∈ Bε((Λ ◦ ρ)Gn) |Λ = Id
}

= P
{

(Λ ◦ ρ)1 ∈ Bε((Λ ◦ ρ)Gn)
}

= P(Π1 ∈ Bε(G̃n)) ≥ 1− ε,

where the penultimate equality follows from the labeling-equivariance of Bε and where the last

inequality follows because P(Π1 ∈ Bε(G̃n) | G̃n = g̃n) ≥ 1− ε for any labeled tree g̃n (with labels

in Un) by the definition of Bε.

Remark 6. We show in Theorem S5 of the appendix that the posterior root probability P(Π1 =

u | G̃n = g̃n) is equal to the likelihood of node u being the root node on observing the unlabeled

shape of g̃n. Therefore, the set Bε(g̃n) is in fact the maximum likelihood confidence set. Because the

likelihood in this setting is complicated to even write down, we leave all the details to Section S2.1

of the appendix.

Remark 7. One may see from the proof that Theorem 7 applies more broadly then just PAPER

models. It in fact applies to any random graph Gn whose nodes are labeled by {1, 2, . . . , n}. For

the PAPER model, the integer labels encode arrival time and thus contain information about the

graph. In a model where the integer labels are uninformative of the graph connectivity structure,

Theorem 7 is still valid although the posterior probability P(Π1 = · | G̃n = g̃n) would be uniform.

A reviewer of this paper also pointed out that Theorem 7 is related to the classical literature on

invariant/equivariant estimation where credible sets constructed from uniform (Haar) priors may

also be valid confidence sets; see e.g. Schervish (1995, Theorem 6.78).

3.3 Confidence set for multiple roots

First consider the fixed K setting where Gn ∼ PAPER(α, β, θ,K); let Π be a uniformly random

ordering in Bi([n],Un) and let G̃n = ΠGn. The latent set of root nodes of G̃n in this case is
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S̃ := ΠS = {Π1, . . . ,ΠK}. We then define the posterior root probability for any node u ∈ Un as

P(u ∈ S̃ | G̃n = g̃n),

that is, the probability that node u is an element of the latent root set S̃.

To form the credible set Bε(g̃n) ⊆ Un, we sort the nodes by the posterior root probabilities

P(u1 ∈ S̃ | G̃n = g̃n) ≥ P(u2 ∈ S̃ | G̃n = g̃n) ≥ . . . ≥ P(un ∈ S̃ | G̃n = g̃n). (9)

We may then take Bε(g̃n) to be the smallest set of nodes such that P
(
S̃ ( Bε(g̃n) | G̃n = g̃n

)
≤ ε.

More precisely, define the integer

Lε(g̃n) = min

{
k ∈ [n] :

n∑
i=k+1

P(ui ∈ S̃ | G̃n = g̃n) ≤ ε
}

(10)

and then define the credible set as

Bε(g̃n) =
{
u1, u2, . . . , uLε(g̃n)

}
(breaking ties at random). (11)

In the PAPER(α, β, α0, θ) model where the number of roots K is random, the set of root nodes

is S̃ = ΠS which comprises, according to the ordering Π, of the node that is first to arrive in each

of the component trees of F̃n. We may then sort the nodes as in (9), compute Lε(g̃n) as in (10)

and Bε(g̃n) as in (11).

Similar to Theorem 7, we may show that Bε(·) in fact also has frequentist coverage at the same

level 1− ε.

Theorem 8. Let Gn ∼ PAPER(α, β,K, θ) or PAPER(α, β, α0, θ) and let G∗n be the alphabetically

labeled observation. Let ρ ∈ Bi([n],Un) be any label bijection such that ρGn = G∗n and let S ⊂ [n]

be the time labels of the root nodes (see Definitions 4 and 5). We have that, for any ε ∈ (0, 1),

P
{
ρS ⊆ Bε(G∗n)

}
≥ 1− ε.

Proof. The proof is very similar to that of Theorem 7. First, since the random set S̃ is a function

of the random ordering Π in the fixed K setting and a function of both the random ordering Π and

the random forest F̃n, we write S̃(Π) or S̃(Π, F̃n) to be precise.

We then observe that S̃(Π) in the fixed K setting or S̃(Π, F̃n) in the random K setting, are

labeling equivariant in that for any τ ∈ Bi(Un,Un), we have that S̃(τ−1Π) = τ−1S̃(Π) or, in the

random K setting, S̃(τ−1Π, τ−1F̃n) = τ−1S̃(Π, F̃n). Therefore, since (Π, G̃n)
d
= (τ−1Π, τ−1G̃n)

for any τ ∈ Bi(Un,Un), we have S̃(Π, F̃n)
d
= τ−1S̃(Π, F̃n) and thus, for any u ∈ Un,

P(u ∈ S̃ | G̃n = g̃n) = P(τ(u) ∈ S̃ | G̃n = τ g̃n).

The rest the proof proceeds in an identical manner to that of Theorem 7.

When there are multiple roots, an alternative way of inferring the root set is to construct the

confidence set Bε(·) as a set of subsets of the nodes and then require that S̃ ∈ Bε with probability

at least 1 − ε. We can take the same approach to construct such confidence set over sets but it

becomes much more computationally intensive to compute them in practice.
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Figure 8: All histories of a tree with 4 nodes.

3.4 Combinatorial interpretation

Before we describe the Gibbs sampling algorithm for computing the posterior root probabilities

P(Π1 = u | G̃n = g̃n), we provide an intuitive combinatorial interpretation of the posterior root

probability in the single root PAPER model (Definition 2). The definitions and calculations here

are also important for deriving the algorithm in Section 4.

The noiseless case: We first consider the simpler setting in which we can observe the tree T̃n
(with a single root) distributed according to the APA model. In this case, we have

P(Π1 = · | T̃n = t̃n) =
∑

π :π1=u

P(Π = π | T̃n = t̃n).

Recall that T̃n = ΠTn where Tn is a random time labeled tree with APA(α, β) distribution and

Π is an independent uniformly random ordering in Bi([n],Un). The distribution P(Π = π | T̃n = t̃n)

is supported on a subset of the the bijections Bi([n],Un) because π−1T̃n must be a valid time labeled

tree (also called recursive tree in discrete mathematics). To be precise, we define the histories of t̃n
as

hist(t̃n) :=
{
π ∈ Bi([n],Un) : P(Tn = π−1t̃n) > 0

}
, and

h(t̃n) := |hist(t̃n)|

as the number of distinct histories. Since the APA tree distribution assigns a non-zero probability

to any valid time labeled trees, we see that hist(t̃n) contains the elements π of Bi([n],Un) such that

for all t ∈ [n], the subtree restricted only to nodes in π1:t, i.e. t̃n∩π1:t, is connected. Thus, hist(t̃n)

is the set of bijections π which represent a valid arrival ordering for the nodes of the given tree t̃n.

Similarly, we define, for any node u ∈ Un,

hist(u, t̃n) :=
{
π ∈ hist(t̃n) : π1 = u

}
h(u, t̃n) := |hist(u, t̃n)|,

as histories of t̃n that start at node u. We illustrate an example of the set of histories for a simple

tree in Figure 8.

By definition, P(Π = · | T̃n = t̃n) is supported on hist(t̃n). For most values of α and β, the

posterior distribution is in fact uniform over hist(t̃n):

Proposition 9. (Crane and Xu; 2021, Theorem 4 and Proposition 3) Let α, β be two real numbers

such that either (1) β ≥ 0 and α ≥ −β or (2) β < 0 and α = −Dβ for some integer D ≥ 2.

Suppose Tn ∼ APA(α, β). Let Π be a uniformly random ordering taking value in Bi([n],Un) and let

T̃n = ΠTn. Then,

P(Π = π | T̃n = t̃n) =
1

h(t̃n)
1{π ∈ hist(t̃n)}. (12)
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Figure 9: Same tree t̃n in three rooted orientations. Left: t̃
(E)
n rooted at E; the subtree of A

(denoted t̃
(E)
A ) contains nodes A,F,G; node A is the parent of F,G. Center: t̃

(B)
n rooted at B; the

subtree of A (denoted t̃
(B
A ) contains nodes A,F,G; node A is the parent of F,G. Right: t̃

(G)
n rooted

at G; the subtree of A (denoted t̃
(G)
A ) contains nodes A,B,E,C,D; node A is the parent of B.

The full proof of Proposition 9 is in Crane and Xu (2021) but we give a short justification here:

the posterior is uniform because P(Π = π | T̃n = t̃n) =
P(T̃n=t̃n |Π=π) 1

n!

P(T̃n=t̃n)
=

P(Tn=π−1t̃n) 1
n!

P(T̃n=t̃n)
. Moreover,

the probability P(Tn = π−1t̃n) is actually the same for any π ∈ hist(t̃n) by Proposition S1.

By Proposition 9, we have that

P(Π1 = u | T̃n = t̃n) =
h(u, t̃n)

h(t̃n)
.

Therefore, we need only count the histories h(u, t̃n) for every node u ∈ Un. We give a well-

known characterization of h(u, t̃n) that leads to a linear time algorithm for counting the size of

the histories: define, for any node u, v ∈ Un, the tree t̃
(u)
v as the subtree of node v where we view

the whole tree as being rooted (hanging from) node u; t̃
(u)
u is thus the entire tree rooted at u. See

Figure 9 for an example. We then have that, by Knuth (1997) or Shah and Zaman (2011),

h(u, t̃n) = n!
∏
v∈Un

1

|t̃(u)
v |

. (13)

Therefore, we can compute h(u, t̃n) by viewing t̃n as being rooted at u and taking the product of

the inverse of the sizes of all the subtrees. By using the fact that h(u, t̃n) can be directly computed

from h(u′, t̃n) for any neighbor u′ of u, Shah and Zaman (2011) derive an O(n) algorithm for com-

puting the size of the histories over all roots {h(u, t̃n)}u∈Un , which we give in Section S2 of the

appendix for readers’ convenience.

The general case: Now suppose we have the label randomized graph G̃n from the PAPER

model. We then have that

P(Π1 = u | G̃n = g̃n) =
∑

t̃n⊆g̃n

∑
π∈hist(u,t̃n)

P(Π = π, T̃n = t̃n | G̃n = g̃n)

∝
∑

t̃n⊆g̃n

∑
π∈hist(u,t̃n)

P(Π = π, T̃n = t̃n)P(G̃n = g̃n | T̃n = t̃n,Π = π)︸ ︷︷ ︸
(n(n−1)/2−(n−1)

m−(n−1) )
−1

.

∝
∑

t̃n⊆g̃n

∑
π∈hist(u,t̃n)

P(T̃n = t̃n |Π = π) =
∑
t̃⊆g̃n

∑
π∈hist(u,t̃)

P(Tn = π−1t̃n), (14)

where, in the outer summation, we require t̃n to be a subtree of g̃n with n nodes, that is, we

require t̃n to be a spanning tree of g̃n (see (16)). If Tn has the uniform attachment distribution
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Figure 10: One possible growth realization starting from node B.

(α = 1, β = 0), then we have that P(Tn = π−1t̃n) = 1
(n−1)! by Proposition S1 and hence,

P(Π1 = u | G̃n = g̃n) ∝
∑

t̃n⊆g̃n

h(u, t̃n).

Thus, the posterior root probability of u is simply proportional to the number of all possible

realizations of growth process that start from node u and end up with graph g̃n; see Figure 10.

When Tn has the LPA distribution (α = 0, β = 1), then P(Tn = π−1t̃n) depends on the degree

sequence of the tree t̃n so that the posterior root probability is proportional to a weighted count of

all possible growth realizations.

4 Algorithm

The inference approach that we described in Sections 3.2 and 3.3 requires computing posterior

probabilities such as the posterior root probability P (Π1 = u | G̃n = g̃n) for a fixed alphabetically

labeled graph g̃n. In this section, we derive a Gibbs sampling algorithm to generate an ordering

π ∈ Bi([n],Un) and a forest f̃n according to the posterior probability

P(Π = π, F̃n = f̃n | G̃n = g̃n). (15)

As discussed towards the end of Section 3.1, in the single root setting, the posterior probabil-

ity (15) over Π, F̃n is non-zero only if f̃n is a spanning tree of the graph g̃n. We formally define the

set of spanning trees of a connected graph g̃n as

T (g̃n) :=
{
f̃n : f̃n is connected subtree of g̃n and V (f̃n) = V (g̃n)

}
. (16)

We note that T (g̃n) is non-empty if and only if g̃n is connected. For the multiple roots setting,

we define the spanning forest of g̃n with K components as

FK(g̃n) :=
{
f̃n : f̃n is sub-forest of g̃n with K disjoint component trees and V (f̃n) = V (g̃n)

}
so that F1(g̃n) = T (g̃n). Then, for the fixed K roots model, the posterior probability (15) is

non-zero only if f̃n ∈ FK(g̃n) and for the random K roots model, probability (15) is non-zero only

if f̃n ∈ F(g̃n) := ∪nK=1FK(g̃n).

19



The value of the posterior probability (15) depends on the parameters of the model, e.g. α, β, θ

in the single root setting. We provide an estimation procedure for these parameters in Section S3.1

but for now, to keep the presentation simple, we assume that all parameters are known.

Our Gibbs sampler alternates between two stages:

(A) We fix the forest f̃n and generate an ordering π with probability P(Π = π | G̃n = g̃n, F̃n = f̃n).

(B) We fix the ordering π and generate a new forest f̃n by iteratively sampling a new parent for

each of the nodes.

We give the details for stage A in the next section and for stage B in Section 4.2.

Remark 8. In Section S3.3, we give an alternative collapsed Gibbs sampling algorithm in which we

collapse stage (A) so that we only sample the roots instead of the whole history π. The collapsed

Gibbs sampler requires fewer iterations to converge but each iteration is more computationally

intensive. Practically, the sampling algorithm that we present in Section 4.1 and 4.2 appears to be

faster except for the random K roots model on some data sets.

4.1 Sampling the ordering

In this section, we provide an algorithm for the first stage of the Gibbs sampler where we sample an

ordering. We fix a spanning forest f̃n of the observed graph g̃n, let K be the number of component

trees of f̃n, and let m = |E(g̃n)| be the number of edges of gn. We have that

P(Π = π | G̃n = g̃n, F̃n = f̃n) ∝ P(Π = π | F̃n = f̃n)P(G̃n = g̃n | F̃n = f̃n,Π = π). (17)

Under the non-sequential noise PAPER models, since the non-forest edges of G̃n are independent

Erdős–Rényi random edges, we have P(G̃n = g̃n | F̃n = f̃n,Π = π) =
((n2)−(n−K)

m−(n−K)

)−1

and may thus

ignore the non-forest edges and consider only on the posterior probability P(Π = π | F̃n = f̃n) when

sampling π. In the sequential noise seq-PAPER model, the P(G̃n = g̃n | F̃n = f̃n,Π = π) term

must be taken into account but can be computed efficiently. We give the detailed algorithms for

each of the settings.

Single root setting: In the single root setting, f̃n is connected and hence a tree; we thus change

to the notation t̃n := f̃n to be consistent with the notation used in Definition 1.

Hence, by our discussion in Section 3.4, sampling π according to P(Π = · | T̃n = t̃n) is equivalent

to sampling π uniformly from hist(t̃n). Crane and Xu (2021) and also Cantwell et al. (2021) derive a

procedure to sample uniformly from hist(t̃n) and we provide a concise description of the procedure

here for the readers’ convenience.

To generate π uniformly from hist(t̃n), we generate the first node π1 by taking the set of all

nodes and drawing a node u with probability

P(Π1 = u | T̃n = t̃n) =
h(u, t̃n)

h(t̃n)
. (18)

The entire collection {h(u, t̃n)}u∈Un can be computed in O(n) time (c.f. Section 3.4 and S2) and

thus we require at most O(n) time to generate the first node π1.

To generate the subsequent ordering π2:n, we view the tree t̃n as being rooted at π1 and use the

notation t̃
(π1)
n make the root explicit. For each node v ∈ Un, we define t̃

(π1)
v as the subtree of the

node v, viewing the whole tree as being rooted at node π1. We give an example of these definitions

in Figure 9.
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Figure 11: Example of sampling an ordering. In both cases, suppose π1:3 = {B,C,D}, then draw

π4 from the neighbors {F,A,E,G} with probability proportional to the size of their subtrees.

Then, by Crane and Xu (Proposition 9 2021), for every t ∈ [n− 1],

P(Πt+1 = v | T̃n = t̃n,Π1:t = π1:t) =

{
|t̃(π1)
v |

n−t+1 if v is a neighbor of π1:t in t̃n
0 else

(19)

One may verify this by showing that the probability of generating a particular ordering is 1
n!

∏
v∈Un |t̃

(u)
n | =

1
h(u,t̃n)

by (13).

Thus, we may generate π2 by considering all neighbors of π1 in t̃n and drawing a node v with

probability proportional to the size of its subtree |t̃(u1)
v | and similar for π3, π4, etc. The entire

sampling process can be efficiently done by generating a permutation uniformly at random and

modifying it in place so that it obeys the hist(f̃n) constraint. We summarize this in Algorithm 1

with K = 1 and also give a visual illustration in Figure 11. The runtime of the sampling algorithm

is upper bounded by O(ndiam(t̃n)) (Crane and Xu; 2021, Proposition 10). Trees generated by

the APA(α, β) model have diameter Op(log n) (see e.g. Drmota (2009, Theorem 6.32) and Bhamidi

(2007, Theorem 18)) and the overall runtime is therefore O(n log n). The computational complexity

is the same under the fixed K setting and the random K setting.

Fixed K roots setting: For the PAPER(α, β,K, θ) model, we may generate from P(Π = · | F̃n =

f̃n) in a similar way. In this case, f̃n is a forest that contains K disjoint component trees, which

we denote by t̃1, . . . , t̃K . We first generate a root for each component tree. For each k ∈ [K], we

draw uk ∈ V (t̃k) with probability

h(uk, t̃k)(βDt̃k(uk) + β + α)(βDt̃k(uk) + α)∑
v∈V (t̃k) h(v, t̃k)(βDt̃k(v) + β + α)(βDt̃k(v) + α)

. (20)

We note that (20) is different from the corresponding probability in the single tree setting (18)

because we give each root node an imaginary self-loop edge. We leave the detailed derivation

of (20) to Section S3.2 of the appendix.

We let s̃ = {u1, . . . , uk} denote the set of roots that we have generated. By the definition of

the PAPER(α, β,K, θ) model (Definition 4), the root nodes s̃ occupy the first K positions of the

ordering π and we thus let π1:K be the elements of s̃ placed in a random ordering.

Next, we view each component tree t̃k as being rooted at uk and, for every node v ∈ V (f̃n),

we denote the subtree of node v by t̃
(s̃)
v . We then generate π(K+1):n according to probability (19)

where we use the size of the subtree |t̃(s̃)v |. This is equivalent to generating a full history (excluding

the root node) for every tree and then interleaving them at random. We again summarize the whole
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procedure in Algorithm 1.

Random K roots setting: Now consider the random K roots setting with the PAPER(α, β, α0, θ)

model and suppose f̃n comprises of K disjoint trees t̃1, . . . , t̃K . We again generate the set of roots

s̃ = {u1, . . . , uK} by drawing uk from t̃k with probability (20). In contrast with the fixed K roots

setting, the root nodes u1, . . . , uK need not occupy the first K positions of the ordering π.

To generate the ordering π, we first choose uk ∈ s̃ with probability |t̃k| and set π1 = uk. We

then draw π2:n iteratively using the conditional distribution

P(Πt+1 = v | F̃n = f̃ ,Π1:t = π1:t) =

{
|t̃(s̃)v |
n−t+1 if v is a neighbor of π1:t in f̃n or if v ∈ s̃

0 else
(21)

We note that for a root node uk ∈ s̃, the subtree t̃
(s̃)

uk
is precisely the whole tree t̃k. We summarize

this procedure in Algorithm 1.

Sequential noise setting: Under the seq-PAPER model described in Section 2.3, we no longer

have a direct sampling algorithm to draw from P(Π = · | G̃n = g̃n, T̃n = t̃n) because we have to take

into account the P(G̃n = g̃n | T̃n = t̃n,Π = π) term in (17). For seq-PAPER models, we propose

instead a Metropolis–Hastings algorithm to update π by sampling new transpositions.

Let π be the current sample of arrival ordering. To generate a new proposal π∗, we randomly

choose a pair j, k ∈ {2, . . . , n} and construct π∗ by swapping the j-th and the k-th entries of π,

that is, π∗j = πk and π∗k = πj and all other entries are equal. If π∗ /∈ hist(t̃n), then we reject the

proposal; otherwise, we accept it with probability

1 ∧ P(G̃n = g̃n |Π = π∗, T̃n = t̃n)

P(G̃n = g̃n |Π = π,T̃n = t̃n)
, (22)

which follows because P(Π = π | T̃n = t̃n) = P(Π = π∗ | T̃n = t̃n). The ratio in (22) has a

complicated expression but can be computed in time proportional to only the degrees, with respect

to g̃n, of πj , πk, and the parent nodes pa(πj),pa(πk), where the notion of parent node is defined

in (23). We give a detailed description of how to efficiently compute (22) and determine whether

π∗ ∈ hist(t̃n) in Section S3.5 of the Appendix; in particular, see Section S3.5.2 which uses results

from Section S3.5.1. Even with our efficient implementation however, updating π by sampling

transpositions is considerably slower than sampling π directly via (19).

The transposition sampler does not change the root node since j, k are not allowed to take on

the value 1. To sample a new root node, we fix k0 ∈ N and generate a new proposal π∗ by shuffling

the first k0 entries of π. We then accept π∗ if it is a valid history and with probability (22). Finally,

we note that under the seq-PAPER∗ model with tree edge removal, our method for sampling π is

exactly the same. Since we condition on T̃n, it makes no difference whether we have deletion noise

or not.

Remark 9. Sheridan et al. (2012) and Bloem-Reddy et al. (2018) use the idea of swapping adjacent

elements of an ordering π for a Poisson growth attachment models and a sequential edge-growth

model referred to as Beta NTL respectively. In contrast, under the seq-PAPER model, we can

compute non-adjacent swap proposal probabilities efficiently and hence, we can explore the permu-

tation space of π faster. This is because the seq-PAPER is a simpler model and also because we

restrict ourselves to a spanning tree, which simplifies many parts of the calculations. We note that

sampling π through non-adjacent pair swaps can also be used for the model Gn = Tn +Rn where

Tn is not shape-exchangeable, for instance when the attachment probability is φ(DTt−1
(wt)) for
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some non-affine function φ(·) instead of the affine expression given in (1). Finally, We emphasize

that inference for the vanilla PAPER model is significantly faster than any form of swapping-based

Metropolis samplers since it directly samples the entire ordering.

Algorithm 1 Generating π ∈ hist(f̃n) according to P(Π = π | F̃n = f̃n) in ER noise settings.

Input: Labeled forest f̃n with K trees, denoted t̃1, . . . , t̃K .

Output: π ∈ hist(f̃n).

1: for k = 1, 2, . . . ,K do:

2: Choose node uk ∈ V (t̃(k)) with probability (18) with PAPER(α, β, θ) model and with prob-

ability (20) under PAPER(α, β,K, θ) or PAPER(α, β, α0, θ).

3: end for

4: Let s̃ = {u1, u2, . . . , uK} be the set of roots, and

• under PAPER(α, β, θ), let π1 = u1 and let t0 = 2,

• under PAPER(α, β,K, θ), let π1:K = s̃ in a random ordering and let t0 = K + 1.

• under PAPER(α, β, α0, θ), choose uk ∈ s̃ with probability |t̃k|/n, let π1 = uk, let t0 = 2.

5: Generate πt0:n as a uniformly random permutation of Un\π1:(t0−1).

6: for t = t0, t0 + 1, . . . , n do:

7: Let v1 = πt, v2 = pa(v1), . . . , vk = pa(vk−1) where k is the largest integer such that

v1, v2, . . . , vk /∈ π1:(t−1). . pa(v) denotes the parent of v with respect to f̃n rooted at s̃.

8: Set πt = vk, tk = π−1(vk), and πtk = v1.

9: end for

4.2 Sampling the forest

In this section, we describe stage B of the Gibbs sampling algorithm. For a fixed ordering π and a

spanning forest f̃n, we may obtain a set of roots s̃ for each of the component trees of f̃n by taking

the earliest node (according to π) of each tree. Viewing f̃n as being rooted at s̃ induces parent-child

relationships between all the nodes.

To define the parent-child relationship formally, let f̃n be a forest with disjoint component trees

t̃1, . . . , t̃K and let s̃ = {u1, u2, . . . , uK} be a set of root nodes such that uk ∈ V (t̃k). Let u be

any node not in s̃ and suppose u ∈ V (t̃k). There exists a unique node v ∈ V (t̃k) such that v is a

neighbor of u in f̃n and that the unique path from u to the root uk contains v. We say v the parent

node of u and write

pa(u) ≡ pa
f̃

(s̃)
n

(u) = parent of u with respect to f̃ (s̃). (23)

For a root node u ∈ s̃, we let pa(u) := ∅ for convenience. Since every edge in f̃n is between a node

and its parent, the set of parents
{
pa(u)

}
u∈Un

specifies the n−K edges in f̃n and hence uniquely

specifies the forest f̃n and the root nodes s̃.

Our Gibbs sampler updates the forest f̃n by iteratively updating the parent of each of the nodes,

which adds and removes a single edge from f̃n (it is possible to add and remove the same edge so

that the forest does not change) or, in the random K setting, we may remove a single edge and add

a new root node or remove a root node and add a single edge.

To be precise, the latent tree F̃n and root set S̃ induces a latent parent of each node which

we denote pa
F̃

(S̃)
n

(·). For every node u, we generate a new parent u′ according to the conditional
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distribution

Qu(u′) := P
(
pa

F̃
(S̃)
n

(u) = u′
∣∣∣∣Π = π, G̃n = g̃n,

{
pa

F̃
(S̃)
n

(v) = pa
f̃

(s̃)
n

(v)
}
v 6=u

)
, (24)

and then replace the old edge (u, pa(u)) with (u, u′). Since we condition on the arrival ordering Π,

probability (24) is non-zero only when u′ arrives prior to u, i.e. π−1u′ < π−1u, and (u, u′) ∈ E(g̃n).

In other words, if π−1u = t, then Qu(·) is supported on the set of nodes π1:(t−1) ∩Ng̃n(u). In the

random K setting, u′ is allowed to be empty in which case Qu(·) is supported on {∅} ∪
(
π1:(t−1) ∩

Ng̃n(u)
)

where Ng̃(u) is the set of neighbors of u on the graph g̃n. Our sampling procedure then

generate the parents for π1, π2, π3, . . . sequentially. In Figure 12, we illustrate how we may generate

a new parent for π5 (node C) by choosing one of the edges that connects π5 with one of the earlier

nodes π1:4.

Figure 12: Sampling a parent for π5 (node C).

At iteration t, to compute Qπt(·) with respect to πt, for each node v in the support of Qπt(·), we

let f̃
(v,πt)
n denote the forest formed by removing the old edge (pa(πt), πt) and adding the new edge

(v, πt). We note that v is allowed to be the old parent so that we may have f̃n = f̃
(v,πt)
n . Then, for

any wt in the support of Qπt(·), we have

Qπt(wt) =
P(F̃n = f̃

(wt,πt)
n |Π = π, G̃n = g̃n)∑

v P(F̃n = f̃
(v,πt)
n |Π = π, G̃n = g̃n)

. (25)

In the PAPER models with Erdős–Rényi edges, We can compute the conditional distribution

P(F̃n = · |Π = π, G̃n = g̃n) by using the fact that once when we condition on F̃n = f̃n, the

remaining edges of G̃n are uniformly random and the fact that Π and Fn are independent. Thus,

P(F̃n = f̃n |Π = π, G̃n = g̃n)

∝ P(G̃n = g̃n | F̃n = f̃n,Π = π)P(F̃n = f̃n |Π = π)

=

((n
2

)
− (n−K(f̃n))

m− (n−K(f̃n))

)−1

P(Fn = π−1f̃n)1{f̃n ∈ F(g̃n)}

∝
{K(f̃n)∏

k=1

n(n− 1)/2− n+ k)

m− n+ k

}
P(Fn = π−1f̃n)1{f̃n ∈ F(g̃n)}. (26)

We now discuss the sampling procedure in detail in all the settings.

Single root setting: In the single root setting, we again use the notation t̃n = f̃n to be consistent

with Definition 1. The first term of (26) is a constant since K(t̃n) = 1 and may thus be ignored.

Using the likelihood of APA trees (see Remark 2 as well as Proposition S1 from the Appendix)
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and using the fact that P(Tn = π−1t̃n) > 0 when π ∈ hist(t̃n), we have that, for any wt ∈
π1:(t−1) ∩Ng̃n(πt),

Qπt(wt) =
βD

t̃
(·,πt)
n

(wt) + α∑
v∈π1:(t−1)∩Ng̃n (πt)

βD
t̃
(·,πt)
n

(v) + α
,

where t̃
(·,πt)
n is the disconnected graph obtained by removing the old edge (pa(πt), πt) from t̃n. We

summarize the resulting procedure in Algorithm 2. Since we visit every node once and, for a single

node u, it takes time O(Dg̃n(u)) to generate a new parent, the overall runtime of the second stage

of the algorithm is O(m). The computational complexity is the same under the fixed K setting and

the random K setting.

Fixed K > 1 setting: Since the number of trees K is fixed, the first term of (26) is again a

constant. Using likelihood of APA trees again (see Proposition S2 from the Appendix), we have

that for any wt ∈ π1:(t−1) ∩Ng̃n(πt),

Qπt(wt) =
βD

f̃
(·,πt)
n

(wt) + 2β1{wt ∈ π1:K}+ α∑
v∈π1:(t−1)∩Ng̃n (πt)

βD
f̃

(·,πt)
n

(v) + 2β1{v ∈ π1:K}+ α
,

where, as with the single root setting, f̃
(·,πt)
n is the forest obtained by removing the old edge

(pa(πt), πt) from f̃n. The only difference from the single root setting is that we have a higher

probability to attach to a root node because of the imaginary self-loop edge. We summarize the

procedure in Algorithm 2.

Algorithm 2 Generating spanning forest f̃n of g̃n under either PAPER(α, β, θ) or

PAPER(α, β,K, θ)

Input: Graph g̃n, ordering π ∈ Bi([n],Un), and a spanning forest f̃n with K component trees.

Effect: Modifies f̃n in place.

1: for t = K + 1, . . . , n do:

2: Remove old edge (πt, pa(πt)) from f̃n to obtain f̃
(·,πt)
n .

3: Choose a node wt ∈ π1:(t−1) ∩Ng̃n(πt) with probability proportional to{
βD

f̃
(·,πt)
n

(wt) + α under PAPER(α, β, θ)

βD
f̃

(·,πt)
n

(w) + 2β1{w ∈ π1:K}+ α under PAPER(α, β,K, θ)

4: Add new edge (πt, wt) to f̃n.

5: end for

Random K roots setting: Under the PAPER(α, β, α0, θ) model, a node may become a new

root in the sampling process and thus we must take into account the first term of (26). Moreover,

in this setting, Qπt(·) for node πt is supported on {∅} ∪
(
π1:(t−1) ∩ Ng̃n(πt)

)
since we may turn

the node πt into a new root node, in which case we set its parent to ∅ by convention. Define

α̃0 := α0
m−n+K+1{πt /∈s̃}

n(n−1)/2−n+K+1{πt /∈s̃} ; we then have that, by Proposition S3, for any wt ∈ {∅}∪
(
π1:(t−1)∩
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Ng̃n(πt)
)
,

Qπt(wt) =
α̃0

α̃0 +
∑
v∈π1:(t−1)∩Ng̃n (πt)

βD
f̃

(·,πt)
n

(v) + 2β1{v ∈ s̃}+ α
if wt = ∅

and Qπt(wt) =
βD

f̃
(·,πt)
n

(wt) + 2β1{wt ∈ S}+ α

α̃0 +
∑
v∈π1:(t−1)∩Ng̃n (πt)

βD
f̃

(·,πt)
n

(v) + 2β1{v ∈ s̃}+ α
if wt 6= ∅,

where, if πt is not a root node, f̃
(·,πt)
n is the forest obtained by removing the old edge (πt,pa(πt))

and if πt is a root node, then f̃
(·,πt)
n = f̃n. We summarize the resulting procedure in Algorithm 3.

Algorithm 3 Generating spanning forest f̃n of g̃n under PAPER(α, β, α0, θ)

Input: Graph g̃n, ordering π ∈ Bi([n],Un), and a spanning forest f̃n.

Effect: Modifies f̃n in place.

1: Let s̃ be the set of root nodes.

2: for t = 2, 3, . . . , n do:

3: If πt /∈ s̃, remove edge (πt, pa(πt)) from f̃n to get f̃
(·,πt)
n . Else, let s̃ = s̃\{wt} and let

f̃
(·,πt)
n = f̃n.

4: Choose a node wt ∈ {∅} ∪
(
π1:(t−1) ∩Ng̃n(πt)

)
with probability proportional to{

α0 for wt = ∅
βD

f̃
(·,πt)
n

(wt) + 2β1{wt ∈ s̃}+ α for wt 6= ∅

5: If wt 6= ∅, let f̃n = f̃
(·,πt)
n ∪ (πt, wt). Otherwise, let s̃ = s̃ ∪ {πt} and f̃n = f̃

(·,πt)
n .

6: end for

Sequential noise setting: Under the seq-PAPER setting, we use the same sampling procedure but

the sampling probabilities become more complicated. From (25), we see that, for w ∈ Ng̃n∩π1:(t−1),

Qπt(w) ∝ P(T̃n = t̃(w,πt)n |Π = π, G̃n = g̃n)

∝ P(G̃n = g̃n | T̃n = t̃(w,πt)n ,Π = π)︸ ︷︷ ︸
noise term

P(T̃n = t̃(w,πt)n |Π = π).

Under the seq-PAPER model, the noise term also depends on w since choosing a new parent for

πt would change the tree degrees of some of the nodes. Naively computing Qπt(w) takes time

O(n), but in Section S3.5.3 of the Appendix (using results from Section S3.5.1), we give a detailed

algorithm to compute Qπt(w) in time O(Dg̃n(w)) so that overall, we can sample a new parent for

πt in time proportional to the number of neighbors of neighbors of πt.

When we have deletion noise, as the case of the seq-PAPER∗ model, the latent tree T̃n need not

be a subgraph of G̃n and hence, when sampling a new parent for πt, we must consider all of π1:(t−1)

and not just graph neighbors of πt. Thus, we draw w ∈ π1:(t−1) with probability Qπt(w) and set

pa(πt) = w. We give the detailed algorithm for computingQπt(w) in Section S3.5.3 of the Appendix.

4.3 Other aspects of the algorithm

Parameter estimation: To estimate α and β, we derive an EM algorithm in Section S3.1 of the

Appendix. The noise level θ is easy to estimate via θ̂ = m−(n−1)
n(n−1)/2−(n−1) in the single root setting.
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The inference algorithm in fact does not require knowledge of θ since it conditions on the number of

edges m of the observed graph. We discuss some ways to select the number of trees K in the fixed K

root setting and ways to estimate α0 in the random K roots setting in Section S3.4 of the Appendix.

Inference from posterior samples: The Gibbs sampler described in Section 4.1 and Section 4.2

generates a Monte Carlo sequence {(π(j), f̃
(j)
n )}Jj=1 where J is the number of Monte Carlo samples.

A straightforward way to approximate the posterior root probability is to use the empirical distri-

bution based on all the π(j)’s. However, we can construct a much more accurate approximation by

taking advantage of the fact that the posterior root probability is easy to compute on a tree.

Consider the single root setting for simplicity where the posterior root probability is P(Π1 =

u | G̃n = g̃n) for any node u. In this case, we may compute distributions Q(1), Q(2), . . . , Q(J) over

the nodes by

Q(j) = P(Π1 = u | T̃n = t̃(j)n , G̃n = g̃n) = P(Π1 = u | T̃n = t̃(j)n ) =
h(u, t̃

(j)
n )

h(t̃
(j)
n )

.

Then, we output 1
J

∑J
j=1Q

(j) as our approximation of the posterior root distribution. In the

multiple roots setting, we use the same procedure except that we compute u 7→ P(u ∈ S̃ | F̃n = f̃
(j)
n )

and then average across j ∈ {1, 2, . . . , J}.
In the multiple roots setting, each Monte Carlo sample of the forest f̃

(j)
n contain either K

disjoint trees in the fixed K setting or a random number of disjoint trees in the random K setting.

These disjoint trees provide a posterior sample of the communities on the network and using them,

we may estimate the community structure of the network. We provide details on one way of using

posterior samples for community recovery in Section 6.3 and 6.4.

The Gibbs sampling algorithm scales to large networks. We are able to run it on networks of

up to a million nodes (c.f. Section 6.2.2) on a single 2020 MacBook Pro laptop. To give a rough

sense of the runtime, it takes about 1 second to perform one outer loop of the Gibbs sampler on a

graph of 10,000 nodes and 20,000 edges. In Section S3.4 of the appendix, we provide more details

on practical usage of the Gibbs sampler such as convergence criterion.

Initialization: In the single root setting, to initialize the Gibbs sampling algorithm, we recommend

generating the initial tree t̃n uniformly at random from the set of spanning trees T (g̃n) of the

observed graph, which can be efficiently done via elegant random-walk-based algorithms such as

the Aldous–Broder algorithm (Broder; 1989; Aldous; 1990) or Wilson’s algorithm (Wilson; 1996).

We then initialize π by drawing an ordering uniformly from the history of the initial tree. This

initialization distribution is guaranteed to be overdispersed and works very well in practice. The

same initialization works for the random K setting. For the fixed K setting, we can form the initial

forest by constructing uniformly random spanning tree t̃n and uniformly random ordering π as

usual, taking the first K nodes of the π as the root nodes, and removing all tree edges between

them to obtain an initial f̃n. We use Wilson’s algorithm in our implementation.

5 Theoretical Analysis

We provide theoretical support for our approach by deriving bounds on the size of our proposed

confidence sets when the observed graph has the PAPER distribution. In particular, we aim to

quantify how the quality of inference deterioriates with the noise level θ, that is, how the size of the

confidence set increases with θ. For simplicity, for consider only the single root setting and we do
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not take into account approximation errors introduced by the Gibbs sampler, that is, we analyze

the confidence set constructed from the exact posterior root probabilities.

We begin with a type of optimality statement which shows that the size of the confidence set

Bε(·), as defined in (8), is of no larger order than any other asymptotically valid confidence set.

Intuitively, this is because Bε(·) can be interpreted as a “Bayes estimator” for the root node.

Lemma 10. Let ε be in (0, 1), let Gn ∼ PAPER(α, β, θ), and let G∗n = ρGn be the observed

alphabetically labeled graph for some ρ ∈ Bi([n],Un). Let Bε(G
∗
n) be defined as in (7) and (8). Fix

any δ ∈ (0, 1) and let Cδε(G
∗
n) be any confidence set for the root node that is labeling-equivariant

and has asymptotic coverage level 1−δε, that is, lim supn→∞ P(ρ1 /∈ Cδε(G∗n)) ≤ δε. Then, we have

that

lim sup
n→∞

P
(
|Bε(G∗n)| ≥ |Cδε(G∗n)|

)
≤ δ.

We provide the proof of Lemma 10 in Section S4 of the appendix.

Ideally, we would compare the size of Bε(·) with Cε(·) at the same level. It is however much

easier to compare with the more conservative Cδε(·). In many cases, the size of a confidence set

|Cε(·)| has bounds of the form f(n)g(ε−1) for some functions f and g (see e.g. Banerjee and Bhamidi

(2020)) so that comparing with Cδε(·) adds only a multiplicative constant to the bound.

Lemma 10 is useful because it is difficult to directly bound the confidence set Bε(·) as a function

of n and the parameters; Lemma 10 shows that we can indirectly upper bound it by analyzing a

simpler asymptotically valid confidence set. Our strategy then is to construct confidence sets based

on the degree of the nodes whose size is much easier to bound through well-understood probabilistic

properties of preferential attachment trees. This leads to our next result which provides explicit

bounds on the size of the confidence set Bε(·) when the underlying tree is LPA.

Theorem 11. Let Gn ∼ PAPER(α, β, θ) for β = 1, α = 0, and θ ∈ [0, 1]. For t ∈ [n], let DGn
(t)

be the degree of node with arrival time t and for k ∈ [n], let k- max(DGn) be the k-th largest degree

of Gn. Let δ > 0 be arbitrary and suppose θ ≤ n−
1
2−δ. Then, for any ε > 0, there exists Lε ∈ N

(dependent on δ but not on n) such that

lim sup
n→∞

P
{
DGn(1) ≤ Lε- max(DGn)

}
≤ ε. (27)

As a direct consequence, if θ = O(n−
1
2−δ) for any δ > 0, then, for any ε ∈ (0, 1),

|Bε(G∗n)| = Op(1).

We relegate the proof of Theorem 11 in Section S4.1 of the appendix and provide a short sketch

here: we use results from Peköz et al. (2014) which show that the degree sequence of an LPA tree,

when normalized by 1√
n

, converges to a limiting distribution in the `q sequential metric sense, which

shows that (27) holds for the tree degree DTn(·), that is, the degree of the root node is one of the

highest among all the nodes. Since DGn
= DTn +DRn

, we show that if the noise level θ is less than

n−1/2−δ for some δ > 0, then the degree of the noisy edges DRn
has a second order effect and (27)

remains valid.

We know from existing results (such as Bubeck, Devroye and Lugosi (2017, Theorem 6); see

also Crane and Xu (2021, Corollary 7)) that |Bε(T ∗n )| is Op(1) in the θ = 0 case where we observe

the LPA tree T ∗n . Theorem 11 shows that this phenomenon is quite robust to noise. Indeed, when

θ = n−1/2−δ, the observed graph would have approximately n3/2−δ noisy edges and only n− 1 tree

edges.

The situation is different when the underlying latent tree has the UA distribution, where α = 1

and β = 0. In this case, we have the following result:
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Theorem 12. Let Gn ∼ PAPER(α, β, θ) for α = 1, β = 0, and θ ∈ [0, 1]. For t ∈ [n], let

DGn
(t) be the degree of node with arrival time t and for k ∈ [n], let k- max(DGn

) be the k-th largest

degree of Gn. Suppose θ = o
(

logn
n

)
and let ε ∈ (0, 1) be arbitrary. For any η ∈ (0, 1), define

Lη,n,ε := nη + ε−1n1−(2−η)h
(

η
2−η

)
where h(x) = (1 +x) log(1 +x)−x for x ≥ 0. Then, we have that

lim sup
n→∞

P
{
DGn

(1) ≤ Lη,n,ε- max(DGn
)
}
≤ ε. (28)

As a direct consequence, if θ = o( logn
n ), then, for some γ ≤ 0.8, we have that

n−γε−1|Bε(G∗n)| = Op(1) for any ε ∈ (0, 1).

We relegate the proof of Theorem 12 to Section S4.2 of the appendix. The proof technique is

similar to that of Theorem 11 except that we use concentration inequalities to derive (28).

Comparing Theorem 12 with Theorem 11, we see two important differences. First, even if the

noise level is small, we can no longer guarantee that |Bε(G∗n)| is bounded even as n increases.

Instead, we have the much weaker bound that |Bε(G∗n)| is less than O(nγ) for some γ < 0.8. We

believe this bound is not tight; we observe from simulations in Section 6.1 (see Figure 13) that the

size of the confidence set Bε(·) is indeed Op(1) even when the noise level is of order logn
n . The

bound is sub-optimal because the degree of the nodes is not informative of their latent ordering

when the latent tree has the UA distribution; hence, Bε(·) could be much smaller than confidence

sets constructed solely from degree information. Intuitively, this is because largest degree nodes

do not persist in uniform attachment as opposed to linear preferential attachment (Dereich and

Mörters; 2009; Galashin; 2013).

The second difference is that the noise tolerance is much smaller. We require θ to be smaller

than logn
n rather than n−1/2. We conjecture that these rates are tight in the following sense:

Conjecture 13. Let Gn ∼ PAPER(α, β, θ) for α = 1, β = 0, and θ ∈ [0, 1].

1. Suppose α = 0 and β = 1 (LPA). If θ = o(n−1/2), then |Bε(G∗n)| = Op(1) and if θ = ω(n−1/2),

then every asymptotically valid confidence set has size that diverges with n.

2. Suppose α = 1 and β = 0 (UA). If θ = o( logn
n ), then |Bε(G∗n)| = Op(1) and if θ = ω( logn

n ),

then every asymptotically valid confidence set has size that diverges with n.

We provide empirical support for this conjecture in Section 6.1, particularly Figure 13. In those

experiments, we see that, when the latent tree has the LPA distribution and when θ = cn−1/2

where c > 0 is small, the size of Bε does not increase with n; however, when c (and hence θ) is

large, Bε is larger when the size of the graph n is larger. The same phenomenon holds when the

latent tree has the UA distribution when θ = c logn
n .

6 Empirical Studies

We have implemented the inference approach in Section 3 and the sampling algorithm in Sec-

tion 4 in a Python package named paper-network, which can be installed via command line pip

install paper-network on the terminal and then imported in Python via import PAPER. The

source code of the package, along with examples and documentation, are available at the website

https://github.com/nineisprime/PAPER. All the code used in this Section are also available there

under the directory paperexp. We also give detailed sampler diagnostics information in Section S5.4

of the Appendix.
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6.1 Simulation

Frequentist coverage in the single root setting: In our first simulation study, we empir-

ically verify Theorem 7 by showing that a level 1 − ε credible set for the root node constructed

from the posterior root probabilities has frequentist coverage at exactly the same level 1 − ε. We

consider three different settings of parameters: α = 0, β = 1 (LPA), α = 1, β = 0 (UA), and

α = 8, β = 1. We generate G∗n according to the PAPER(α, β, θ) model with n = 3, 000 nodes and

m = 7, 500 edges. We then estimate α and β using the method given in Section S3.1, compute

the level ε ∈ {0.2, 0.05, 0.01} credible sets, and record whether they cover the true root node. We

repeat the experiment over 300 independent trials and report the results in Table 2. We observe

that the credible sets attain the nominal coverage and that the size of the credile sets are small

compared to the number of nodes n.

(α, β) (0, 1) (1, 0) (8, 1) (0, 1) (1, 0) (8, 1) (0, 1) (1, 0)

Theoretical coverage 0.8 0.8 0.8 0.95 0.95 0.95 0.99 0.99

Empirical coverage 0.8 0.823 0.82 0.937 0.943 0.94 0.983 0.993

Ave. conf. set size 7 12 9 42 42 31 183 115

Table 2: Empirical coverage of our confidence set for the root node. We report the average over

300 trials. Graph has n = 3000 nodes and m = 7, 500 edges in all cases.

Size of the confidence set: In our second simulation study, we study the effect of the sample

size n and the magnitude of the noisy edge probability θ on the size of the confidence set. We let

G∗n be the observed graph with n nodes and m edges according to the PAPER(α, β, θ) model where

we consider (α, β) = (0, 1) (LPA) or (1, 0) (UA). Since a tree with n nodes always contains n − 1

edges, n2

2 θ + n is approximately equal to the number of edges m in the observed graph G∗n.

We empirically show that the confidence set size does not depend on n so long as θ is much

smaller than n−1/2 for LPA and much smaller than logn
n for UA. To that end, we set m = cn

√
n

for c ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1} for LPA and m = cn log n for c ∈ {0.15, 0.2, 0.4, 0.6, 0.8} for UA. We

then plot the average size of the confidence set with respect to c for n ∈ {5000, 10000}. We plot the

curve for n = 5, 000 and for n = 10, 000 on the same figure and observe that, when c is small, the

two curves overlap completely but when c is large, the n = 10, 000 curve lies above the n = 5, 000

curve. This provides empirical support to Theorem 11 and Theorem 12. In fact, this experiment

shows that the bound of nγ on the size of the confidence set in Theorem 12 is loose; the actual

size does not increase with n. The fact that the confidence set size seems to diverge with n when

c is larger supports Conjecture 13 and suggests that the problem of root inference exhibits a phase

transition when θ ≈ 1√
n

under the LPA model and θ ≈ logn
n under the UA model.

Frequentist coverage under sequential noise models: In our third simulation study, we verify

Theorem 7 for the seq-PAPER model with sequential noise described in Section 2.3. We generateG∗n
according to both the seq-PAPER(α, β, θ, α̃, β̃) model and the seq-PAPER∗(α, β, θ, α̃, β̃, η) model

with deletion noise. We then construct the credible sets for the root node from posterior root

probabilities computed via the algorithm given in Section 4. We repeat the experiment over 200

independent trials and report the results in Tables 3 and 4. We observe that the credible sets attain

the nominal coverage. We also note that Table 4 shows that the seq-PAPER∗ model can tolerate

tree deletion probability up to η = 0.08 without significant increase in the confidence set sizes.
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Figure 13: Size of the confidence set vs. the number of edges.

(α, β) (with α̃ = α, β̃ = β) (0, 1) (1, 0) (0, 1) (1, 0) (0, 1) (1, 0)

Theoretical coverage 0.8 0.8 0.95 0.95 0.99 0.99

Empirical coverage 0.795 0.895 0.935 0.965 0.970 0.995

Ave. conf. set size 7 7 25 16 56 28

Table 3: Empirical coverage of our confidence set for the seq-PAPER(α, β, θ, α̃, β̃) model without

deletion noise, with θ = 1.5 and α̃ = α and β̃ = β. We report the average over 200 trials. Graph

has n = 600 nodes and around m ≈ 1500 edges in all cases.

η (tree edge deletion probability) 0 0 0.04 0.04 0.08 0.08

Theoretical coverage 0.8 0.95 0.8 0.95 0.8 0.95

Empirical coverage 0.825 0.96 0.84 0.95 0.85 0.98

Ave. conf. set size 5.9 14.1 6.3 15.0 6.7 15.9

Table 4: Empirical coverage of our confidence set for the seq-PAPER∗(α, β, θ, α̃, β̃, η) model with

deletion noise, with α = 0, β = 1, α̃ = 8, β̃ = 1, θ = 1.5 in all cases. We report the average over 200

trials. Graph has n = 300 nodes and around m ≈ 750 edges in all cases.

Frequentist coverage for multiple roots: Our next simulation study is similar to the first

except that we generate graphs from the PAPER(α, β,K, θ) model with K = 2. We construct our

credible sets as described in Section 3.3 and verify Theorem 8 by showing that the credible set at

level 1− ε also has frequentist coverage at exactly the same level. We consider two different settings

of parameters: α = 0, β = 1 (LPA) and α = 1, β = 0 (UA). We generate G∗n according to the

PAPER(α, β,K, θ) model with n = 700 nodes, m = 1, 000 edges, and K = 2. We then estimate

α and β using the method given in Section S3.1, compute the level ε ∈ {0.2, 0.05, 0.01} credible

sets, and record whether they contain the true set of root nodes. We repeat the experiment over

200 independent trials and report the results in Table 5. We observe that the credible sets attain

the nominal coverage. In the LPA setting, the size of the credible sets are small but in the UA

setting, the sizes of the credible sets become much larger. We relegate an in-depth analysis of this

phenomenon to future work.
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(α, β) (0, 1) (1, 0) (0, 1) (1, 0) (0, 1) (1, 0)

Theoretical coverage 0.8 0.8 0.95 0.95 0.99 0.99

Empirical coverage 0.826 0.826 0.933 0.964 0.974 0.985

Ave. conf. set size 5 57 12 155 31 295

Table 5: Empirical coverage of our confidence set for the set of K = 2 root nodes. We report the

average over 200 trials. Graph has n = 700 nodes and m = 1, 000 edges in all cases.

Posterior on K in the random K roots setting: In our last simulation experiment, we generate

PAPER graphs with K = 2 roots but perform posterior inference using the PAPER(α, β, α0, θ)

model and study resulting posterior distribution over the number of roots K. We consider two

different settings of parameters: α = 0, β = 1 (LPA) and α = 1, β = 0 (UA). We generate G∗n
according to the PAPER(α, β,K, θ) model with n = 700 nodes, m = 1, 000 edges, and K = 2. We

report the posterior distribution over K, averaged over 20 independent trials, in Figure 14. We

observe that, in both cases, the mode of the posterior distribution over K is 2, which is the true

number of roots. However, the distributions exhibits high variance, which could be due to the fact

that the two true latent trees may have significantly different sizes.

2 5 10 20
K (num of roots)

0.00

0.05

0.10

0.15

UA

2 5 10
K (num of roots)

0.00

0.05

0.10

0.15

0.20

LPA

Figure 14: Posterior distribution over K averaged across 20 independent trials. Left: networks

have two latent UA trees. Right: networks have two latent LPA trees.

6.2 Single root analysis on real data

We now apply the single root PAPER model on real world networks. In a few cases (Section 6.2.1),

we can ascertain from domain knowledge that the network originated from a single root node but

more often, we use the single root model to identify important nodes and subgraphs (Section 6.2.2).

6.2.1 Flu transmission network

We analyze a person-to-person contact network among 32 students in a London classroom during

a flu outbreak (Hens et al.; 2012). We extract the data from Figure 3 in Hens et al. (2012) and

illustrate the network in the left sub-figure of Figure 15. Public health investigation revealed that

the outbreak originated from a single student, which is the true patient zero and shown as the

orange node in Figure 15. We apply the PAPER model with a single root to this network. We

estimate that β = 1 and α = 53.06 using the method described in Section S3.1 and compute the

60%, 80%, 95%, and 99% confidence sets. All the confidence sets contain the true patient zero and
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Figure 15: Left: contact network among 32 students in a flu outbreak. Center and right: two

examples of the latent tree generated by the Gibbs sampler.

their sizes are as followed:

60%: 6 nodes 80%: 10 nodes 95%: 19 nodes 99%: 27 nodes.

We provide the approximate posterior root probabilities of the top 7 nodes in Figure 15. The

true patient zero has a posterior root probability of 0.11 is the node with the 3rd highest posterior

root probability. In the center and right sub-figure of Figure 15, we also show two of the latent

trees T̃n that were generated by the Gibbs sampler.

6.2.2 Visualizing central subgraphs

Large scale real graphs are difficult to visualize but one can often learn salient structural proper-

ties of a graph by visualizing a smaller subgraph that contains the most important nodes. In this

section, we apply the single root PAPER model on four large networks and, for each graph, display

the subgraph that comprises the 200 nodes with the highest posterior root probability. We see that

the result reveals striking differences between the different graphs. Unfortunately, we do not have

the node labels on any of these four graphs and can only make qualitative interpretations of the

results.

MathSciNet collaboration network: We first consider a collaboration network of research

publications from MathSciNet, which is publicly available in the Network Repository (Rossi and

Ahmed; 2015) at the link http://networkrepository.com/ca-MathSciNet.php. This network

has n = 332, 689 nodes and m = 820, 644 edges, with a maximum degree of 496. Using the method

described in Section S3.1, we estimate β = 1 and α = 0. The sizes of confidence sets are:

60%: 3 nodes 80%: 6 nodes 95%: 21 nodes 99%: 112 nodes.

We display the subgraph containing the 200 nodes with the highest posterior root probability

in Figure 16a. We observe that the subgraph reveals a cluster structure that may represent the

different academic disciplines.

University of Notre Dame website network: We study a network of hyperlinks between

webpages of University of Notre Dame (Albert et al.; 1999), which is publicly available at the

website https://snap.stanford.edu/data/web-NotreDame.html. This network has n = 325, 729
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nodes and m = 1, 090, 108 edges, with a maximum degree of 10,721. Using the method described

in Section S3.1, we estimate β = 1 and α = 0. The sizes of confidence sets are:

60%: 2 nodes 80%: 21 nodes 95%: 524 nodes 99%: 3498 nodes .

We observe that the central subgraph (shown in Figure 16b) reveals two hub nodes with many

sparsely connected “spokes”.

0.278

0.142

0.201

(a) MathSciNet subgraph

0.401

0.235

(b) Notre Dame subgraph

Figure 16: Subgraph of the 200 nodes with highest posterior root probabilities.

6.3 Community recovery with the fixed K model

In this section, we show that we can use the PAPER model with multiple roots for community

recovery on real world networks. To estimate the community membership from the posterior sam-

ples, we use a greedy matching procedure. To be precise, our Gibbs sampler outputs a sequence of

forests f̃
(1)
n , . . . , f̃

(J)
n where J is the number of Monte Carlo samples. Each forest f̃

(j)
n contains K

component trees which we denote t̃(1,j), t̃(2,j), . . . , t̃(K,j). We write Q
(j)
k (·) := P(Π1 = · | T̃ = t̃(k,j))

as the posterior root distribution of the k-th tree of the j-th Monte Carlo sample. Since the tree

labels may switch from sample to sample, we use the following matching procedure: we maintain

K distributions Q1(·), Q2(·), . . . , QK(·) and initially set Qk = Q
(1)
k for all k ∈ [K]. Then, for

j = 2, 3, . . . , J , we use the Hungarian algorithm to compute a one-to-one matching σ : [K]→ [K]

that minimizes the overall total variation distance
K∑
k=1

TV(Q
(j)
k , Qσ(k)).

Once we compute the matching, we then update Qσ(k) ← j−1
j Qσ(k) + 1

jQ
(j)
k .

In this way, we interpret Q1, . . . , QK as the average posterior root distributions for the K trees

across all the Monte Carlo samples and using the matching, we may also compute the posterior

probability P( u in tree k | G̃n = g̃n), which allows us to perform community detection – we put

node u in cluster k if P( u in tree k | G̃n = g̃n) ≥ P( u in tree k′ | G̃n = g̃n) for all k′ 6= k. We use

the greedy matching procedure for computational efficiency – slower but more principles approaches

are studied by e.g. Wade and Ghahramani (2018).

6.3.1 Karate club network

We apply the PAPER model to Zachary’s karate club network Zachary (1977), which is publicly

available at http://www-personal.umich.edu/ mejn/netdata/. The karate club network has
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n = 34 nodes and m = 76 edges, where two individuals share an edge if they socialize with each

other. The network has two ground truth communities, one led by the instructor and one led by

the administrator (shown as rectangular nodes in Figure 17. These two communities later split into

two separate clubs. In this case, we apply the PAPER model with K = 2 roots. For every node u,

we consider the community membership probability P(u in tree 1 | G̃n) and assign u to community

1 if and only if this value is greater than 0.5. We show the result in in Figure 17, where each node

has a color that reflects its community membership probability.

We correctly cluster all but one node, which matches the performance of degree-corrected SBM

Karrer and Newman (2011); Amini et al. (2013) (DCSBM)–the current the state of the art model for

community detection. The node that we misclassify has a posterior probability P(u in tree 1 | G̃n) =

0.47, indicating that the model is indeed unsure of whether it belong in community 1 or 2. We note

that the PAPER model requires only 3 parameters whereas the DCSBM for this network requires 38

parameters because each node has a degree correction parameter. SBM without degree correction

performs badly Karrer and Newman (2011).

Figure 17: Left: karate club network where node color reflects community membership probability.

Center and right: two examples of the latent forest generated by the Gibbs sampler.

6.3.2 Political blogs network

Next, we analyze a political blogs network (Adamic and Glance; 2005) that is frequently used as a

benchmark for network clustering algorithms; the full network is publicly available at the website

http://www-personal.umich.edu/ mejn/netdata/. This network contains m = 16, 714 edges

between n = 1, 222 blogs, where two blogs are connected if one contains a link to the other. For

simplicity, we treat the network as undirected.

The network again has two ground truth communities, one that comprise of left-leaning blogs

and one that comprises of right-leaning blogs. We again apply the PAPER model with K = 2 roots

and for every node u, we compute the community membership probability P(u in tree 1 | G̃n) and

assign u to community 1 if and only if this value is greater than 0.5. We show the result in in

Figure 18, where each node has a color that reflects its community membership probability.

Our overall misclustering error rate is 9.1%, which is high compared to current state of the

art approaches; for example, the SCORE method (Jin; 2015) attains an error rate of about 5%.

However, we compute the misclustering error rate with respect to only the top 400 nodes with the

highest posterior root probabilities, which can be interpreted as the most important nodes in the

graph, our misclustering error rate drops to 3.5%. This confirms our intuition that the PAPER

model, when used for clustering, is more reliable for central nodes than for peripheral nodes.
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Figure 18: Left: political blog network where node color reflects community membership probabil-

ity. Right: one example of a forest generated by the Gibbs sampler. The 5 nodes with the larger

marker comprise the 95% confidence set for the roots.

6.4 Community discovery with the random K model

For networks with an unknown number of small and possibly overlapping communities, the ran-

dom K model PAPER(α, β, α0, θ) can be useful for discovering complex community structures. To

extract community information from the posterior samples, we again use a greedy matching pro-

cedure. To be precise, in the random K setting, our proposed Gibbs sampler outputs a sequence

of forests f̃
(1)
n , . . . , f̃

(J)
n where J is the number of Monte Carlo samples. We write each forest f̃

(j)
n ,

for j ∈ [J ], as a collection of trees {t̃(1,j), . . . , t̃(Kj ,j)} where Kj is the number of trees in f̃
(j)
n . For

j ∈ [J ] and k ∈ [Kj ], we write Q
(j)
k (·) = P(Π1 = · | T̃ = t̃(k,j)) as the posterior root distribution of

the k-th tree in the j-th Monte Carlo sample. To summarize the output in an interpretable way,

we do the following:

1. We initialize Kall = maxj∈[J]Kj and Qk = Q
(1)
k for k = 1, 2, . . . ,K1. For k = K1 +1, . . . ,Kall,

we initialize Qk(·) = 0.

2. For j = 2, 3, . . . , J , we match {Q1, . . . , QKall
} with {Q(j)

1 , . . . , Q
(j)
Kj
} by computing a one-to-one

matching σ : [Kj ]→ [Kall] that minimizes

Kj∑
k=1

TV(Q
(j)
k , Qσ(k)).

For every k ∈ [Kj ], if the total variation distance between the k-th pair of the matching is

too large, that is TV(Q
(j)
k , Qσ(k)) > 0.75, then we create a new set Kall ← Kall + 1 and set

QKall+1 ← Q
(j)
k ; otherwise, we perform the update Qσ(k) ← j−1

j Qσ(k) + 1
jQ

(j)
k .

3. We output {Q1, . . . , QKall
} as the discovered clusters, represented as posterior root probability

distributions.

For all of our experiments, we only include trees that contain at least 1% of the total number of

nodes. For each discovered cluster Q` for ` ∈ [Kall], we also compute ρQ` as the number of Monte
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Figure 19: Posterior over K using the random K roots model on the karate club network (left)

and the political blog network (right).

Carlo iteration j ∈ [J ] where we match Q` with Q
(j)
k , i.e. σ(k) = `, and update Q`. We then

compute
ρQ`
J as the posterior frequency of cluster Q`.

In order to check that the random K model is reasonable, we first apply it to the karate club

and the political blog networks, which we know contain two underlying clusters, and analyze the

resulting posterior distribution over the number of cluster-trees K. We provide the results for the

karate club network in the left part of Figure 19, in which we see that the posterior mode is at

K = 2. For the political blog network, the Gibbs sampler tends to produce a few large clusters and

many tiny clusters of fewer than 10 nodes. Therefore, to compute the posterior over K, we count

only clusters that have at least 12 nodes (1% of the total number of nodes) and give the results in

the right part of Figure 19. The posterior mode in this case is K = 3, which is reasonably close to

the ground truth.

We also analyze an air route network (Guimera et al.; 2005) of n = 3, 618 airports and m =

14, 142 edges where two airports share an edge if there is a regularly scheduled flight between

them. We remove the direction of the edges and treat the network as undirected. The dataset is

publicly available at http://seeslab.info/downloads/air-transportation-networks/. Using

the random K model, we discover a large central cluster containing major airports around the world

and various small clusters that correspond to more remote regions such as airports on Pacific and

Polynesian islands, airports in Alaska, and airports in the Canadian Northwest Territories. For

sake of brevity, we defer the detailed results to Section S5.2 of the Appendix.

6.5 Analysis of statistician co-authorship network

We now apply PAPER models to perform an extensive analysis of a statistician co-authorship net-

work constructed by Ji and Jin (2016). In this network, each node corresponds to a statistician

and two nodes u and v have an edge between them if they have co-authored 1 or more papers in

either Journal of Royal Statistical Society: Series B, Journal of the American Statistical Associa-

tion, Annals of Statistics, or Biometrika from 2002 to 2013. We consider only the largest connected

component which has n = 2263 nodes and m = 4388 edges. Ji and Jin (2016) in their manuscript

(Section 4.3) refers to this network as ”Coauthorship Network (B)”. We emphasize that since the

data reflect only coauthorship in 4 journals in the period 2002-2013, the results that we produce

cannot be used to compare researchers—we use this network only to illustrate PAPER models in a

setting where we can more easily assess whether the output is meaningful or not.

Single root analysis: We first use the single root PAPER(α, β, θ) model where we estimate

α = 0, β = 1 using the EM algorithm described in Section S3.1. We find that the following 4 nodes

have the highest posterior root probabilities: (1) Raymond Carroll with root probability 0.32, (2)

Peter Hall with root probability 0.26, (3) Jianqing Fan with root probability 0.086, and (4) James
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Figure 20: Subgraph of the co-authorship graph comprising the 200 nodes with the highest posterior

root probabilities. We label the 12 nodes with the highest root probabilities.

Robins with root probability 0.048. The root probability ranking align closely with betweenness

centrality ranking, in which Raymond Carroll, Peter Hall, and Jianqing Fan are also the top 3

most central nodes; see Table 2 of Ji and Jin (2016). Both the root probability ranking and the

betweenness ranking differ significantly from degree ranking. We also display the subgraph of the

200 nodes with the highest posterior root probabilities in Figure 20 where we labeled the top 12

nodes with the highest root probabilities.

Community detection with random K roots model: Using our inference algorithm and

the greedy matching procedure in 6.4, we compute clusters {Q1, . . . , QKall
} where we find about

Kall ≈ 40 significant clusters. We order the clusters by their posterior frequencies and display the

top 9 clusters in Figure 21, along with labels that we curated; we display the nodes in the cluster as

word clouds in which the word size is proportional to the posterior root probabilities. We display

18 additional clusters in Section S5.3 of the Appendix. We note that the clusters can overlap since

they are constructed from a sequence of posterior samples by matching; see the first paragraph of

Section 6.4.

Ji and Jin (2016) on the same network uses scree plot to conclude that there are K = 3

clusters, which are shown in Figures 9, 10, and 11 in their paper. They refer to the three clusters

as a ”high-dimensional” supercluster, a ”biostatistics” cluster, and a ”Bayes” cluster. We find

a giant supercluster, but we also find a large number of smaller clusters which accurately reflect

actual research communities in statistics. For example, we find the same ”Bayes” cluster in Ji and

Jin (2016) (see Figure 21b), but we also discover other Bayesian clusters such as ones shown in

Figure 21c. Similarly, we find the ”biostat” community in Ji and Jin (2016) (see Figure 21f) but

we find other biostat clusters as well such as the one shown in Figure 21h and the one centered

on Jason Fine and Michael Korsorok in Figure 27 in the Appendix. In addition, we find many

other meaningful communities, such as the experimental design community or the high-dimensional

statistics community shown in Figure 22, or the survey and theory community in Figure 27 in the

Appendix. We believe that PAPER model gives highly coherent clusters for this network because
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Figure 21: Nine of the clusters that most frequently appear in the posterior samples. Word sizes

are proportional to the posterior root probability with respect to the cluster.

the network itself is locally tree-like, as shown in two cluster subgraphs that we display in Figure 22.

7 Discussion

In this paper, we present the PAPER model for networks with underlying formation processes and

formalize the problem of root inference. We extend the PAPER model to the setting of multiple

roots to reflect the growth of multiple communities. There are a number of important open questions

from modeling, theoretical, and algorithmic perspectives.

From a modeling perspective, an interesting direction is to suppose that the graph start not as

singleton nodes but as a small subgraph. The goal then is to infer the seed-graph instead of the

root node (c.f. Devroye and Reddad (2018)). Model extensions such as the PAPER-SBM mixture

described in Remark 5 are also interesting; in these models, a subtle question is to what extend we

have to estimate the parameters of the noise model well in order to recover the root nodes of the

latent forest.

There are many open theoretical questions related to PAPER model and root inference. For

instance, in Conjecture 13, we hypothesize that the size of the optimal confidence set for the root

node is of a constant order if so long as the noise level is below a certain threshold. If the noise level

is above the threshold, then every confidence set has size that diverges with n. The lower bound

of this conjecture seems especially difficult and may require new techniques. Another interesting
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Figure 22: Two additional clusters along with the subgraphs that correspond to the clusters. In

the subgraph, we label the 8 nodes with the highest posterior root probability with respect to that

cluster. We observe that the subgraphs are tree-like.

theoretical question is the analysis of community recovery using the PAPER model with multiple

roots. Intuitively, we expect be able to correctly cluster the early nodes since they tend to have

more central positions in the final graph. The late arriving nodes on the other hand would be more

peripheral and difficult to cluster.

Algorithmically, we observe that the Gibbs sampler that we derived in Section 4 converges very

quickly in practice (see Section S5.4). It would be interesting to study its mixing time, especially

how the mixing time depends on the noise level.
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Supplementary material to “Root and community inference on latent

network growth processes using noisy attachment models”

Harry Crane and Min Xu

S1 Supplement for Section 2

S1.1 Model Likelihood

We first give the likelihood of any time labeled tree under the APA(α, β) model. Define, for any

integer k ≥ 1,

ψα,β(k) :=

{ ∏k−1
j=1 (βj + α) if k ≥ 2,

1 if k = 1.

Proposition S1. Let Tn ∼ APA(α, β). Then, for any time labeled tree tn, we have that

P(Tn = tn) = Lα,β(tn) :=

∏
v∈[n] ψα,β(Dtn(v))∏n

t=3(2(t− 2)β + (t− 1)α)
. (S1.1)

The fact that the likelihood depends on the tree tn only through its degree distribution Dtn(·)
remains true in the multiple roots setting except that the likelihood also depends on the root nodes.

One complication with the multiple roots setting is that we give each root node an imaginary self-

loop. To deal with this, we first define ψrα,β(k) :=
∏k+1
j=2 (βj + α).

Proposition S2. Let Fn ∼ APA(α, β,K). Then, for any time labeled forest fn, we have that

P(Fn = fn) = Lα,β,K(fn) :=

∏
v∈π1:K

ψrα,β(Dfn(v))
∏
v/∈π1:K

ψα,β(Dfn(v))∏n
t=K+1(2(t− 1)β + (t− 1)α)

. (S1.2)

In the random K setting, the likelihood is very similar except that the set of root nodes is not

necessarily π1:K .

Proposition S3. Let Fn ∼ APA(α, β, α0). Then, for any time labeled forest fn with K component

trees, we have that

P(Fn = fn) = Lα,β,S(fn) :=

∏
v∈S ψ

r
α,β(Dfn(v))

∏
v/∈S ψα,β(Dfn(v))∏n

t=K+1(2(t− 1)β + (t− 1)α)
. (S1.3)

where S is the set of root nodes of fn, that is, a node is in S if and only if it has the earliest arrival

time in its component tree.

Under the PAPER model, the complete data likelihood is also simple owing to the fact that any

non-forest edge of the random graph Gn is Erdős–Rényi and any forest with K component trees

has exactly n−K edges. Therefore, for a time labeled graph gn with m edges and a time labeled

sub-forest fn, we have that, under the PAPER model and conditional on Gn having m edges,

P(Gn = gn,Fn = fn) =

(
n(n− 1)/2− (n−K)

m− (n−K)

)−1

P(Fn = fn).

We do not observe the forest of course. This is one of the main hurdles that we address in Section 4.
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S1.2 Poisson attachment approximation

Proposition S4. Let t ∈ N, and let q1, . . . , qt ∈ [0, 1] satisfy
∑t
j=1 qj ≤ 1, and let θ > 0 such that

θqj ≤ 1 for all i ∈ [t]. Let X and Y denote two random subsets of [t], where X is generated by

adding each j ∈ [t] independently with probability θqj, and where Y is generated by first drawing

M ∼ Poisson(θ) and then repeating M times the procedure where we randomly choose j ∈ [t] with

probability qj and with replacement and add j to Y . Let P (X) and P (Y ) denote the distribution of

X and Y respectively. Then, we have that

dTV(P (X), P (Y )) ≤ θ2 max
j∈[t]

qj .

Proof. For j = 1, . . . , n, define Xj = 1{j ∈ X} and Yj as the number of copies of element j in

Y . Direct calculation then shows that X1, . . . , Xt are independent where Xj ∼ Ber(θqj) and that

Y1, . . . , Yt are independent where Yj ∼ Poisson(θqj).

Therefore, by a coupling argument (see e.g. Example 2 in Chapter 10.1 of Pollard (2002)) and

the fact that
∑t
j=1 qj ≤ 1, we have

dTV(P (X), P (Y )) ≤ P(X 6= Y ) =

t∑
j=1

P(Xj 6= Yj)

≤
t∑

j=1

θ2q2
j ≤ θ2 max

j
qj ,

as desired.

If we apply Proposition S4 to the independent Bernoulli noise model described in Section 2.3,

where X and Y denote the random set of edges added under the Bernoulli noise model and the

Poisson noise model respectively and where qj =
β̃DTt−1

(j)+α̃

2(t−2)β̃+(t−1)α̃
, then we may use the fact that

maxj∈[t] qj = Op(
1√
t
) (see e.g. Section 8.7 in Van Der Hofstad (2016)) to see that the two noise

models are approximately equivalent for large t.

S2 Supplement for Section 3

Recall that for an alphabetically labeled tree t̃n, we define the hist(t̃n) as the set of all label ordering

π ∈ Bi([n],Un) such that π−1t̃n is a time labeled tree that has a positive probability over the APA

model (Definition 1). For a node u, we also define hist(u, t̃n) as all π ∈ hist(t̃n) such that π1 = u and

h(u, t̃n) = |hist(u, t̃n)|. Shah and Zaman (2011) derives an O(n) runtime algorithm that computes

the whole collection {h(u, t̃n)}u∈Un , which is shown as Algorithm 4.

S2.1 Equivalence to maximum likelihood

Before deriving the likelihood formally, it is useful to have the following standard definitions. For

two labeled graphs g, g′, we say that g ∼ g′ if there exists ρ ∈ Bi(V (g), V (g′)) such that ρg = g′.

In this case, we say that g and g′ are isomorphic, or that they have the same shape, or that they

are equivalent as unlabeled graphs. The ∼ relationship defines equivalence classes on the set of all

labeled graphs, which we refer to as the unlabeled shape or just shape for short. We write

I(g, g′) := {ρ ∈ Bi(V (g), V (g′)) : ρg = g′}.
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Algorithm 4 Computing {h(u, t̃n)}u∈Un (Shah and Zaman; 2011)

Input: a labeled tree t̃n.

Output: h(u, t̃n) for all nodes u ∈ Un.

Arbitrarily select root u0 ∈ Un.

for u ∈ Un do

Compute and store n
(u0)
u := |t̃(u0)

u |.
end for

Compute h(u0, t̃n) = n!
∏
u∈Un

1

|t̃(u0)
u |

.

Set S = {Children(u0)}.
while S is not empty do

Remove an arbitrary node u ∈ S.

Compute h(u, t̃n) = h(pa(u), t̃n)
n(u0)
u

n−n(u0)
u

Add Children(u) to S
end while

Note that I(g, g) is the set of automorphisms of the graph g. To represent an unlabeled shape, we

write sh(g) where g an arbitrary representative element in the equivalence class.

Similarly, given a node u ∈ V (g) and u′ ∈ V (g′), we say that (g, u) ∼0 (g′, u′) if there exists

ρ ∈ Bi(V (g), V (g′)) such that ρg = g′ and ρ(u) = u′. In this case, we say that (g, u) and (g′, u′)

have the same rooted shape. The ∼0 relationship defines an equivalence class on the pairs (g, u).

We write

I(g, u, g′, u′) := {ρ ∈ Bi(V (g), V (g′)) : ρg = g′, ρ(u) = u′}.

We have the following facts:

1. I(g, g′) is non-empty if and only if g, g′ have the same shape. Moreover, the cardinality of

I(g, g′) depends only on that shape. For instance, |I(g, g′)| = |I(g, g)| if the former is non-

zero. In discrete mathematics, this cardinality is referred to as the size of the automorphism

group of g.

2. I(g, u, g′, u′) is non-empty if and only if (g, u), (g′, u′) have the same shape. Moreover, the

cardinality of I(g, u, g′, u′) depends only on that shape.

Now, for a labeled graph g and a node u ∈ V (g), we define

Eq(u, g) = {u′ ∈ g : (g, u) ∼0 (g, u′)}.

Nodes in Eq(u, g) are indistinguishable from node u once the node labels are removed.

On observing an unlabeled graph sh(g̃n), the likelihood of a node u being the root node is

therefore

L(u, g̃n) :=
1

|Eq(u, g̃n)|
∑

gn time labeled

P(Gn = gn)1{(gn, 1) ∼0 (g̃n, u)},

where Gn has the PAPER(α, β, θ) distribution. It is straightforward to check that L(u, g̃n) depends

only on the unlabeled shape of (g̃n, u). We give a concrete example of the likelihood in Figure 23.

Theorem S5. For any alphabetically labeled graph g̃n, we have

P(Π1 = u | G̃n = g̃n) =
L(u, g̃n)∑

v∈Un L(v, g̃n)
.
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Figure 23: Viewing the top right graph as g̃ and the bottom graphs as g1, g2, g3, we have Eq(A, g̃) =

{A,C} and L(A, g̃n) = 1
2

{
P(Gn = g1) + P(Gn = g2) + P(Gn = g3)

}
.

Proof. We have that

P(Π1 = u | G̃n = g̃n) ∝
∑

π∈Bi([n],Un), π1=u

P(G̃n = g̃n |Π = π)
1

n!

∝
∑

π∈Bi([n],Un), π1=u

P(Gn = π−1g̃n)

=
∑

gn time labeled

∑
π∈Bi([n],Un),

π1=u,πgn=g̃n

P(Gn = gn)

=
∑

gn time labeled

|I(gn, 1, g̃n, u)|P(Gn = gn)

=
|I(g̃n, g̃n)|
|Eq(u, g̃n)|

∑
gn time labeled

P(Gn = gn)1{(gn, 1) ∼0 (g̃n, u)},

where the second equality follows by the definition of I(g, 1, g̃n, u) and the final equality follows by

Lemma S6. The desired conclusion immediately follows.

Lemma S6. For any labeled graphs g, g′ and nodes u ∈ V (g), u′ ∈ V (g′), if (g, u) ∼0 (g′, u′), then

|I(g, g′)| = |I(g, u, g′, u′)||Eq(u, g)|.

Proof. Suppose |I(g, u, g′, u′)| > 0. We note for any node v ∈ V (g), we have that |I(g, v, g′, u′)| is

either zero or equal to |I(g, u, g′, u′)|. Moreover, it is non-zero if and only if v ∈ Eq(u, g).

Therefore, using the fact that I(g, g′) = ∪v∈V (g)I(g, v, g′, u′), we have

|I(g, g′)| =
∑

v∈V (g)

|I(g, v, g′, u′)| = |Eq(u, gn)||I(g, u, g′, u′)|,

as desired.

S3 Supplement for Section 4

S3.1 Parameter estimation for the PAPER model via EM

The PAPER models are parametrized by α, β which control the attachment mechanism, by θ which

is the noise level, and by either K or α0 in the multiple roots setting. We discuss some ways to
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select the number of trees K in the fixed K root setting and ways to estimate α0 in the random K

roots setting in Section S3.4 of the appendix.

In this section therefore, we consider only the estimation of the parameters α and β. We assume

that β > 0, in which case, without loss of generality, we may assume β = 1 so that we only need to

estimate α. We note that assuming β > 0 does not exclude uniform attachment if we allow α =∞.

We first consider the single root setting. For any tree t̃n, by Proposition S1 that

Pα(T̃n = t̃n) =
∑

π∈hist(t̃n)

Pα(Tn = π−1t̃ |Π = π)P(Π = π)

= h(t̃n)

∏
v∈Un

∏Dt̃n
(v)−1

j=1 (j + α)∏n
k=3(2(k − 2) + (k − 1)α)

1

n!
. (S3.4)

Therefore, keeping only terms that depend on α, we have that the log-likelihood is

`(α; T̃n) =
∑
v∈Un

∞∑
j=1

log(j + α)1{j < DT̃n
(v)} −

n∑
k=3

log
(
2(k − 2) + (k − 1)α

)
=

∞∑
j=1

log(j + α)WT̃n
(j)−

n∑
k=3

log
(
2(k − 2) + (k − 1)α

)
,

where we define WT̃n
(j) := |{v ∈ Un : DT̃n

(v) > j}|. We note that, in this case, the log-likelihood

of α depends on the tree T̃n only through its degree sequence.

In the PAPER model where G̃n = T̃n + R̃n, for every node v ∈ Un, we have that DG̃n
(v) =

DT̃n
(v) + DR̃n

(v) where the tree degree DT̃n
(v) is now latent. We propose an approximate EM

algorithm in this setting.

The complete data log-likelihood in this case is

`(α;DG̃n
, DT̃n

) =

∞∑
j=1

log(j + α)
∑
v

1{j < DT̃n
(v)} −

n∑
k=s

log
(
2(k − 2) + (k − 1)α

)
.

For a given value α′, the EM update is then to maximize

M(α|α′) := Eα′
[ ∞∑
j=1

log(j + α)
∑
v

1{j < DT̃n
(v)}

∣∣∣∣ G̃n

]
−

n∑
k=s

log
(
2(k − 2) + (k − 1)α

)
=

∞∑
j=1

log(j + α)
∑
v

Pα′
{
j < DT̃n

(v)

∣∣∣∣ G̃n

}
−

n∑
k=s

log
(
2(k − 2) + (k − 1)α

)
. (S3.5)

The conditional probability term Pα′(j < DT̃n
(v) | G̃n) can be computed by Gibbs sampling,

but we can significantly reduce the computation time by approximating Pα′(j < DT̃n
(v) | G̃n) with

Pα′(j < DT̃n
(v) |DG̃n

(v)), which ignores the mild dependence between the degrees of all the nodes.

To further improve the quality of the approximation, we observe that

∞∑
j=1

∑
v

Pα′
(
j < DT̃n

(v)
∣∣ G̃n

)
=
∑
v

(DT̃n
(v)− 1) = n− 2

while the sums of the approximate conditional probabilities
∑∞
j=1

∑
v Pα′(j < DT̃n

(v) |DG̃n
(v))

may be different. Thus, we normalize Pα′(j < DT̃n
(v) |DG̃n

(v)) by defining W̃G̃n
(j) = (n −

2)
Pα′ (j<DT̃n

(v) |DG̃n
(v))∑∞

j=1 Pα′ (j<DT̃n
(v) |DG̃n

(v)) so that
∑∞
j=1 W̃G̃n

(j) = n − 2 and, instead of maximizing (S3.5), we
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update

M̃(α|α′) :=

∞∑
j=1

log(j + α)W̃G̃n
(j)−

n∑
k=s

log
(
2(k − 2) + (k − 1)α

)
. (S3.6)

In practice, we find that the normalization significant improves the quality of the approximation.

To compute W̃G̃n
, we have by Bayes rule that for any k ∈ [n] and s ≤ k,

Pα′(DT̃n
(v) = s |DG̃n

(v) = k) =
Pα′(DT̃n

(v) = s,DR̃n
(v) = k − s)∑k

t=1 Pα′(DT̃n
(v) = t,DR̃n

(v) = k − t)
(S3.7)

=
PBin(n−s,θ)(k − s)Pα′(DT̃n

(v) = s)∑k
t=1 PBin(n−t,θ)(k − t)Pα′(DT̃n

(v) = t)
, (S3.8)

where PBin(n−s,θ)(·) denotes the probability of a binomial distribution with n − s trials and

success probability θ. The exact distribution of the degree DT̃n
(v) of a node v under the APAα′,1

is intractable but we can approximate it by its limiting distribution

Pα′(s) := (2 + α′)
Γ(s+ α′)Γ(3 + 2α′)

Γ(s+ 3 + 2α′)Γ(1 + α′)
=

2 + α′

3 + 2α′

s−1∏
j=1

j + α′

j + 3 + 2α′
.

By Van Der Hofstad (Theorem 8.2 2016), we have that, for any node v,

sup
s∈N

∣∣Pα′(DT̃n
(v) = s

)
− Pα′(s)

∣∣ ≤ Cα′√ log n

n

with probability that tends to 1 as n → ∞. Therefore, we may replace Pα′
(
DT̃n

(v) = s
)

with

Pα′(s) in (S3.8) to obtain a tractable approximation which is accurate in the limit.

To summarize, our estimation procedure generates a sequence αj where αj maximizes M̃(· |αj−1)

and where M̃ is computed using (S3.8). Although we approximate M(· | ·) by M̃(· | ·) and approx-

imate the distribution of the random degree DT̃n
(v) by its asymptotic limit, we find empirically

that the resulting procedure always converges and performs well. We test the estimation procedure

on simulated PAPER graphs of n = 3, 000 nodes and m = 15, 000 edges and report the estimation

performance in Table 6. We find that the estimator is biased upwards when α is large, which

is possibly because the likelihood (S3.4) is much less sensitive to a change in α when α is large

than when α is small. In our simulation studies (Section 6.1), we show that the confidence sets

constructed with the estimated parameters still attain their nominal coverage so that estimation

error does not significantly impact the inference quality.

True α 0 1 3 6 ∞ (UA)

Estimated α 0.03 (0.04) 1.04 (0.2) 3.3 (1.34) 10.7 (13.57) 85.4 (20.9)

Table 6: Mean and standard deviation of the estimated α computed on 200 independent trials on

graphs with n = 3, 000 nodes and m = 15, 000 edges.

We use the same estimator in the fixed K > 1 setting and the variable K setting. In these

cases, the log-likelihood is slightly different because the root nodes have imaginary self-loop edges.

However, if the number of root nodes is small, the log-likelihood is virtually identical.
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S3.2 Derivation of root sampling probability (20) for the fixed K and

random K setting

Let f̃n be an alphabetically labeled forest with component trees t̃1, . . . , t̃K . For a specific tree t̃k

and a node u ∈ V (t̃k) ⊂ Un, we compute the probability, under the PAPER(α, β,K, θ) model and

label randomization, that uk is the first node of t̃k given F̃n = f̃n.

To formally derive this, denote the K random component trees of the random forest F̃n by

T̃ 1, . . . , T̃K , and define Πk as the random latent relative ordering of the nodes in the k-th random

component tree T̃ k. In other words, Πk takes value in Bi([nk], V (T̃ k)) (where nk = |V (T̃ k)|) and

Πk
t = v implies that v is the t-th node, among the nodes of T̃ k, to arrive in T̃ k.

Then, we have that, for any u ∈ V (t̃k),

P(Πk
1 = u | T̃ k = t̃k) =

∑
πk∈hist(u,t̃k)

P(Πk = πk | T̃ k = t̃k)

∝
∑

πk∈hist(u,t̃k)

P(T̃ k = t̃k |Πk = πk)

∝ h(u, t̃k)

D
t̃k

(u)+1∏
j=2

(βj + α)
∏

v 6=u,v∈V (t̃k)

D
t̃k

(v)−1∏
j=1

(βj + α)

= h(u, t̃k)(βDt̃k(u) + β + α)(βDt̃k(u) + α)
∏

v∈V (t̃k)

D
t̃k

(v)−1∏
j=1

(βj + α)

∝ h(u, t̃k)(βDt̃k(u) + β + α)(βDt̃k(u) + α),

where the third proportionality (equality up to multiplicative factor that is constant with respect

to u) follows from Proposition S2. Formula (20) thus follows.

S3.3 Collapsed Gibbs sampler

We give an alternative Gibbs sampler in which we sample only a set of root nodes instead of

sampling an entire history π. More precisely, we alternate between the following two stages:

(A) We fix the forest f̃ and sample a set of root nodes s̃ with probability

P(S̃ = s̃ | F̃n = f̃n, G̃n = g̃) ∝ P(S̃ = s̃ | F̃n = f̃n), (S3.9)

where s̃ comprise of a single node from each of the component trees of f̃n.

(B) We fix the root set s̃ and generate a new forest f̃n by iteratively sampling a new parent for

each of the nodes.

To sample the root set for the first stage of the Gibbs sampler, we write t̃1, . . . , t̃K as the K

disjoint trees of the fixed forest f̃n. Then, to generate the root set s̃, we generate, for each tree t̃k,

the root node uk with probability (20).

For the second stage of the Gibbs sampler, we place the nodes in some arbitrary order and for

each node u, we generate a parent ũ, which could be equal to the old parent, according to the

distribution

P
{
pa(u) = ũ | {pa(v)}v 6=u, S̃ = s̃, G̃n = g̃n

}
. (S3.10)
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Figure 24: Selecting a new parent for a node. Left: the single root setting. Right: the multiple

roots setting.

The action of generating a new parent is equivalent to replacing the edge between u and its old

parent with a new one between u and ũ. Because we do not condition on the ordering Π, the new

parent ũ can be any node in the network connected to u that is not a descendant of u–that is, we

only require that ũ is not in the subtree t̃
(s̃)
u of node u, where we view s̃ as the roots for the whole

forest.

Another way to think of the second stage is that we take the subtree t̃
(s̃)
u and graft it onto

another part of the forest. In the multiple roots setting, a subtree may be transferred from one

component tree to another. In the random K setting, two disjoint subtrees may be merged into

a single tree or, a subtree may be split and forms a new component. See Figure 24 for a visual

illustration.

In contrast with (24), we do not condition on Π and must therefore sum over all histories when

computing (S3.10):

P(F̃n = f̃n | G̃n = g̃n, S̃ = s̃)

∝ P(G̃n = g̃n | F̃n = f̃n)P(F̃n = f̃n, S̃ = s̃)

=

(
n(n− 1)/2− n+K

m− n+ k

)−1 ∑
π∈hist(s̃,f̃n)

P(F̃n = f̃n,Π = π)

∝
K∏
k=1

m− n+ k

n(n− 1)/2− n+ k

∑
π∈hist(s̃,f̃n)

P(Fn = π−1f̃n |Π = π)

∝
K∏
k=1

m− n+ k

n(n− 1)/2− n+ k
h(s̃, f̃n)


L̃α,β(Df̃n

) if single root

L̃α,β,K(s̃, Df̃n
) if fixed K roots

L̃α,β,α0
(s̃, Df̃n

) if random K
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where we have that

L̃α,β(Df̃n
) =

∏
v

Df̃n
(v)−1∏
j=1

βj + α

L̃α,β,K(s̃, Df̃n
) =

∏
v∈s̃

Df̃n
(v)+1∏
j=2

(βj + α)
∏
v/∈s̃

Df̃n
(v)−1∏
j=1

(βj + α)

L̃α,β,α0(s̃, Df̃n
) = αK0

∏
v∈s̃

Df̃n
(v)+1∏
j=2

(βj + α)
∏
v/∈s̃

Df̃n
(v)−1∏
j=1

(βj + α).

We may characterize the count of the history as follows:

h(s̃, f̃n) =


n!
∏
v

1

|t̃(s̃)v |
if single root

(n−K)!
∏
v/∈s̃

1

|t̃(s̃)v |
if fixed K roots

(n− 1)!
∏
v

1

|t̃(s̃)v |
if random K roots

We summarize the resulting procedure in Algorithm 5 and 6. These are similar to Algorithm 2

and 3 except that we take into account how the choice of the graft affects the size of the history of

the resulting forest.

Algorithm 5 Collapsed Gibbs sampler for fixed K or single root settings

Input: labeled forest f̃n, a set of K root nodes s̃.

Effect: Modifies f̃n in place.

for each node u ∈ Un do:

if u ∈ s̃, continue.

Remove the edge (u, p(u)) from f̃n.

Generate a node w ∈ Ng̃n\V (t̃
(s̃)
u ) with probability proportional to

w 7→
∏

v∈Af̃n
(w),v /∈s̃

|t̃(s̃)v |
|t̃(s̃)v |+ |t̃(s̃)u |

(βDf̃n
(w) + 2β1{w ∈ s̃}︸ ︷︷ ︸

only for K > 1

+α),

where Af̃n
(w) is the set of ancestors (parent, parent of parent, etc) of w including w itself.

Add edge (u,w) to f̃n.

end for

S3.4 Practical details on the Gibbs sampler

Convergence criterion: We use a simple convergence criterion where we run two chains simulta-

neously and keep track of the resulting posterior root distributions, which we denote QA and QB

for the two chains. We continue the chain until the distance (we use Hellinger distance or total

variation distance in all the experiments) between QA and QB is smaller than some threshold τ .

We find that τ = 0.1 suffices to generate accurate confidence sets for the root node in the single

root setting. However, in the multiple roots setting, we require τ = 0.01 or smaller. We observe in

our experiments that the UA setting (α = 1, β = 0) requires far more iterations to converge than

the LPA model (α = 0, β = 1). It is important to note that the chains A and B are initialized

with uniformly random spanning trees and uniformly random orderings on those trees so that the

initialization is guaranteed to be overdispersed.
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Algorithm 6 Collapsed Gibbs Sampler for the random K setting

Input: labeled forest f̃n, a set of root nodes s̃.

Effect: Modifies f̃n and s̃ in place.

for each node u ∈ Un do:

If u ∈ s̃ and |s̃| = 1, continue.

If u ∈ s̃ and |s̃| > 1, set s̃ = s̃\{u}; else, remove the edge (u, p(u)) from f̃n.

Generate w ∈ {∅} ∪
(
Ng̃n\V (t̃

(s̃)
u )
)

with probability proportional to w 7→
∏
v∈Af̃n

(w)
|t̃(s̃)v |

|t̃(s̃)v |+|t̃(s̃)u |
(βDf̃n

(w) + 2β1{w ∈ s̃}+ α), if w ∈ Ng̃n\V (t̃
(s̃)
u )

w 7→ α0
m−n+|s̃|

n(n−1)/2−n+|s̃| if w = ∅,

where Af̃n
(w) is the set of ancestors (parent, parent of parent, etc) of w including w itself.

If w ∈ Ng̃n\V (t̃
(s̃)
u ), add edge (u,w) to f̃n. Else, if w = ∅, let s̃ = s̃ ∪ {w}.

end for

Estimating K in the fixed K roots setting: one way to select K is by maximum likelihood.

For K = 1, 2, 3, . . ., let G̃n be distributed according to PAPER(α, β,K, θ) and let

L(K) := P(G̃n = g̃n)

=
∑

f̃n∈FK(g̃n),π

P(G̃n = g̃n | F̃n = f̃n,Π = π)P(F̃n = f̃n,Π = π)

=

(
n(n− 1)/2− (n−K)

m− (n−K)

)−1 ∑
f̃n∈FK(g̃n),π

P(Fn = π−1f̃n)
1

n!
.

Using the Gibbs sampler, we would then evaluate L(K) for all K ∈ [n]. This however would be

computationally intensive. We therefore recommend the random K model in settings where K is

unknown and potentially large.

Estimating α0 in the random K roots setting: We estimate α0 by adding one more step

in the Gibbs sampler where, after we generate a new forest and potentially a new K, we sample

α0 from the posterior distribution P(α0 |K). To that end, we use an Exponential(λ) prior on α0

(we use λ = 0.1 yielding a variance of 100 in all experiments) and follow West (1992) to generate

posterior samples from P(α0 |K). We find that the resulting estimate is insensitive to the choice of

the hyperparameter λ and performs well in practice.
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S3.5 Details for algorithm under sequential noise models

Let g̃n be an alphabetically labeled graph and t̃n be a spanning tree of g̃n. Write r̃n = g̃n\t̃n as

the subgraph of g̃n that comprises of the noise edges. We then have

P(G̃n = g̃n |Π = π, T̃n = t̃n) =

n−1∏
j=3

n∏
k=j+1

Qjk,

where Qjk ≡ Qjk(π, t̃n) =

{
θ(β̃Dt̃k−1

(πj) + α̃)

2(k − 2)β̃ + (k − 1)α̃

}1{(πj ,πk)∈r̃n}

{
2(k − 2)β̃ + (k − 1)α̃− θ(β̃Dt̃k−1

(πj) + α̃)

2(k − 2)β̃ + (k − 1)α̃

}1{(πj ,πk)/∈g̃n}

.

In some cases, it is convenient to refer to nodes through alphabetical labels Un. Let u, v ∈ Un
be a pair of nodes and suppose π−1

u < π−1
v ; we write

Quv ≡ Quv(π, t̃n) :=

{ θ(β̃Dt̃
π
−1
v −1

(u) + α̃)

2(π−1
v − 2)β̃ + (π−1

v − 1)α̃

}1{(u,v)∈r̃n}

(S3.11)

{2(π−1
v − 2)β̃ + (π−1

v − 1)α̃− θ(β̃Dt̃
π
−1
v −1

(u) + α̃)

2(π−1
v − 2)β̃ + (π−1

v − 1)α̃

}1{(u,v)/∈g̃n}

. (S3.12)

For simplicity, we leave implicit the dependence of Quv on π, g̃n, and t̃n.

S3.5.1 Preliminary calculations

To simplify notation, for two positive integers j < k, we write [j, k] := {j, j + 1, . . . , k}, [j, k) :=

{j, j + 1, . . . , k − 1}, and (j, k] := {j + 1, j + 2, . . . , k}.
We first describe a fast algorithm to compute, for a particular node u and a time interval [j, k]

where π−1
u < j, the quantity ∏

t∈[j,k]

Qu,πt , (S3.13)

which can be interpreted as the part of the noise likelihood associated with node u on a time interval

[j, k]. We first observe that

∏
t∈[j,k]

Qu,πt =
∏
t∈[j,k]

{
θ(β̃Dt̃t−1

(u) + α̃)

2(t− 2)β̃ + (t− 1)α̃

}1{(u,πt)∈r̃n}
{

2(t− 2)β̃ + (t− 1)α̃− θ(β̃Dt̃t−1
(u) + α̃)

2(t− 2)β̃ + (t− 1)α̃

}1{(u,πt)/∈g̃n}
.

We extract the term C1 :=
∏
t∈[j,k]

1
2(t−2)β̃+(t−1)α̃

to obtain

∏
t∈[j,k]

Qu,πt = C1

∏
t∈[j,k]

{
θ(β̃Dtt−1

(u) + α̃)
}1{(u,πt)∈r̃n}{

2(t− 2)β̃ + (t− 1)α̃− θ(β̃Dtt−1
(u) + α̃)

}1{(u,πt)/∈g̃n}
{

2(t− 2)β̃ + (t− 1)α̃
}1{(u,πt)∈t̃n}

.
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We divide the time interval [j, k] into sub-intervals in which Dtt−1
(u) is constant. To that end,

define j = t0 < t1 < . . . < tM = k + 1 such that

Dt̃t−1
(u) = d0 for all t ∈ [t0, t1),

Dt̃t−1
(u) = d1 = d0 + 1 for all t ∈ [t1, t2),

. . .

Dt̃t−1
(u) = dM−1 = d0 +M − 1 for all t ∈ [tM−1, tM ).

Then, we have that∏
t∈[j,k]

Qu,πt = C1

M−1∏
`=0

∏
t∈[t`,t`+1)

{
θ(β̃d` + α̃)

}1{(u,πt)∈r̃n}
{

2(t− 2)β̃ + (t− 1)α̃− θ(β̃d` + α̃)
}1{(u,πt)/∈g̃n}{

2(t− 2)β̃ + (t− 1)α̃
}1{(u,πt)∈r̃n}

= C1

M−1∏
`=0

∏
t∈[t`,t`+1)

{
θ(β̃d` + α̃)

2(t− 2)β̃ + (t− 1)α̃− θ(β̃d` + α̃)

}1{(u,πt)∈r̃n}
{

2(t− 2)β̃ + (t− 1)α̃

2(t− 2)β̃ + (t− 1)α̃− θ(β̃d` + α̃)

}1{(u,πt)∈t̃n}{
2(t− 2)β̃ + (t− 1)α̃− θ(β̃d` + α̃)

}
.

To simplify, we observe that 2(t− 2)β̃ + (t− 1)α̃ = (2β̃ + α̃)t− (4β̃ + α̃) and hence,∏
t∈[t`,t`+1)

{
(2β̃ + α̃)t− (4β̃ + α̃)− θ(β̃d` + α̃)

}

= (2β̃ + α̃)t`+1−t`
Γ(t`+1 − (4β̃+α̃)+θ(β̃d`+α̃)

2β̃+α̃
)

Γ(t` − (4β̃+α̃)+θ(β̃d`+α̃)

2β̃+α̃
)
.

Therefore, we may re-write
∏
t∈[j,k]Qu,πt as follows:

∏
t∈[j,k]

Qu,πt = C1

M−1∏
`=0

(2β̃ + α̃)t`+1−t`
Γ(t`+1 − (4β̃+α̃)+θ(β̃d`+α̃)

2β̃+α̃
)

Γ(t` − (4β̃+α̃)+θ(β̃d`+α̃)

2β̃+α̃
)

∏
t∈[t`,t`+1)

{
θ(β̃d` + α̃)

2(t− 2)β̃ + (t− 1)α̃− θ(β̃d` + α̃)

}1{(u,πt)∈r̃n}{ 2(t− 2)β̃ + (t− 1)α̃

2(t− 2)β̃ + (t− 1)α̃− θ(β̃d` + α̃)

}1{(u,πt)∈t̃n}
.

The quantities {t`, d`}M−1
`=0 } can be readily computed by iterating through the neighbors of u in

g̃n. Therefore, this entire expression can be computed in time at most O(Dg̃n(u)), as M ≤ Dg̃n(u).

This concludes the description of the algorithm for computing (S3.13).

Now, suppose u is a node such that π−1
u ≤ k and that DTt−1

(u) = 1 for all t ∈ [π−1
u + 1, k]. We

now give an efficient method to compute

k∏
t=1

Qu,πt . (S3.14)

This is the part of the noise likelihood associated with node u on the time interval [1, k]. We have

that

k∏
t=1

Qu,πt =

π−1
u −1∏
t=1

Qu,πt︸ ︷︷ ︸
first term

k∏
t=π−1

u +1

Qu,πt︸ ︷︷ ︸
second term

. (S3.15)
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To compute the first term of (S3.15), we have

π−1
u −1∏
t=1

Qu,πt =

π−1
u −1∏
t=1

{ θ(β̃Dt
π
−1
u −1

(πt) + α̃)

2(π−1
u − 2)β̃ + (π−1

u − 1)α̃

}1{(u,πt)∈r̃n}
{2(π−1

u − 2)β̃ + (π−1
u − 1)α̃− θ(β̃Dt

π
−1
u −1

(πt) + α̃)

2(π−1
u − 2)β̃ + (π−1

u − 1)α̃

}1{(u,πt)/∈g̃n}
.

Define C2 =
∏π−1

u −1
t=1

2(π−1
u −2)β̃+(π−1

u −1)α̃−θ(β̃Dt
π
−1
u −1

(πt)+α̃)

2(π−1
u −2)β̃+(π−1

u −1)α̃
. Then,

π−1
u −1∏
t=1

Qu,πt = C2

{
2(π−1

u − 2)β̃ + (π−1
u − 1)α̃

2(π−1
u − 2)β̃ + (π−1

u − 1)α̃− θ(β̃Dt
π
−1
u −1

(pa(u)) + α̃)

}
π−1
u −1∏
t=1

{ θ(β̃Dt
π
−1
u −1

(πt) + α̃)

2(π−1
u − 2)β̃ + (π−1

u − 1)α̃− θ(β̃Dt
π
−1
u −1

(πt) + α̃)

}1{(πt,u)∈r̃n}

.

Since it takes at most O(Dg̃n(pa(u))) time to compute DT
π
−1
u −1

(pa(u)), we see that the above

expression, excluding C2, can be computed in time at most O(Dg̃n(pa(u)) ∨Dg̃n(u)). We do not

need to compute the C2 term in practice as we care only about ratios of likelihoods.

For the second term of (S3.15), we have that

k∏
t=π−1

u +1

Qu,πt =

k∏
t=π−1

u +1

{
θ(β̃Dtt−1

(u) + α̃)

2(t− 2)β̃ + (t− 1)α̃

}1{(u,πt)∈r̃n}
{

2(t− 2)β̃ + (t− 1)α̃− θ(β̃Dtt−1
(u) + α̃)

2(t− 2)β̃ + (t− 1)α̃

}1{(u,πt)/∈g̃n}
.

Since we assume that (πt, u) is not a tree edge for every t = π−1
u + 1, . . . , k, we have that

Dtt−1(u) = 1 for all t ∈ (π−1
u , k] and thus,

k∏
t=π−1

u +1

Qu,πt =

k∏
t=π−1

u +1

{
θ(β̃ + α̃)

2(t− 2)β̃ + (t− 1)α̃

}1{(u,πt)∈r̃n}
{

2(t− 2)β̃ + (t− 1)α̃− θ(β̃ + α̃)

2(t− 2)β̃ + (t− 1)α̃

}1{(u,πt)/∈g̃n}
.

Define C3 =
∏k
t=π−1

u +1

{
2(t−2)β̃+(t−1)α̃−θ(β̃+α̃)

2(t−2)β̃+(t−1)α̃

}
, we then have

k∏
t=π−1

u +1

Qu,πt = C3

k∏
t=π−1

u +1

{
θ(β̃ + α̃)

2(t− 2)β̃ + (t− 1)α̃− θ(β̃ + α̃)

}1{(u,πt)∈r̃n}
.

S3.5.2 Calculation for transposition sampling

In this section, we provide an efficient way to compute the acceptance probability in the Metropolis–

Hastings algorithm for updating our sample of π. For clarity, we write Qjk(π) ≡ Qjk(π, t̃n) to

highlight the dependence of Qjk on π. We first state a Lemma that gives an easy way to check if a

proposed π∗ is a valid history with respect to a given tree t̃n.
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Lemma S7. Let π ∈ hist(π1, t̃n). Let π∗ be equal to π except that nodes u and v, neither equal to

π1, are swapped. Assume without loss of generality that π−1
u < π−1

v . Then, π∗ ∈ hist(π1, t̃n) if and

only

(1) For any child w of u, we have π−1
w > π−1

v and

(2) the parent pa(v) satisfies π−1
pa(v) < π−1

v .

Proof. If π∗ is in hist(π1, t̃n), it is clear that it must satisfy the two conditions (1) and (2).

Now assume conditions (1) and (2), we aim to show that π∗ ∈ hist(π1, t̃n). Since π is a valid

history, condition (1) implies that v cannot be a descendant (e.g. child, grand-child, etc) of u.

Moreover, (2) implies that all ancestors of v have a π-position earlier than u. Therefore, it follows

that swapping u and v yields a valid history π∗. The lemma follows as desired.

We choose a pair u = πj and v = πk and define a new π∗ equal to π except that

π∗j = v, π∗k = u.

Suppose π∗ satisfies the conditions of Lemma S7 so that π∗ ∈ hist(π1, t̃n).

For a pair of nodes x, y ∈ Un, recall the definition of Qx,y(π) from (S3.12), where we now

explicitly state the dependence of Qx,y on π. We have that

P(G̃n = g̃n |Π = π∗, T̃n = t̃n)P(Π = π∗ | T̃n = t̃n)

P(G̃n = g̃n |Π = π, T̃n = t̃n)P(Π = π | T̃n = t̃n)
=
∏

(x,y)

Qxy(π∗)

Qxy(π)
.

We claim that
Qxy(π∗)
Qxy(π) = 1 for all x, y that satisfy one of the following three conditions:

1. both x, y /∈ {u, v,pa(u),pa(v)};

2. x ∈ {u, v,pa(u),pa(v)} and π−1
y > k;

3. x ∈ {pa(u),pa(v)} and π−1
y < j.

This follows from the definition of Qxy(π). Therefore, we have that∏
(x,y)

Qxy(π∗)

Qxy(π)
=

∏
y :π−1

y ≤k,
y/∈{pa(u),pa(v)}

Quy(π∗)

Quy(π)

∏
y :π−1

y ≤k,
y/∈{pa(u),pa(v),v}

Qvy(π∗)

Qvy(π)

∏
y :π−1

y ∈[j,k]

Qpa(u),y(π∗)

Qpa(u),y(π)

∏
y :π−1

y ∈[j,k]

Qpa(v),y(π∗)

Qpa(v),y(π)
. (S3.16)

The first two terms on the RHS of (S3.16) are of the form (S3.14). The second two terms of the

RHS of (S3.16) are of the form (S3.13). Therefore, the whole expression (S3.16) can be computed

in time at most O(Dg̃n(u) ∨Dg̃n(v) ∨Dg̃n(pa(u)) ∨Dg̃n(pa(v))).

S3.5.3 Calculations for tree sampling

For seq-PAPER model without deletion of tree edges:

For clarity, we write Qjk(t̃n) ≡ Qjk(π, t̃n) to highlight the dependence of Qjk on t̃n. For

convenience, let us define

F (t̃n) := P(G̃n = g̃n |Π = π, T̃n = t̃n)P(T̃n = t̃n |Π = π) (S3.17)

=
∏
x,y

Qxy(t̃n)

∏
v∈Un

∏Dt̃n
(v)−1

j=1 (βj + α)∏n
t=3 2(t− 2)β + (t− 1)α

. (S3.18)
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We iterate t = 2, 3, . . . , n and sample a new parent for πt among the candidate set π1:(t−1) ∩
Ng̃n(πt). For each w ∈ π1:(t−1) ∩Ng̃n(πt), define t̃

(·,πt)
n as the disconnected graph that results from

removing the edge (pa(πt), πt) from t̃n, and define t̃
(w,πt)
n as the tree that results from adding the

edge (w, πt) to t̃
(·,πt)
n .

For t = 1, 2, . . . , n, we then sample a new parent for πt by removing (pa(πt), πt) and then

randomly choosing w ∈ π1:(t−1) ∩Ng̃n(πt) with probability

F (t̃
(w,πt)
n )∑

u∈π1:(t−1)∩Ng̃n (πt)
F (t̃

(u,πt)
n )

. (S3.19)

Calculating F (t̃
(w,πt)
n ) naively according to (S3.18) takes time O(n2). We give a faster algorithm

here.

We start by noting that if (1) x, y /∈ π1:(t−1) ∩Ng̃n(πt) or (2) x ∈ π1:(t−1) ∩Ng̃n(πt) and y is

such that π−1
y < t, then the tree degree of x at time π−1

y −1 (or the tree degree of y at time π−1
x −1)

is the same under both t̃n and t̃
(w,πt)
n for any w and hence, Qxy(t̃

(w,πt)
n ) = Qxy(t̃n). Therefore, we

have that

F (t̃(w,πt)n ) = C
{
β(D

t̃
(w,πt)
n

(w)− 1) + α
} ∏
u∈π1:(t−1)∩Ng̃n (πt)

∏
y :π−1

y ≥t

Quy(t̃(w,πt)n ), (S3.20)

where C is a term that does not depend on w; more precisely, we have that

C =

{ ∏
x,y/∈π1:(t−1)∩Ng̃n (πt)

Qxy(t̃n)

}{ ∏
u∈π1:(t−1)∩Ng̃n (πt)

∏
y :π−1

y <t

Quy(t̃n)

}
{∏

v∈π1:(t−1)∩Ng̃n (πt)

∏D
t̃
(·,πt)
n

(v)−1

j=1 (βj + α)
∏
v/∈π1:(t−1)∩Ng̃n (πt)

∏Dt̃n
(v)−1

j=1 (βj + α)∏n
t=3 2(t− 2)β + (t− 1)α

}
.

We make one further simplication. Since Quy(t̃(w,πt)) depends on the tree t̃
(w,πt)
n only through its

degree sequence across time, we observe that, for an arbitrary fixed u ∈ π1:(t−1) ∩ Ng̃n(πt), the

quantity
∏
y :π−1

y ≥tQuy(t̃
(w,πt)
n ) depends on w only through the binary value of whether w = u or

w 6= u. Therefore, for any u ∈ π1:(t−1) ∩Ng̃n(πt), we write

B(u) =
∏

y :π−1
y ≥t

Quy(t̃(w,πt)n ) for any w 6= u

A(u) =
∏

y :π−1
y ≥t

Quy(t̃(u,πt)n ). (S3.21)

Then, by defining C ′ =
∏
u∈π1:(t−1)∩Ng̃n (πt)

B(u), we have that

F (t̃(w,πt)n ) = C · C ′ · A(w)

B(w)

{
β(D

t̃
(w,πt)
n

(w)− 1) + α
}
.

The terms A(w), B(w) are of the form (S3.13) and can thus be computed in time proportional

to the degree Dg̃n(w). Therefore, the whole term F (t̃
(w,πt)
n ) can be, up to constants C,C ′ which

do not depend on w, computed in time O(Dg̃n(w)).

For seq-PAPER∗ model with potential deletion of tree edges:
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With deletion noise, we must incorporate the likelihood of tree edge removal into (S3.18). We

denote E(t̃n) and E(g̃n) as the sets of edges of t̃n and g̃n respectively and define

F (t̃n) := P(G̃n = g̃n |Π = π, T̃n = t̃n)P(T̃n = t̃n |Π = π) (S3.22)

=
∏
x,y

Qxy(t̃n)

∏
v∈Un

∏Dt̃n
(v)−1

j=1 (βj + α)∏n
t=3 2(t− 2)β + (t− 1)α

(1− η)|E(t̃n)∩E(g̃n)|η|E(t̃n)\E(g̃n)|. (S3.23)

Define t̃
(·,πt)
n as the disconnected graph that results from removing (pa(πt), πt) just as in the

discussion following (S3.18) and, for w ∈ π1:(t−1), define t̃
(w,πt)
n as the tree that results from adding

(w, πt). Note that we do not require w ∈ Ng̃n(πt), i.e. (w, πt) need not be an edge in g̃n, and hence,

t̃
(w,πt)
n may not be a subgraph of g̃n.

Following the same derivation as (S3.20), we have that

F (t̃(w,πt)n ) = C
{
β(D

t̃
(w,πt)
n

(w)− 1) + α
}

η1{(w,πt)/∈g̃n}(1− η)1{(w,πt)∈g̃n}
∏

u∈π1:(t−1)

∏
y :π−1

y ≥t

Quy(t̃(w,πt)n ), (S3.24)

where C is a term that does not depend on w.

Defining A(·) and B(·) as in (S3.21), we then have

F (t̃(w,πt)n ) = C · C ′ · A(w)

B(w)

{
β(D

t̃
(w,πt)
n

(w)− 1) + α
}
· η1{(w,πt)∈g̃n}(1− η)1{(w,πt)/∈g̃n} (S3.25)

Since A(w) and B(w) can be computed in time O(Dg̃n), we have that F (t̃
(w,πt)
n ) can be computed

in time O(Dg̃n) as well.

The overall procedure is then to sample w ∈ π1:(t−1) with probability proportional to (S3.25)

and replacing the edge (pa(πt), πt) with (w, πt) in the tree t̃n.

S3.5.4 Parameter sampling for the seq-PAPER model

Although it may be possible to derive an EM algorithm to estimate the parameters α, β, θ, α̃, β̃ in

the seq-PAPER model, we propose to take a full Bayesian approach where we impose a prior and

sample the parameters after sampling the ordering π and the tree π̃n in the Gibbs sampler.

As in Section S3.1, we assume that β, β̃ > 0 so that we may assume without loss of generality

that β = β̃ = 1 and only estimate α and α̃. We propose to use an Exponential(λ) prior for α, θ,

and α̃ with λ = 0.1. Conditional on the ordering π and the tree t̃n, the likelihood for α is the same

as that of `(α; T̃n) in Section S3.1; the likelihood for α̃ and θ is, writing r̃n = g̃n\t̃n,

`(α̃; g̃n, t̃n, π) =

n−1∏
j=3

n∏
k=j+1

Qjk

where Qjk =
{ θ(Dt̃k−1

(πj)+α̃)

2(k−2)+(k−1)α̃

}1{(πj ,πk)∈r̃n}{
1 −

θ(Dt̃k−1
(πj)+α̃)

2(k−2)+(k−1)α̃

}1{(πj ,πk)/∈g̃n}
is the contribution to

the likelihood from the pair (πj , πk).

Conditionally on t̃n and π, it is still intractable to directly sampling α, θ, α̃ so we propose

Metropolis updates where we generate the new proposal either by adding a draw from Unif[−δ, δ]
or by multiplying with log-normal eZ for Z ∼ N(0, δ), where the ratio of proposal probabilities is

easy to compute with a Jacobian adjustment.
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S4 Proof of results in Section 5

We first give the proof of the optimality lemma for Bε(·).

Proof. (of Lemma 10)

Fix ε, δ ∈ (0, 1) and suppose that Cδε(·) is a labeling-equivariant (see Remark 4) confidence set for

the root node with asymptotic coverage 1 − δε, that is, there exists a sequence µn → 0 such that

P(ρ1 ∈ Cδε(G∗n)) ≥ 1− δε− µn.

Let Λ be a random permutation drawn uniformly from Bi(Un,Un) and write Π = Λ ◦ ρ so that

G̃n := ΛG∗n = ΠGn is the randomly labeled graph. Then, there exists a real-valued sequence

µn → 0 such that

P
{

Π1 ∈ Cδε(G̃n)
}

=
∑

π∈Bi([n],Un)

P
{
π1 ∈ Cδε(πGn) |Π = π

}
P(Π = π)

= P(ρ1 ∈ Cδε(ρGn))

= P(ρ1 ∈ Cδε(G∗n)) ≥ 1− δε+ µn, (S4.26)

where the penultimate equality follows from the labeling-equivariance of Cδε(·).
For any labeled graph g̃n, we have from definition (11) that Bε(g̃n) is the smallest labeling-

equivariant subset of Un such that P(Π1 ∈ Bε(t̃n) | G̃n = g̃n) ≥ 1−ε. Then, if |Bε(g̃n)| > |Cδε(g̃n)|,
then it must be that P(Π1 ∈ Cδε(G̃n) | G̃n = g̃n) < 1− ε.

Therefore, we have from (S4.26) that

1− δε+ µn ≤ P(Π1 ∈ Cδε(G̃n))

=
∑
g̃n

P(Π1 ∈ Cδε(G̃n) | G̃n = g̃n)P(G̃n = g̃n)

≤ P
{
|Bε(G̃n)| ≤ |Cδε(G̃n)|

}
+ (1− ε)P

{
|Bε(G̃n)| > |Cδε(G̃n)|

}
.

We then obtain by algebra that

P
{
|Bε(G̃n)| > |Cδε(G̃n)|

}
≤ δ + µn/ε,

which yields the desired conclusion.

S4.1 Proof of results in LPA setting

Next, we give the proof of all statements regarding the LPA setting.

Proof. (of Theorem 11)

Since Gn = Tn + Rn for a linear preferential attachment tree Tn and an Erdős–Rényi graph

Rn, we have that DGn
= DTn +DRn

.

By Peköz et al. (2014), we have that, for any q > 2,

1√
n

(DTn(1), DTn(2), . . . , DTn(n), 0, 0, . . .)
d→ (Y1, Y2, Y3, . . .),

in distribution with respect to the `q metric where (Y1, Y2, . . .) is a random sequence satisfying∑∞
j=1 EY

q
j <∞ and each random variable Yj has a density with respect to the Lebesgue measure.
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We first claim that, for any q > 1
δ , if θ ≤ n− 1

2−δ, then

1√
n

(DRn(1), DRn(2), . . . , DRn(n), 0, 0 . . . )→ (0, 0, 0 . . .)

in `q metric. Indeed, we have

E‖n−1/2(DRn
(1), DRn

(2), . . . , DRn
(n), 0, 0, . . .)‖qq = n−

q
2

n∑
k=1

EDRn
(k)q

(a)

≤ n1− q2E
(
Bin(n− 1, θ)q

) (b)

≤ n1− q2 ((2θn)q + Cq)

≤ 2qn1− q2n
q
2−qδ + Cqn

1− q2 = 2qn1−qδ + Cqn
1− q2 ,

where the inequality (a) follows since DRn
(k) is Binomial with n−DTn(k) trials and hence stochas-

tically dominated by Bin(n− 1, θ) and where inequality (b) follows from Lemma S8.

Since q > 2 ∨ 1/δ by assumption, we have that

lim sup
n→∞

E‖n−1/2(DRn(1), DRn(2), . . . , DRn(n), 0, 0, . . .)‖qq = 0

and thus 1√
n

(DRn
(1), DRn

(2), . . . , DRn
(n), 0, 0 . . . )→ (0, 0, . . .) in distribution.

Since DGn
(k) = DTn(k) +DRn

(k) for all k ∈ [n], we have by Slutsky’s lemma that

1√
n

(DGn
(1), DGn

(2), . . . , DGn
(n), 0, 0, . . .)

d→ (Y1, Y2, Y3, . . .).

We claim that, for any ε ∈ (0, 1), there exists Lε ∈ N such that P(Y1 ≤ Lε- max({Yn})) ≤ ε. To

see this, recall that Y1 has a density q(·) on [0,∞) with respect to the Lebesgue measure and, fixing

some q > 2, that EY qj → 0 as j →∞. Therefore, choosing any δ > 0 such that P(Y1 ≤ δ) ≤ ε
2 and

Lε such that EY qLε ≤
ε
2δ
j , we have by Markov’s inequality that

P(Y1 ≤ YLε) ≤
∫ ∞

0

P(YLε > t)q(t) dt

≤
∫ δ

0

q(t) dt+

∫ ∞
δ

P(YLε > t)q(t) dt

≤ P(Y1 ≤ δ) + P(YLε > δ)

∫ ∞
δ

q(t) dt

≤ ε

2
+

EY qLε
δq
≤ ε.

Since Lε- max(·) function on sequences is continuous with respect to `q, we have by continuous

mapping theorem and Portmanteau lemma that

lim sup
n→∞

P
{
DGn

(1) ≤ Lε- max(DGn
)
}
≤ P

{
Y1 ≤ Lε- max({Yn})

}
≤ ε.

This proves the first conclusion of Theorem 11.

To obtain the second conclusion, note that Cε(G
∗
n) :=

{
1- max(DG̃n

), 2- max(DG̃n
), . . . , Lε- max(DG̃n

)
}

is a labeling-equivariant confidence set for the root at asymptotical level 1−ε. The second conclusion

follows from Lemma 10.

Lemma S8. Let X be a random variable with Bin(n, θ) distribution. For any q ≥ 1, θ ∈ [0, 1] and

any n ∈ N, we have that

EXq ≤ (2θn)q + Cq,

where Cq > 0 is a constant that depends only on q.
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Proof. Write X as a random variable with the Bin(n, θ) distribution. Then,

EXq =

∫ ∞
0

P(Xq ≥ t)dt

≤ (2θn)q +

∫ ∞
(2θn)q

P(Xq ≥ t)dt. (S4.27)

We note that VarX ≤ θn. By Bernstein’s inequality, we have that for all t ≥ (2θn)q,

P(Xq ≥ t) = P(X − θn ≥ t1/q − θn)

≤ exp

(
−1

2

(t1/q − θn)2

(t1/q − θn) + θn

)
≤ exp(−1

8
t1/q).

Therefore, we may bound the second term of (S4.27) as∫ ∞
(2θn)q

P(Xq ≥ t)dt ≤
∫ ∞

(2θn)q
e−

t1/q

8 dt

≤
∫ ∞

0

qsq−1e−
s
8 ds.

S4.2 Proof of results in UA setting

Proof. (of Theorem 12)

Let Tn be a random recursive tree with the UA distribution. Let s ∈ [n] be a node with arrival

time s and assume that s ≥ nη. For any integer i ≥ 1, we define the random variable

Z
(s)
i :=


1 if node i+ 1 is attached to node 1

−1 if node i+ 1 is attached to node s

0 else

We note then that {Z(s)}ni=1 are independent. If i ≥ s, then EZ(s)
i = 0 and VarZ

(s)
i = 2

i ,

and if i < s, then we cannot attach to node s and hence, EZ(s)
i = 1

i and VarZ
(s)
i ≤ 1

i . Define

Z(s) =
∑n
i=1 Z

(s)
i so that

Z(s) = DTn(1)−DTn(s).

Then, we have that

EZ(s) =

n∑
i=1

EZ(s)
i =

s∑
i=1

1

i
≥ (1 + µ1) log s

VarZ(s) =

n∑
i=1

VarZ
(s)
i ≤

s∑
i=2

1

i
+

n∑
i=s+1

2

i
≤ (1 + µ2)

{
log s+ 2

(
log n− log s

)}
.

where we use µ1, µ2 to represent terms that are o(1) as n→∞. Therefore, we obtain that

E
(
DGn

(1)−DGn
(s)
)

= EZ(s) + E
(
DRn

(1)−DRn
(s)
)
≤ (1 + µ1) log s,
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where the inequality follows since DRn
(s) has the Bin(n − DTn(s), θ) distribution; since DTn(1)

stochastically dominates DTn(s), we have that DRn
(s) stochastically dominates DRn

(1). We also

have the following bound on the variance of DGn(1)−DGn(s):

Var
(
DGn(1)−DGn(s)

)
= Var

( n∑
i=1

Z
(s)
i +DRn(1)−DRn(s)

)

≤ EVar

( n∑
i=1

Z
(s)
i +DRn(1)−DRn(s)

∣∣∣∣DRn(1), DRn(s)

)

+ VarE
[ n∑
i=1

Z
(s)
i +DRn(1)−DR(s)

∣∣∣∣DRn(s), DRn(1)

]
≤ (1 + µ2){log s+ 2(log n− log s)}+ 2nθ

≤ (1 + µ3)(2− η) log n.

Hence, we have by Proposition S9 that

P(DGn(s) ≥ DGn(1)) = P
( n∑
i=1

Z
(s)
i +DRn(1)−DRn(s) ≤ 0

)

≤ P
( n∑
i=1

Z
(s)
i +DRn(1)−DRn(s)− E

[
Z(s) +DRn(1)−DRn(s)

]
≤ −(1 + µ1) log s

)
≤ 2 exp

(
−(1 + µ3)(2− η) log n · h

(
(1 + µ1)η log n

(1 + µ3)(2− η) log n

))
≤ 2(1 + µ4)n−(2−η)h( η

2−η ).

Therefore, we have

P
(
|{s ≥ nη : DGn

(s) > DGn
(1)}| ≤ 2ε−1n1−(2−η)h( η

2−η )
)

≤ εn−1+(2−η)h( η
2−η )E|{s ≥ nη : DGn(s) > DGn(1)}|

≤ εn−1+(2−η)h( η
2−η )

n∑
s=bnηc

P(DGn(s) ≥ DGn(1))

≤ ε(1 + µ4).

Hence, we have that with probability at least 1− (1 + µ4)ε,

DGn
(1) ≥ Lη,n,ε- max(DGn

).

By optimizing η, we have that for some γ < 0.8 and universal constant C > 0, with probability

at least 1− (1 + µ4)ε,

DGn
(1) ≥ C

ε
nγ- max(DGn

).

Therefore, we may form a level 1− ε asymptotically valid confidence set for the root node by taking

the C
ε n

γ nodes with the highest degree in the observed alphabetically labeled graph G∗n. The

second claim of the theorem follows directly from Lemma 10.

The next concentration inequality is standard.
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(a) Enron email subgraph
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Figure 25: Subgraph of the 200 nodes with highest posterior root probabilities.

Proposition S9. (Bennett’s inequality)

Let X1, . . . Xn be independent random variables such that |Xi| ≤ b. Let V ≥
∑n
i=1 Var(Xi). Then,

for any t ≥ 0,

P
(∣∣∣∣ n∑

i=1

Xi − EXi

∣∣∣∣ > t

)
≤ 2 exp

(
−V
b2
h

(
bt

V

))
,

where h(z) = (1 + z) log(1 + z)− z.

S5 Supplement for Section 6

S5.1 Additional results for central subgraph visualization

Enron email network: This dataset consists of email exchanges between members of the En-

ron corporation shortly before its bankruptcy and the network is publicly available at the website

https://snap.stanford.edu/data/email-Enron.html (c.f. Leskovec et al. (2009)) for more de-

tails on the network). This network has n = 33, 696 nodes and m = 180, 811 edges, with a maximum

degree of 1,383. We estimate β = 1 and α = 0 and the sizes of confidence sets are:

60%: 7 nodes 80%: 11 nodes 95%: 42 nodes 99%: 2393 nodes .

The central subgraph of this network (shown in Figure 25a) exhibits a large central cluster with

many nodes that have relatively large posterior root probabilities. These nodes may correspond to

leadership personnel in the company.

Youtube social network: This dataset consists of friendship links between users in Youtube (Mis-

love et al.; 2007) and it is publicly available at https://snap.stanford.edu/data/com-Youtube.html.

This network has n = 1, 134, 890 nodes and m = 2, 987, 624 edges, with a maximum degree of 28,754.

We estimate β = 1 and α = 0 and the sizes of confidence sets are:

60%: 2 nodes 80%: 35 nodes 95%: 1874 nodes 99%: 16368 nodes .

The central subgraph of this network (shown in Figure 25b) also contains a large central cluster,

which may contain the most popular accounts on Youtube.
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S5.2 Random K roots analysis on air route network

We analyze an air route network (Guimera et al.; 2005) of n = 3, 618 airports and m = 14, 142

edges where two airports share an edge if there is a regularly scheduled flight between them. We

remove the direction of the edges and treat the network as undirected. The dataset is publicly

available at http://seeslab.info/downloads/air-transportation-networks/.

We perform our inference algorithm and display the top 12 community–trees in Figure 26. That

is, we take {Q1, . . . , QKall
} and display the 12 that has the largest posterior probability of occuring.

The first 6 community–trees represent the same community, basically of all the major airports

in the world, centered at various potential root nodes (Paris, London, Moscow, Tokyo, Chicago,

Frankfurt).

The 7th community–tree comprise of regional airports in the remote Northwest Territories

province of Canada and it is centered at Yellowknife, which is the capital of the province. This is

not surprising because most regional airports in Northern Canada are very small and are built only

to connect remote settlements to larger nearby cities such as Yellowknife.

The 8th community–tree comprise of regional airports on various Pacific and Polynesian islands

and it is centered at Port Moresby, the capital of Papua New Guinea. The 9th community–tree is

the Australia/Southeast Asia cluster centered at Sydney. This result is sensible again because most

airports in the pacific islands are built only to connect the small islands to larger nearby cities such

as Port Moresby or Cairns. From a network respectively, these remote airports are reachable only

through a few cities such as Port Moresby.

The 10th to 12th community–trees comprise of airports in Alaska, many of which are re-

gional. The 10th community–tree is the whole Alaska cluster centered at Anchorage while the

11th community–tree and the 12th community–tree represent, respectively, Western Alaska (cen-

tered at Bethel, AK) and Northern Alaska (centered at Fairbanks, AK).

S5.3 Additional clusters for statistician co-authorship network

In this section, we give 18 additional clusters discovered on the statistican co-authorship network

in Figure 27, expanding the results given in Section 6.5 of the main paper.

S5.4 Sampler diagnostic information

In this section, we give detailed sampler diagnostic information of the Gibbs sampling algorithm

proposed in Section 4. We use a simulation setting where we generate a PAPER network with

n = 2000 nodes and m = 4000 edges with K = 1 and we also use the statistician co-authorship

network analyzed in Section 6.5, which has n = 2263 nodes and m = 4388 edges.

Recall that our Gibbs sampler produces a sequence of samples of a spanning tree t̃
(j)
n and

ordering π(j) for j = 1, 2, . . . , J where J is the number of Gibbs outer iterations. We use t̃
(j)
n

to compute the ”sampled” posterior root probability Q(j)(·) = P(Π1 = · | T̃n = t̃
(j)
n ). For the

simulation setting, we then construct trace plot and auto-correlation plot based on the sequence

{Q(j)(true root)}Jj=1. For the statistician co-authorship network, we use construct the plots based

on {Q(j)( Raymond Carroll )}Jj=1. Figures 28a, 28b, 28c, and 28d suggest that the sampler is able

to converge to the stationary distribution and has no significant autocorrelation.

As described in Section S3.4, to assess convergence, we run two parallel chains A and B with

corresponding posterior root probability estimates QA(1:J)(·) = 1
J

∑J
j=1Q

A(j)(·) and QB(1:J)(·) =
1
J

∑J
j=1Q

A(j)(·). We then compute the Hellinger distance dH(QA(1:J), QB(1:J)) and increase J until

the distance is small enough. In Figures 29a and 29b, we show that dH(QA(1:J), QB(1:J)) indeed
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Figure 26: Top 12 community–trees on the air route network; first 6 trees reflect the hub of major

global airports centered at different cities; tree 7 contains remote regional airports in the Northwest

Territories province of Canada; tree 8 contains remote regional airports in southeast Asian Pacific

islands; tree 9 contains Australia/Southeast Asia airports; tree 10 contains Alaskan airports while

tree 11 and 12 contain western Alaskan and Northern Alaskan airports respectively.

converges to 0 quickly as J increases. We emphasize that the chains A and B are initialized

with a uniformly random spanning tree and a uniformly random ordering on that tree so that the

initialization is guaranteed to be overdispersed.
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(a) Bayesian (b) Experimental design (c) Biostat/Survey

(d) Biostat (e) Survey (f) Causal

(g) Econometrics (h) High dimensional (i) High dimensional

(j) Theory (k) Empirical likelihood/Inference (l) High dim/Multivariate

(m) Sequential (n) Spatial/Image (o) Dimensionality reduction

(p) Time series (q) Shape constrained (r) Theory

Figure 27: Additional clusters from the statistician co-authorship network. We hand label a subset.
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(a) ACF plot for a simulated network
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(b) ACF plot for the co-authorship network
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(c) Trace plot for a simulated network
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(d) Trace plot for the co-authorship network

Figure 28
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(a) Hellinger distance between the root prob-

ability distributions of two chains on a simu-

lated network.
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(b) Hellinger distance between the root prob-

ability distributions of two chains on the co-

authorship network.

Figure 29
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