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Summary. The paper introduces a class of Monte Carlo algorithms which are based on the sim-
ulation of a Markov process whose quasi-stationary distribution coincides with a distribution of
interest. This differs fundamentally from, say, current Markov chain Monte Carlo methods which
simulate a Markov chain whose stationary distribution is the target. We show how to approximate
distributions of interest by carefully combining sequential Monte Carlo methods with methodol-
ogy for the exact simulation of diffusions. The methodology that is introduced here is particularly
promising in that it is applicable to the same class of problems as gradient-based Markov chain
Monte Carlo algorithms but entirely circumvents the need to conduct Metropolis—Hastings type
accept-reject steps while retaining exactness: the paper gives theoretical guarantees ensuring
that the algorithm has the correct limiting target distribution. Furthermore, this methodology is
highly amenable to ‘big data’ problems. By employing a modification to existing naive subsam-
pling and control variate techniques it is possible to obtain an algorithm which is still exact but
has sublinear iterative cost as a function of data size.

Keywords: Control variates; Importance sampling; Killed Brownian motion; Langevin diffusion;
Markov chain Monte Carlo sampling; Quasi-stationarity; Sequential Monte Carlo methods

1. Introduction

Advances in methodology for the collection and storage of data have led to scientific challenges
and opportunities in a wide array of disciplines. This is particularly so in statistics as the com-
plexity of appropriate statistical models often increases with data size. Many current state of the
art statistical methodologies have algorithmic cost that scales poorly with increasing volumes
of data. As noted by Jordan (2013),

‘many statistical procedures either have unknown runtimes or runtimes that render the procedure un-
usable on large-scale data’

and this has resulted in a proliferation in the literature of methods
“..which may provide no statistical guarantees and which in fact may have poor or even disastrous
statistical properties’.
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This is particularly keenly felt in computational and Bayesian statistics, in which the stan-
dard computational tools are Markov chain Monte Carlo (MCMC) and sequential Monte
Carlo (SMC) methods and their many variants (see for example Robert and Casella (2004)).
MCMC methods are exact in the (weak) sense that they construct Markov chains which have
the correct limiting distribution. Although MCMC methodology has had considerable suc-
cess in being applied to a wide variety of substantive areas, they are not well suited to this
new era of ‘big data’ as their computational cost will increase at least linearly with the num-
ber of data points. For example, each iteration of the Metropolis—Hastings algorithm requires
evaluating the likelihood, the calculation of which, in general, scales linearly with the number
of data points. The motivation behind the work that is presented in this paper is on devel-
oping Monte Carlo methods that are exact, in the same sense as MCMC methods, but that
have a computational cost per effective sample size that is sublinear in the number of data
points.

To date, the success of methods that aim to adapt MCMC sampling to reduce its algorithmic
cost has been mixed and has invariably led to a compromise on exactness—such methodologies
generally construct a stochastic process with limiting distribution which is (at least hopefully)
close to the desired target distribution. Broadly speaking these methods can be divided into three
classes of approach: ‘divide-and-conquer’ methods, ‘exact subsampling’ methods and ‘approx-
imate subsampling’ methods. Each of these approaches has its own strengths and weaknesses
which will be briefly reviewed in the following paragraphs.

Divide-and-conquer methods (for instance, Neiswanger et al. (2014), Wang and Dunson
(2013), Scott et al. (2016) and Minsker et al. (2014)) begin by splitting the data set into a large
number of smaller data sets (which may or may not overlap). Inference is then conducted on
these smaller data sets and resulting estimates are combined in some appropriate manner. A
clear advantage of such an approach is that inference on each small data set can be conducted
independently, and in parallel, and so if one had access to a large cluster of computing cores
then the computational cost could be significantly reduced. The primary weakness of these
methods is that the recombination of the separately conducted inferences is inexact. All cur-
rent theory is asymptotic in the number of data points, n (Neiswanger et al., 2014; Li et al.,
2017). For these asymptotic regimes the posterior will tend to a Gaussian distribution (John-
son, 1970), and it is questionable whether divide-and-conquer methods offer an advantage over
simple approaches such as a Laplace approximation to the posterior (Bardenet et al., 2017).
Most results on convergence rates (e.g. Srivastava et al. (2016)) have rates that are of order
O(m~1/2), where m is the number of data points in each subset. As such they are no stronger
than convergence rates for analysing just a single batch. One exception is in Li et al. (2017),
where convergence rates of O(n~1/?) are obtained, albeit under strong conditions. However,
these results relate only to estimating marginal posterior distributions, rather than the full
posterior.

Subsampling methods are designed so that each iteration requires access to only a subset of
the data. Exact approaches in this vein typically require subsets of the data of random size at each
iteration. One approach is to construct unbiased estimators of pointwise evaluations of the target
density by using subsets of the data, which could then be embedded within the pseudomarginal
MCMC framework developed by Andrieu and Roberts (2009). Unfortunately, the construction
of such positive unbiased estimators is not possible in general (Jacob and Thiéry, 2015) and such
methods often require both bounds on, and good analytical approximations of, the likelihood
(Maclaurin and Adams, 2015).

More promising practical results have been obtained by approximate subsampling approaches.
These methods use subsamples of the data to estimate quantities such as acceptance probabilities
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(Nicholls et al., 2012; Korattikara et al., 2014; Bardenet et al., 2014), or the gradient of the pos-
terior, that are used within MCMC algorithms. These estimates are then used in place of the
true quantities. Although this can lead to increases in computational efficiency, the resulting
algorithms no longer target the true posterior. The most popular of these algorithms is the
stochastic gradient Langevin dynamics algorithm of Welling and Teh (2011). This approxi-
mately samples a Langevin diffusion which has the posterior as its stationary distribution. To
do this requires first approximating the continuous time diffusion by a discrete time Markov
process, and then using subsampling estimates of the gradient of the posterior within the dy-
namics of this discrete time process. This idea has been extended to approximations of other
continuous time dynamics that target the posterior (Ahn et al., 2012; Chen et al., 2014; Maet al.,
2015).

Within these subsampling methods it is possible to tune the subsample size, and sometimes the
algorithm’s step size, to control the level of approximation. This leads to a trade-off, whereby
increasing the computational cost of the algorithm can lead to samplers that target a closer
approximation to the true posterior. There is also substantial theory quantifying the bias in,
say, estimates of posterior means, that arise from these methods (Teh et al., 2016; Vollmer et
al., 2016; Chen et al., 2015; Huggins and Zou, 2017; Dalalyan and Karagulyan, 2019), and
how this depends on the subsample size and step size. However, although they often work
well in practice it can be difficult to know just how accurate the results are for any given
application. Furthermore, many of these algorithms still have a computational cost that in-
creases linearly with data size (Bardenet ef al., 2017; Nagapetyan et al., 2017; Baker et al.,
2019).

The approach to the problem of big data that is proposed here is a significant departure from
the current literature. Rather than building our methodology on the stationarity of appropri-
ately constructed Markov chains, a novel approach based on the quasi-limiting distribution of
suitably constructed stochastically weighted diffusion processes is developed. A quasi-limiting
distribution for a Markov process X with respect to a Markov stopping time ( is the limit of
the distribution of X,|( >t as t — 0o, and such distributions are automatically quasi-stationary
distributions; see Collet et al. (2013); this concept is completely unrelated to the popular area
of quasi-Monte-Carlo methods. These quasi-stationary Monte Carlo (QSMC) methods that
have been developed can be used for a broad range of Bayesian problems (of a similar type
to MCMC methods) and exhibit interesting and differing algorithmic properties. The QSMC
methods developed are exact in the same (weak) sense as MCMC methods, in that they give
the correct (quasi-)limiting distribution. There are a number of possible implementations of the
theory which open up interesting avenues for future research, in terms of branching processes,
by means of stochastic approximation methods, or (as outlined in this paper) SMC methods.
We note that the use of continuous time SMC and related algorithms to obtain approximations
of large time limiting distributions of processes conditioned to remain alive has also been ex-
plored in settings in which a quantity of interest admits a natural representation of this form
(see Del Moral and Miclo (2003), Rousset (2006) and related work in the physics literature,
such as Giardina et al. (2011) and references therein); a substantial difference between these
and the present work is that the QSMC methods that are described here construct a process for
which quite a general distribution of interest is the quasi-stationary distribution and entirely
avoid time discretization errors. One particularly interesting difference between our class of
Monte Carlo and MCMC algorithms is that QSMC methods enable us to circumvent entirely
the Metropolis—Hastings-type accept-reject steps, while still retaining theoretical guarantees
that the correct limiting target distribution is recovered. In the case of big data problems, this
removes one of the fundamental O(n) bottlenecks in computation.
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QSMC methods can be applied in big data contexts by using a novel subsampling approach.
We call the resulting algorithm (ScaLE), for scalable Langevin exact algorithm. The name refers
to the ‘Langevin’ diffusion which is used in the mathematical construction of the algorithm,
although it should be emphazised that it is not explicitly used in the algorithm itself. As shown
in Section 4, the approach to subsampling that is adopted here can potentially decrease the
computational complexity of each iteration of a QSMC algorithm to be O(1). Furthermore, for
a rejection sampler implementation of a QSMC sampling, the use of subsampling introduces
no additional error—as the rejection sampler will sample from the same stochastic process,
a killed Brownian motion, regardless of whether subsampling is used or not. There can be a
computational cost of using subsampling, as the number of rejection sampler iterations that are
needed to simulate the killed Brownian motion for a given time interval will increase. However,
this paper will show that, by using control variates (Bardenet ez a/., 2017) to reduce the variability
of subsampling estimators of features of the posterior, the on-going algorithm computational
cost will be O(1). Constructing the control variates involves a preprocessing step whose cost
is O(n) (at least in the case of posterior contraction at rate n~'/2) but after this preprocessing
step the resulting cost of ScaLLE per effective sample size can be O(1). The importance of using
control variates to obtain a computational cost that is sublinear in n is consistent with other
recent work on scalable Monte Carlo methods (Huggins and Zou, 2017; Bierkens et al., 2019;
Quiroz et al., 2016; Dubey et al., 2016; Nagapetyan et al., 2017; Baker et al., 2019).

The next section presents the main result that motivates development of QSMC methods. The
following sections then provide detail on how to implement QSMC algorithms in practice, and
how and why they are amenable to use with subsampling ideas. For clarity of presentation, much
of the technical and algorithmic detail has been suppressed but can be found in the appendices.

2. Quasi-stationary Monte Carlo sampling

Given a target density = on R¢, traditional (i.e. Metropolis—Hastings type) MCMC methods
propose at each iteration from Markov dynamics with proposal density g(X,y), ‘correcting’ its
trajectory by either accepting the move with probability

a(x, y):min{l, TW)q(y. x) }, )

T(X)q(x,y)

or rejecting the move and remaining at state x. In QSMC sampling, rather than rejecting a
move and staying at x, the algorithm kills the trajectory entirely, according to probabilities
which relate to the target density.

Simulation of a Markov process with killing inevitably leads to death of the process. Thus it is
natural to describe the long-term behaviour of the process through its conditional distribution
given that the process is still alive. The limit of this distribution is called the quasi-stationary
distribution (see, for example, Collet ez al. (2013)). The idea of QSMC sampling is to construct
a Markov process whose quasi-stationary distribution is the distribution, 7 (x), from which the
user wishes to sample from. Simulations from such a process can then be used to approximate
expectations with respect to 7 (x) just as in MCMC sampling.

Although in principle QSMC methods can be used with any Markov process, this paper
will work exclusively with killed Brownian motion as it has some convenient properties that
can be exploited. Therefore let {X;, ¢ >0} denote d-dimensional Brownian motion initialized at
X0 =xXp. Suppose that x(x) denotes a non-negative hazard rate at which the Brownian motion
is killed when it is in state x, and let ¢ be the killing time itself. Finally define
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we(dx) :=PX;edx|(>1): 2)

the distribution of X; given that it has not yet been killed. The limit of this distribution as t — oo
is the quasi-stationary distribution of the killed Brownian motion.

The aim will be to choose « in such a way that y, converges to 7 and, with this in mind, we
introduce the function ¢: R¢ - R

_IViIog{mr(x)}|I?+ Alog{m(x)}  Am(x)
N 2 T 2n(x)’

where || - ||” denotes the usual Euclidean norm and A the Laplacian operator. By further im-
posing the following condition the first theorem can be proved.

Condition 1. There is a constant ® > —oo such that ® < ¢(u) V u e R?.

P(x): 3

Theorem 1. Under the regularity conditions (26) and (27) in Appendix A, suppose that
condition 1 holds and set

K(X) 1= p(x) — D >0; “4)

then it follows that 1, converges in L' and pointwise to 7.

For a proof of theorem 1, see appendix A.

Note that the regularity conditions in Appendix A are largely technical smoothness and
other weak regularity conditions that are common in stochastic calculus. In contrast, condition
1 is necessary for us to be able to construct QSMC methods. However, since non-pathological
densities on R? are typically convex in the tails, the second identity in expression (3) demonstrates
that condition 1 is almost always satisfied in real examples.

Theorem 1 can be exploited for statistical purposes by noting that, for some sufficiently large
t*, u ~m for t>*. Thus, given samples from p, for ¢ > *, one would have an (approximate)
sample from 7. This is analogous to MCMC sampling, with t* being the burn-in period; the
only difference being the need to simulate from the distribution of the process conditionally on
its not having died.

The next two sections describe how to simulate from ;. Firstly a description of how to simulate
a killed Brownian motion process exactly in continuous time is provided. A naive approach to
sample from p; is to simulate independent realizations of this killed Brownian motion, and to
use the values at time ¢ of those processes which have not yet died by time ¢. In practice this
is impracticable, as the probability of survival will, in general, decay exponentially with ¢. To
overcome this SMC methods are employed.

Both these steps introduce additional challenges that are not present within standard MCMC
problems. Thus a natural question is why use QSMC methods at all? This is addressed in Section
4 where it is shown that simulating the killing events can be carried out using just subsamples
of data. In fact subsamples of size 2 can be used without introducing any approximation into
the dynamics of the killed Brownian motion.

3. Implementing quasi-stationary Monte Carlo algorithms

3.1. Simulating killed Brownian motion
Theorem 1 relates a target distribution of interest to the quasi-stationary distribution of an ap-
propriate killed Brownian motion. To be able to simulate from this quasi-stationary distribution
it is necessary to be able to simulate from killed Brownian motion.

To help to convey the main ideas, first consider the case where the killing rate «(x) is bounded
above by some constant, K say. In this case it is possible to use thinning (see, for example,
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Kingman (1992)) to simulate the time at which the process will die. This involves simulating the
Brownian motion independently of a Poisson process with rate K. Each event of the Poisson
processis a potential death event, and an appropriate Bernoulli variable then determines whether
or not the death occurs. For an event at time ¢ the probability that death occurs depends on
the state of the Brownian motion at time § and is equal to x(x¢)/K. Thus to simulate the killed
Brownian motion to time 7 the first step is to simulate all events in the Poisson process up to time
t. Then, by considering the events in time order, it is straightforward to simulate the Brownian
motion at the first event time and as a result to determine whether death occurs. If death does
not occur, the next event time can be considered. This is repeated until either the process dies
or the process has survived the last potential death event in [0, ¢]. If the latter occurs, Brownian
motion can be simulated at time ¢ without any further conditions.

This can be viewed as a rejection sampler to simulate from g, (x), the distribution of the
Brownian motion at time ¢ conditional on its surviving to time 7. Any realization that has been
killed is ‘rejected’ and a realization that is not killed is a draw from g, (x). It is easy to construct
an importance sampling version of this rejection sampler. Assume that there are £ events in
the Poisson process before time #, and these occur at times &i,... ,&. The Brownian motion
path is simulated at each event time and at time 7. The output of the importance sampler is

the realization at time ¢, x;, together with an importance sampling weight that is equal to the
probability that the path survives each potential death event:

k K — K(X&)
Wy=1] ————.
t igl K
Given a positive lower bound on the killing rate, x(x) > K¥ for all x, it is possible to improve the
computational efficiency of the rejection sampler by splitting the death process into a death pro-
cess of rate K¥ and one of rate x(x) — K'. Actual death occurs at the first event in either of these
processes. The advantage of this construction is that the former death process is independent
of the Brownian motion. Thus it is possible first to simulate whether or not death occurs in this
process. If it does not we can then simulate, using thinning as above, a killed Brownian motion
with rate x(x) — K. The latter will have a lower intensity and thus be quicker to simulate. Using
the importance sampling version instead, events in a Poisson process of rate K — KV, &1,..., &
say, are simulated, and our realization at time ¢ is assigned a weight
k K—
W, :=exp(—K¢t) il;[l %ﬁ:f’)
This is particularly effective as the exp(— K ¥7)-term is a constant which will cancel on normal-
ization of the importance sampling weights.

3.2. Simulating killed Brownian motion by using local bounds
The approach in Section 3.1 is not applicable in the absence of an upper bound on the killing
rate. Even in situations where a global upper bound does exist, the resulting algorithm may be
inefficient if this bound is large. Both of these issues can be overcome by using local bounds on
the rate. For this section we shall work with the specific form of the killing rate in theorem 1,
namely ¢(x) — ®. The bounds that are used will be expressed in terms of bounds on ¢(x).
Given an initial value for the Brownian motion, x¢, define a hypercube which contains xg.
In practice this cube is defined to be centred on xy with a user-chosen side length (which may
dePend on xg). Denote the hypercube by H, and assume that upper and lower bounds U)((l) and
Lg() respectively can be found for ¢(x) with x € H1. The thinning idea of the previous section can
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be used to simulate the killed Brownian motion while the process stays within H;. Furthermore
it is possible to simulate the time at which the Brownian motion first leaves H; and the value of
the process when this happens (see Appendix C). Thus our approach is to use our local bounds
on ¢(x), and hence on the killing rate, to simulate the killing process while x remains in H;. If
the process leaves | before ¢ it is then necessary to define a new hypercube, H; say, to obtain
new local bounds on ¢(x) for x € H, and to repeat simulating the killing process by using these
new bounds until the process either first leaves the hypercube or time 7 is reached.

The details of this approach are now given, describing the importance sampling version
which is used later—though a rejection sampler can be obtained by usmg similar ideas. The
first step is to calculate the hypercube H; and the bounds Lg() and U)(() We then simulate the
tlme and position at which x first leaves ;. We call this the layer information and denote it
as RX = (71, X5,). The notion of a layer for diffusions was formalized in Pollock e? al. (2016),
and we refer the interested reader there for further details. Next the p0551ble kllhn% events on
[0, A 7] are generated by simulating events of a Poisson process of rate UX €1,k
say. The next step involves simulating the Values of the Brownian motion at these event times
(the simulation of which is conditional on R D see Appendix C.2 and algorithm 5 there for
a description of how this can be done). An 1ncremental importance sampling weight for this
segment of time is given as

WD i=exp{— (LY’ — @)t AT} H (1)742’(’(‘15) o)
Ly

If 71 <t, then this process is repeated with a hypercube centred on x,, until simulation to time ¢
has been achieved. This gives successive incremental weights W, W® ... A simulated value
for the Brownian motion at time 7 is given, again simulated conditionally on the layer information
for the current segment of time, and an importance sampling weight that is the product of the
incremental weights associated with each segment of time. At time #, J(¢) incremental weights
have been simulated, leading to the cumulative weight

J@)

=11 w . (6)

j=1
Full algorithmic details of the description above are given in algorithm 1 in Table 1. In practice

every sample X; will have an importance weight that shares a common constant of exp(®7) in
equation (6). As such it is omitted from algorithm 1 and the weights are asterisked to denote
this. It is straightforward to prove that this approach gives valid importance sampling weights
in the following sense.

Theorem 2. Foreach:t<T
t
E[W, X[0, T]]=exp{ - /0 ¢<xs>ds}.

Proof. First note that, by direct calculation of its Doob—Meyer decomposition conditionally
on X[0, 7], W; exp{ fo @(X;)ds} is a martingale; see for example Revuz and Yor (2013). Therefore
E[W,|X][0, T]] exp{f0 #(X)ds} =1 and the result follows.

3.3. Simulating from the quasi-stationary distribution
In theory we can use our ability to simulate from g, (x), with using either rejection sampling to
simulate from the quasi-stationary distribution of our killed Brownian motion, or importance
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Table1. Algorithm 1: importance sampling killed Brownian motion algorithm

1 Initialize: input initial value X¢, and time interval length ¢; set i=1, j=0,
T0=0, w5 =1

2 R: choose hypercube H; and calculate LY and U)((’); simulate layer
information R)é ~ R as per Appendix é obtaining 7, X,

3 E: simulate E~Exp(U)((’) — L§))

4¢;:set j=j+1and §=E-1tE)ATiNt

5 w?j: set wz‘j = w?FI exp{—Lgé)[g_, —&il} ,

6 ng: simulgte Xe, ~ MVN(XEJ;1 &= §j_1)|R§) as per Appendix C.2
and algorithm 5 there.

7 72 if {j =t then output x; and wi; otherwise, if {j=1;, set i=i+ 1, and
return to step 2; otherwise set wg‘_ = wg‘_ {U)((’) - gb(Xg/.)}/(U)(é) - Lgé))
and return to step 3 / J '

sampling to approximate this distribution. We would need to specify a ‘burn-in’ period of length
t* say, as in MCMC sampling and then to simulate from g (x). If #* is chosen appropriately
these samples would essentially be draws from the quasi-stationary distribution. Furthermore
we can propagate these samples forward in time to obtain samples from y,(x) for > ¢*, and
these would, marginally, be draws from essentially the quasi-stationary distribution.

However, in practice this simple idea is unlikely to work. We can see this most clearly with
the rejection sampler, as the probability of survival will decrease exponentially with ~—and thus
the rejection probability will often be prohibitively large.

Various approaches have been suggested to overcome the inefficiency of this naive approach
to simulating from a quasi-stationary distribution (see for example de Oliveira and Dickman
(2005), Groisman and Jonckheere (2013), and the recent rebirth methodology of Blanchet et al.
(2016)). Our approach is to use ideas from SMC methods. In particular, we shall discretize time
into m intervals of length 7/m for some chosen T and m. Defining #; :=iT/m fori=1,...,m, we
use our importance sampler to obtain an N-sample approximation of 11, (x); this will give us N
particles, i.e. realizations of x;, , and their associated importance sampling weights. We normalize
the importance sampling weights and calculate the empirical variance of these normalized
weights at time ¢#1. If this is sufficiently large we resample the particles, by simulating N times
from the empirical distribution that is defined by the current set of weighted particles. If we
resample, we assign each of the new particles a weight 1/N.

The set of weighted particles at time 7] is then propagated to obtain a set of N weighted
particles at time #,. The new importance sampling weights are just the weights at time ¢, before
propagation, multiplied by the (incremental) importance sample weight calculated when propa-
gating the particle from time #; to f,. The above resampling procedure is applied, and this whole
iteration is repeated until we have weighted particles at time 7. This approach is presented as
the QSMC algorithm in algorithm 2 in Table 2 in which N is the effective sample size (ESS)
of the weights (Kong et al., 1994), a standard way of monitoring the variance of the importance
sampling weights within SMC sampling, and Ny, is a user-chosen threshold which determines
whether or not to resample. The algorithm outputs the weighted particles at the end of each
iteration.

Given the output from algorithm 2, the target distribution 7 can be estimated as follows. After
choosing a burn-in time, t* (€ (f,...,t,)), sufficiently large to provide reasonable confidence
that quasi-stationarity has been ‘reached’, the approximation to the law of the killed process is
then simply the weighted occupation measures of the particle trajectories in the interval [t*, T].
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Table 2. Algorithm 2: QSMC algorithm

1 Initialization step (i =0):
(a) input, starting distribution fx,, number of particles, N, and set of m times
Hm
(b) X(()'): fork 1,..., N simulate X;;:N) fx, and set w(1 N - =1/N

2 Iterative update steps (i=1i+ 1 while i <m):

(a) Nefr, if Negr < Ny, then for k 1,..., N resample X,(‘,k_)I ~ 7?2_/_1 , the empirical
distribution defined by the current set of weighted particles, and set
W ,(k) =1/ N

(b) for k 1
(i) X,l. s 51mulate Xt(l.k) |Xt(,_li)1 along with unnormalized weight increment
w,":ft as per algorithm 1;

(i1) u/ ¢ ) , calculate unnormalized weights w/ ® _ wl(k)1 w,l_

(©) w() fork l,...,N set w(k) —w/(k)/EN 1W/(I)
(d) ;) : set wfv(dx) ZN W ) (k) (dx)

i-1°

More precisely, using the output of the QSMC algorithm,

1 m N %
r(dx) ~ 7 (dx) = —————— w9 (dx). 7
m(T —1)/T i=;n(7;t*)/Tk§l "Xy

For concreteness, for a suitable L! () function ¢, the Monte Carlo estimator can simply be set
to
m

— 1 ®) ()
e — X . 8
0 m(T_t*)/Ti=m(]Zzt*)/TkZ Vi 9% ©

The general (g-specific) theoretical ESS is given by var,g/ Varw/(;). Practical approximation of
ESS is discussed in Appendix I.

4. Subsampling

We now return to the problem of sampling from the posterior in a big data setting and assume
that we can write the target posterior as

m(X) (=mu(x) o [T fi(%), )
i=0
where fo(x) is the prior and f(x),..., f,(x) are likelihood terms. To be consistent with our

earlier notation x refers to the parameters in our model. The assumption of this factorization
is quite weak and includes many classes of models exhibiting various types of conditional
independence structure.

It is possible to sample from this posterior by using algorithm 2 by choosing ¢(x), and hence
k(x), which determines the death rate of the killed Brownian motion, as defined in expressions
(3) and (4) respectively. In practice this will be computationally prohibitive as at every potential
death event we determine acceptance by evaluating ¢(x), which involves calculating derivatives
of the log-posterior, and so requires accessing the full data set of size n. However, it is easy to
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estimate ¢(x) unbiasedly by using subsamples of the data as the log-posterior is a sum over the
different data points. Here we show that we can use such an unbiased estimator of ¢(x) while
still simulating the underlying killed Brownian motion exactly.

4.1. Simulating killed Brownian motion with an unbiased estimate of the killing rate

To introduce the approach proposed we begin by assuming that we can simulate an auxiliary
random variable A ~ A, and (without loss of generality) construct a positive unbiased estimator
/4 (-) such that

Ealfa(]=£(). (10)

The approach relies on the following simple result which is stated in a general way as it is of
independent interest for simulating from events of probability which are expensive to compute
but that admit a straightforward unbiased estimator. Its proof is trivial and will be omitted.

Proposition 1. Let 0< p< 1, and suppose that P is a random variable with E[P]= p and
0< P < 1 almost surely. Then, if u ~ UJ0, 1], the event {u < P} has probability p.

We now adapt this result to our setting, noting that the randomness that is obtained by direct
simulation of a p-coin, and that using proposition 1, is indistinguishable.

Recall that, in Section 3.1 to simulate a Poisson process of rate x, Poisson thinning was used.
The initial step is first to find, for the Brownian motion trajectory constrained to the hypercube
‘H, a constant Kx € R, such that vV x € H, x(x) < Kx holds. Then a dominating Poisson process
of rate Kx is simulated to obtain potential death events, and then in sequence each potential
death event is accepted or rejected. A single such event, occurring at time £, will be accepted as
a death with probability x(x¢)/Kx.

An equivalent formulation would simulate a Poisson process of rate « by using a dominating
Poisson process of higher rate Kx > Kx. This is achieved by simply substituting Kx for Kx in the
argument above. However, the penalty for doing this is an increase in the expected computational
cost by a factor of Kx/Kx—therefore it is reasonable to expect to have a larger number of
potential death events, each of which will have a smaller acceptance probability.

Now, suppose for our unbiased estimator 7 4 that it is possible to identify some Kx € R, such
that for A almost all A, and all x e H, 0 < #(x) < Kx. Noting from equation (10) that we have
an unbiased [0, 1]-valued estimator of the probability of a death event in the above argument
(i.e. E4[A4(x)/K]=k(x)/K) and, by appealing to proposition 1, another (entirely equivalent)
formulation of the Poisson thinning argument above is to use a dominating Poisson process of
rate Kx, and to determine acceptance or rejection of each potential death event by simulating
A~ A and accepting with probability 74 (x¢)/K (instead of k(x¢)/K).

In the remainder of this section we exploit this extended construction of Poisson thinning
(using an auxiliary random variable and unbiased estimator), to develop a scalable alternative
to the QSMC approach that was introduced in algorithm 2. The key idea in doing so is to find
an auxiliary random variable and unbiased estimator which can be simulated and evaluated
without fully accessing the data set, while ensuring that the increased number of evaluations
that is necessitated by the ratio Kx/Kx > 1 does not grow too severely.

4.2. Constructing a scalable replacement estimator

Noting from expressions (3) and (4) that the selection of x(x) that is required to sample from a
posterior 7 (x) is determined by ¢(x), in this section we focus on finding a practical construction
of a scalable unbiased estimator for ¢(x). Recall that
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o) :=[||V log{r () }II> + Alog{m(x)}]/2, (D

and that as in algorithm 2, while staying within hypercube H;, it is possible to find constants Lg?

and U,((’) such that Lgé) <Pp(x) < U,((’). As motivated by Section 4.1, it is then possible to construct
an auxiliary random variable A ~ .4, and an unbiased estimator ¢4 such that

Ealoa()]=0(), 12)

and to determine constants U ;? > U,((i) and £§? < Lg? such that within the same hypercube we
1 1

have Ly <¢,4(x) <Uy . To ensure the validity of our QSMC approach, as justified by theorem
1 in Séction "5.3, it is'hecessary to substitute condition 1 with the following (similarly weak)

condition.
Condition 2. There is a constant & > —oo such that & < ¢ A(u) for A-almost every A, Vue R,

To ensure practicality and scalability it is crucial to focus on ensuring that the ratio
59y
ATy o a3
X —hx

where \:=U §) - L~§), does not grow too severely with the size of the data set (as this determines

the multiplicative increase in the rate, and hence increased inefficiency, of the dominating Poisson
process required within algorithm 2). To do this, our approach develops a tailored control
variate, of a similar type to that which has since been successfully used within the concurrent
work of two of the authors on MCMC methods (see Bierkens et al. (2019)).

To implement the control variate estimator, it is first necessary to find a point that is close
to a mode of the posterior distribution 7, denoted by X. In fact, for the scaling arguments to
hold, x should be within O (n~1/2) of the true mode, and achieving this is a less demanding task
than actually locating the mode. Moreover we note that this operation is required to be done
only once, and not at each iteration, and so can be done fully in parallel. In practice it would
be possible to use a stochastic gradient optimization algorithm to find a value that is close to
the posterior mode, and we recommend then starting the simulation of our killed Brownian
motion from this value, or from some suitably chosen distribution centred at this value. Doing
this substantially reduces the burn-in time of our algorithm. In the following section we describe
a simpler method that is applicable when two passes of the full data set can be tolerated in the
algorithm’s initialization.

Addressing scalability for multimodal posteriors is a more challenging problem, and goes
beyond what is addressed in this paper, but is of significant interest for future work. We do,
however, make the following remarks. In the presence of multimodality, stochastic gradient
optimization schemes may converge to the wrong mode. This is still sufficiently good as long
as possible modes are separated by a distance which is O(n~1/?); when separate modes which
are separated by more than O(n~!/2) exist, an interesting option would be to adopt multiple
control variates.

Remembering that log{7(x)} =X ,log{ f;(x)} and letting A be the law of I ~U{0,...,n},
our control variate estimator is constructed thus:

Ea[ (n+D[Vieg{ f1(x)} — Vleg{ fi(®)}]] = Viog{m(x)} — Vlog{m(X)}. (14)

=:a7(x) =(x)

As such, ¢(x) can be re-expressed as
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Table 3. Algorithm 3: ScaLE¥

Initialize: choose X and compute V log{n(X)} and Alog{w(X)}
2(b)(i) On calling algorithm 1,

(a) replace Lg? and Ug) in step 2 with I:g) and 0§?;

(b) replace step 7 with 73, if { j =7;, set i =i+ 1, and return to step 2; otherwise
simulate A ; = (.Ij, Jj)? with I, JJ-NHDU{O,. ..,n}, and set wg‘j :wé“j{flgé) -
¢;Aj (Xg_/)}/(lj%) — L~§)) (where ¢;Aj is defined as in equation (16)) and return to
algorithm 1, step 3

+As per algorithm 2 unless stated otherwise.

¢(x) = ((x) 2V log{r(®)} + a(0)]+div{a()}/2+C, 15)
where C:= ||Vlog{m(X)}||?/2 4+ Alog{n(X)}/2 is a constant. Letting A now be the law of
1,J~11Dy {0,...,n} the following unbiased estimator of ¢ can be constructed:

Eal (@™ ()7 [2V log{m(x")} 4" a1(x)})/2+ Cl]=¢(x). (16)

J0]+div{ =0

The estimators a;(x) and <;~$ 4 (x) are nothing more than classical control variate estimators, albeit
in a fairly elaborate setting, and henceforth we shall refer to these accordingly.

The construction of the estimator requires evaluation of the constants Vlog{m(X)} and
Alog{n(X)}. Although both are O(n) evaluations they must be computed only once and, fur-
thermore, as mentioned above, can be calculated entirely in parallel.

The unbiased estimators a;(x) and ¢4(x) use (respectively) single and double draws from
{1,...,n} although it is possible to replace these by averaging over multiple draws (sampled
with replacement), although this is not studied theoretically in the present paper and is exploited
only in Section 7.5 of the empirical study.

Embedding our subsampling estimator described above within the QSMC algorithm of Sec-
tion 3.3 results in algorithm 3 in Table 3, termed the scalable Langevin exact algorithm ScaLE.
A similar modification could be made to the rejection sampling version; called R-QSMC,
which was discussed in Section 3.3 and is detailed in Appendix F. This variant is termed the
rejection scalable Langevin exact algorithm R-Scal E, and full algorithmic details are provided in
Appendix G.

4.3. Implementation details

In this section we detail some simple choices of the various algorithmic parameters which lead to
a concrete implementation of ScaLE. These choices have been made on the bases of parsimony
and convenience and are certainly not optimal.

In practice, we are likely to want to employ a suitable preconditioning transformation X' =
A~!X before applying the algorithm to equate roughly scales for different components. If we did
not do this, it is likely that some components would mix particularly slowly. Obtaining a suitable
X and A is important. One concrete approach, and that used throughout our empirical study
except where otherwise stated, is as follows. Divide a data set into a number of batches which are
sufficiently small to be processed by using standard maximum likelihood estimation approaches
and estimate the maximum likelihood estimate (MLE) and observed Fisher information for each
batch; % can then be chosen to be the mean of these MLEs and A~! to be a diagonal matrix
with elements equal to the square root of the sum of the diagonal elements of the estimated
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information matrices. Better performance would generally be obtained by using a non-diagonal
matrix, but this serves to illustrate a degree of robustness to the specification of these parameters.
The constants that are required within the control variate can then be evaluated. For a given
hypercube H, a bound Kx on the dominating Poisson process intensity can then be obtained by
simple analytic arguments facilitated by extending that hypercube to include X and obtaining
bounds on the modulus of continuity of ¢ 4. In total, two passes of the full data set are required
to obtain the necessary algorithmic parameters and to specify the control variate fully.

As discussed in Section 3.3, it is necessary to choose an execution time 7 for the algorithm
and an auxiliary mesh (¢ :=0,1y,...,t, := T) on which to evaluate g in the computation of the
QSMC estimator (8). Within the algorithm the particle set is evolving according to killed Brow-
nian motion with a preconditioning matrix A~! chosen to match approximately the square root
of the information matrix of the target posterior. As such, T should be chosen to match the time
that is taken for preconditioned Brownian motion to explore such a space, which in the exam-
ples that are considered in this paper ranged from 7~ 1 to T~ 100. The number of temporal
mesh points, m, was chosen with computational considerations in mind—increasing m increases
the cost of evaluating the estimator and leads to greater correlation between the particle set at
consecutive mesh points but ensures when running the algorithm on a multiple-user cluster that
the simulation is periodically saved and reduces the variance of the estimator. As the compu-
tational cost of the algorithm is entirely determined by the bounds on the discussed modulus
of continuity of ¢ 4, 1n each of the examples we later consider that our mesh size was loosely
determined by the inverse of this quantity and ranged from #; —f;_1 ~ 1073 to t; — t;_; ~ 10~°.

The initial distribution fy, is not too critical, provided that it is concentrated reasonably
close (within a neighbourhood of size O(n~'/2)) to the mode of the distribution. The stability
properties of the SMC implementation ensure that the initial conditions will be forgotten (see
chapter 7 of Del Moral (2004) for a detailed discussion). The empirical results that are presented
below were obtained by choosing, as fx, either a singular distribution concentrated at X or a
normal distribution centred at that location with a covariance matrix matching AAT; results
were found to be insensitive to the particular choice.

5. Complexity of ScaLE

The computational cost of ScaLE will be determined by two factors: the speed at which g
approaches 7 and the computational cost of running the algorithm per unit algorithm time.
Throughout the exposition of this paper, the proposal process is simple Brownian motion.
Because of posterior contraction, as n grows, this proposal Brownian motion moves increasingly
rapidly through the support of 7. However, as n grows, killing rates will grow. In this subsection
we shall explore in detail how the computational cost of ScaLLE varies with n (its complexity)
while bringing out explicitly the delicate link to the rate of posterior contraction and the effect
of the choice of X.

We start by examining the speed of convergence of p, and in particular its dependence on
posterior contraction. Being more explicit about posterior contraction, we say that {m,} are
O(n~"/2) or have contraction rate /2 for some 1 > 0 to a limit xq if for all e > 0 there exists K >0
such that, when X,, ~ 7, P(1X, — xo| > Kn~"?) <e. It is necessary to extend the definition of
14 to a setting where n increases; hence define

"t (dx) ;=P (X, edx|¢ > 1,Xo=Xo+n""?u). a7

Since we are dealing with Markov processes that are essentially never uniformly ergodic, it
is impossible to control convergence times uniformly. The specification of the initial value as
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X0 =Xg+n~"?u, which, as n increases, remains close to the centre of the posterior as specified
through the contraction rate, goes as far as we can before incurring additional computational
costs for bad starting values.

Set

Tu,e= inf{t >0; “M?’u —mmall < 6}

where ‘|| - || represents total variation distance. It will be necessary to make the following tech-
nical assumption. For all ¢, K >0

lim sup sup 77T, u,e < o0. (18)
n—oo |u|<K

Atfirst sight, assumption (18) may seem strong, but it is very natural and is satisfied in reasonable
situations. For example suppose that we have a contraction scaling limit:

T (dx) ~ h (X_XO)

nn/2

(A special case of this is the Bernstein—von Mises theorem with =1 and & being Gaussian, but
our set-up is far broader.) If {X}'} denotes ScaLE on m,, then by simple scaling and time change
properties of Brownian motion it is easily checked that if Y; =X,,—»; then Y is (approximately)
ScaLE on & which is clearly independent of n. Thus to obtain a process which converges in O(1)
we need to slow down X by a time scaling factor of

time factor =n". (19)

Similar arguments have been used for scaling arguments of other Monte Carlo algorithms that
use similar control variates; see for instance the concurrent work of Bierkens et al. (2019).
Although posterior contraction has a positive effect on computational cost, also, for large
n, the rate at which a likelihood subsample needs to be calculated, as measured by )\, needs to
increase. Since A depends on the current location in the state space, where we need to be precise
we shall set Xn, x to be an available bound which applies uniformly for [x — x| < Kn~"/2.
The following notion of convergence cost will be required: setting

Citer =Citer(n, K, €) = Tn,K,eAn,K

ScaLE is said to have iteration complexity n® or, equivalently, is O(n®) if Ciier (1, K, €) is O(n™)
forall K,e>0.

Therefore to understand iteration complexity of ScaL.E it is necessary to understand the rate
at which >\~,,, k grows with n. A general way to do this is to use global, or local, bounds on the
second derivatives of the log-likelihood for each datum. To simplify the following exposition a
global bound is assumed, so that

p[V log{ f1(x)}]1< Pa, (20)

for some P, >0, where p(-) represents the spectral radius and V2 is the Hessian matrix. For
smooth densities with Gaussian and heavier tails, the Hessian of the log-likelihood is typically
uniformly bounded (in both data and parameter). In such cases such a global bound would be
expected, and in fact P, would be constant in n.

Recalling the layer construction of Section 3.2 for a single trajectory of killed Brownian
motion, we can ensure that over any finite time interval we have x € H, some hypercube. Let the
centre of the hypercube be x*.
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In this section, eventually the assumption that the posterior contracts at a rate n~"/2 will be
made, i.e. that {n"/?(x —xg),n=1,2,...} is tight. The so-called regular case corresponds to the
case where =1, although there is no need to make any explicit assumptions about normality in
what follows. The practitioner has complete freedom to choose H, and it makes sense to choose
this so that ||x — x*| < C"in’"/2 for some C* >0 and for all x e H. 5

It is possible to bound ¢ 4 (x) both above and below if we can bound [¢ 4 (x)| over .A almost all
possible realizations of A. To bound |¢ 4 (X)|, the approach here is first to consider the elementary
estimator in expression (14). By imposing condition (20) we can then obtain

max larx)| < (n+1)P,max | x — X||. 21
} xeH

Thus it is possible to bound estimator (16) as follows:

2 max [¢,(x)—C|< (n+1)Pymax |x —X[[12V log{m () }| + Py (n + 1) max | x —X[]
A xeH xeH

xeH,Ae

+ P, d(n+1). (22)

We can use the fact that maxyey [|[X — X|| < [X* — X|| + C*n~"/? to bound the terms in this
expression.

We now directly consider the iteration complexity of ScaLE. We note that the appropriate
killing rate to ensure mixing in time O(1) involves slowing down by the time factor given
in expression (19) and is therefore just n~7\. Assuming that n < 1, and using the bound on
|¢~> 4 (X) — C| for the hypercube centred on x*, we have that, while we remain within the hypercube,

1

n

A=O(Pyn' 312 Pyn' =12 4V log{m (%) }]. (23)

Here the assumption has been made that at stationarity x* will be a draw from the support
of the posterior, so that, under the assumption of posterior contraction at the n~"/?-rate, then
Ix* —=X|| =0 ,,(n_”/ 2). This discussion is summarized in the following result.

Theorem 3. Suppose that assumptions (18) and (20) hold, posterior contraction occurs at
rate n="/% for n< 1, P, is O(1) and |V log{n(X)}| = O(n") for some . >0. Then the iterative
complexity of ScaLE is O(n™) where

w:=max(1—n/2,.)+1—-3n/2.

In particular, where t < 1 —1/2, w =2 —2n. If n=1, then it follows that o =0 and the iterative
complexity of ScaLE is O(1).

This result also illuminates the role that is played by |V log{7(X)}| in the efficiency of the
algorithm. In the following discussion it is assumed that = 1. It is worth noting that although a
completely arbitrary starting value for X might make |V log{x(X)}| an O(n) quantity leading to
aniterative complexity of the algorithm which is O(rn!/?), to obtain O(1) it is simply required that
|V log{m(X)}| be O(n'/?) which gives considerable leeway for any initial explorative algorithm
to find a good value for X.

Note that, given bounds on the third derivatives, equation (23) can be improved by linear-
izing the divergence term in expression (16). This idea is exploited later in a logistic regression
example (see Sections 7.2, 7.3 and 7.4).

In the absence of a global bound on the second derivatives, it is possible to replace P, in the
above arguments by any constant that bounds the second derivatives for all x such that [[x —X|| <
maxyeyy ||X —X||. In this case, the most extreme rate at which X can grow is logarithmically with n,
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for instance for light-tailed models where the data really come from the model being used. Where
the tails are misspecified and light-tailed models are being used, the algorithmic complexity can
be considerably worse. There is considerable scope for more detailed analyses of these issues in
future work.

The above arguments give insight into the influence of our choice of X. It affects the bound on
), and hence the computational efficiency of ScaLE, through the terms ||x* —X||. Furthermore
the main term in the order of A is the square of this distance. If X is the posterior mean, then
the square of this distance will, on average, be the posterior variance. By comparison, if X is k
posterior standard deviations away from the posterior mean, then on average the square distance
will be k2 4 a times the posterior variance (for some constant a), and the computational cost of
ScaLE will be increased by a factor of roughly k2 +a.

5.1.  Overall complexity

Here we shall briefly discuss the overall complexity of ScaLE. The general set-up of theorem
3 describes the iteration complexity of ScaLE on the assumption that |V log{n(X)}| grows no
worse than O(n"). However, there is a substantial initial computational cost in locating X and
calculating Vlog{7(X)} which is likely to be O(n) as there are n terms in the calculation of the
latter. Therefore the overall complexity of ScaLE can be described as

C =Cinit +Citer =0(n) + O(nwt)

where ¢ represents algorithm time. This is in contrast with an MCMC algorithm for which the
iteration cost would be O(n), leading to overall complexity . A Laplace approximation will
involve an initial cost that is (at very least) O(n) but no further computation.

Since they both involve full likelihood calculations, finding the posterior mode and finding
X are both likely to be O(n) calculations. This can be shown to be so for strongly log-concave
posterior densities (Nesterov, 2013), though the cost may be higher if the log-posterior is not
concave. However, the above discussion shows that to achieve O(1) scaling with data we typically
only need to find £ within O(n~!/?) of the posterior model. Thus finding % is certainly no more
difficult than finding the posterior mode, as we can use the same mode finding algorithm, e.g.
Bottou (2010), Nesterov (2013) and Jin ez al. (2018), but have the option of stopping earlier.

If n is sufficiently large that the cost of initialization dominates the iteration cost, ScaLLE will
computationally be no more expensive to implement than the Laplace approximation. In this
case we obtain an exact approximate algorithm (ScaLE) for at most the computational com-
plexity of an approximate method (Laplace). These complexity considerations are summarized
in Table 4.

Table 4. Complexity of algorithms for big datat

Algorithm Cinit  Citer C
MCMC 0 tn mn
Laplace approximation n 0 n
ScaLE n m”  n+m”
ScalLE when n=1 n t n+t

+This is split into the complexity of initiation, Cjyjt,
and the cost of the iterative algorithm, Cji.,. Here n
denotes sample size, r denotes algorithm time, and w
and 7 are as given in theorem 3.
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6. Theoretical properties

SMC algorithms in both discrete and continuous time have been studied extensively in the liter-
ature (for related theory for approximating a fixed point distribution, including for algorithms
with resampling implemented in continuous time, see Del Moral and Miclo (2000, 2003) and
Rousset (2006); a discrete time algorithm to approximate a fixed point distribution in a different
context was considered by Whiteley and Kantas (2017)). To avoid a lengthy technical diversion,
we restrict ourselves here to studying a slightly simplified version of the problem to obtain the
simplest and most interpretable possible form of results. The technical details of this construc-
tion are deferred to Appendix H and we give here only a qualitative description that is intend-
ed to guide intuition and the key result: that the resulting estimator satisfies a Gaussian central
limit theorem with the usual Monte Carlo rate.

Consider a variant of the algorithm in which (multinomial) resampling occurs at times kh for
k € N where £ is a time step resolution that is specified in advance and consider the behaviour
of estimates that are obtained at these times. Extension to resampling at a random subset of
these resampling times would be possible by using the approach of Del Moral et al. (2012),
considering precisely the QSMC algorithm that was presented in algorithm 2 and ScaLE in
algorithm 3 would require additional technical work that is somewhat beyond the scope of this
paper; no substantial difference in behaviour was observed.

To employ standard results for SMC algorithms it is convenient to consider a discrete time
embedding of the algorithms described. We consider an abstract formalism in which between
the specified resampling times the trajectory of the Brownian motion is sampled, together with
such auxiliary random variables as are required in any particular variant of the algorithm.
Provided that the potential function that is employed to weight each particle before resampling
has conditional expectation (given the path) proportional to the exact killing rate integrated
over these discrete time intervals a valid version of ScaLE is recovered.

This discrete time formalism enables results on more standard SMC algorithms to be
applied directly to ScaLE. We provide in the following proposition a straightforward corollary
to a result in chapter 9 of Del Moral (2004), which demonstrates that estimates that are obtained
from a single algorithmic time slice of the ScaLE satisfy a central limit theorem.

Proposition 2 (central limit theorem). In the context described, under mild regularity condi-
tions (see references given in Appendix H),

. 1 XN , .
im V(2 60~ By (o301 ) > 01012
N—oo N 4
where ¢: R — R, Z is a standard normal random variable, ‘=’ denotes convergence in distribu-
tion and o4 () depends on the precise choice of subsampling scheme as well as the test function
of interest and is specified in Appendix H along with the law K}, .

7. Examples

In this section we present five example applications of the methodology that is developed in this
paper, each highlighting a different aspect of ScalLE and contrasted with appropriate competing
algorithms. In particular, in Section 7.1 we consider a simple pedagogical example which has
a skewed target distribution, contrasted with MCMC sampling; Section 7.2 considers the per-
formance of a logistic regression model in which significantly less information is available from
the data about one of the covariates than the others; in Section 7.3 we apply both ScaLE and
the stochastic gradient Langevin diffusion algorithm SGLD to a regression problem based on
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the American Statistical Association’s data expo airline on-time performance data, which are of
moderately large size (of the order of 10%); Section 7.4 considers ScaLLE applied to a very large

logistic regression problem, with a data set of size n = 234210102, along with consideration of
scalability with respect to data size; finally, in Section 7.5, parameter inference for a contami-

nated regression example is given, motivated by a big data application with n = 227 ~ 1031,
and illustrating the potential of an approximate implementation of ScaLE even when
misinitialized.

All simulations were conducted in R on an Xeon X5660 central processor unit running at
2.8 GHz. For the purposes of presenting the ScaLE methodology as cleanly as possible, in
each example no prior has been specified. In practice, a prior can be simply included within the
methodology as described in Section 4.

7.1. Skewed target distribution
To illustrate ScaLE applied to a simple non-Gaussian target distribution, we constructed a small
data set of size n =10, to which we applied a logistic regression model

yi= { 1 with probability exp(x; 3)/{1 +exp(x] 3)}, 4)
' 0 otherwise.

The data were chosen to induce a skewed target, with yT =(1,1,0,...,0) and xiT =(1,(=1/i).

We used the glm R package to obtain the maximum likelihood estimate (3* ~ (—1.5598,
—1.3971)) and observed Fisher information, to (mis)initialize the particles in Scal.E. In total
N =219 particles were used, along with a subsampling mechanism of size 2 and a control variate
computed asin Section 4.2 by setting X = 3*. For comparison we ran a random-walk Metropolis
algorithm on the same example initialized at 8* by using the MCMClogit function provided
by MCMCpack (Martin et al., 2011), computed the posterior marginals based on 1 million
iterations thinned to 100000 and after discarding a burn-in of 10000 iterations, and overlaid
them together those estimated by ScaLLE in Fig. 1. These are accompanied by the glm fit used
to misinitialize ScaLE.

It is clear from Fig. 1 that the posterior that was obtained by simulating ScalLE matches that
of MCMC sampling, and both identify the skew which would be overlooked by a simple normal
approximation. The particle set in ScaLE quickly recovers from its misinitialization, and only
a modest burn-in period is required. In practice, we would of course not advocate using ScaLE
for such a small data setting—the computational and implementational complexity of ScaLE
does not compete with MCMC sampling in this example. However, as indicated in Section 5
and the subsequent examples, ScaL.E is robust to increasing data size whereas simple MCMC
sampling will scale at best linearly.

7.2. Heterogeneous logistic regression

For this example a synthetic data set of size n =107 was produced from the logistic regression
model (24). Each record contained three covariates, in addition to an intercept. The covari-
ates were simulated independently from a three-dimensional normal distribution with identity
covariance truncated to [—0.001,0.001] x [—1, 1] x [-1, 1], and with the true 5= (0,2, —2,2)
(where the first co-ordinate corresponds to the intercept). The specification of this data set is
such that significantly less information is available from the data about the second covariate than
about the others. Data were then generated from model (24) by using the simulated covariates.
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Fig. 1. (a), (b) Trace trajectories of ScaLE applied to the skewed target distribution example of Section 7.1

( , parameter values fitted using the glm R package; — — —, 95% confidence intervals imputed by using
the covariance matrix estimated from the glm package) and (c), (d) marginal densities obtained by ScaLE
(— ——) (overlaid are the normal approximation from the glm R package (— — —), and from the MCMC run

( )): (a), (c) B4; (b), (d) B2

As before, the glm R package was used to obtain the MLE and observed Fisher information,
which was used within ScaLE to set 5* =X~ (2.3581 x 1074,2.3407, —2.0009, 1.9995) and A ~
diag(7.6238 x 1074,1.3202,1.5137 x 1073, 1.5138 x 10~3) respectively. For the control variate
Vlog{m(x)} 2 (2.0287 x 1072,2.2681 x 102, —2.3809 x 10~°, —2.3808 x 10~®) was calculated
by using the full data set and as expected (and required for computational considerations) is
extremely small, along with Alog{m(x)}.

ScaLE was then applied to this example, using N =210 particles initialized by using a normal
approximation given by the computed X and A, and a subsampling mechanism of size 2. The
simulation was run for 20 h, in which time 84935484 individual records of the data set were
accessed (equivalent to roughly 8.5 full data evaluations). Trace plots for the simulation can be
found in Fig. 2, along with posterior marginals given by the output (after discarding as burn-in
a tenth of the simulation). The posterior marginals are overlaid with the normal approximation
given by the R glm fit.
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The estimated means and standard deviations for the regression parameters were X ~
(—2.3194 x 1074,2.3197, — 2.0009,1.9995) and oy 2 (7.6703 x 1074,1.3296,1.6386 x 1074,
1.6217 x 10~%) respectively. This is in contrast with 3* and standard deviations of approxi-
mately (7.6238 x 1074, 1.3203,1.6237 x 107#,1.6233 x 10~#) from the g1lm output.

To assess the quality of the output we adopted a standard method for estimating the ESS
for a single parameter. In particular, we first estimated a marginal ESS associated with the
particles from ScaL.E at a single time point, with this defined as the average of the ratio of the
variance of the estimator of the parameter by using these particles to the posterior variance of
the parameter (Carpenter et al., 1999). To calculate the overall ESS, the dependence of these
estimators over time is accounted for by modelling this dependence as an AR(1) process. Full
details of this approach are given in Appendix I. The resulting average ESS per parameter by
using this approach was found to be 352.

The ScaLE output is highly stable and demonstrates that, despite the heterogeneity in the
information for different parameters, the Bernstein—von Mises limit (Laplace approximation)
proves here to be an excellent fit. Although the generalized linear model fit is therefore ex-
cellent in this case, ScaLE can be effectively used to verify this. This is in contrast with the
example in Section 7.1 where ScaLE demonstrates that the generalized linear model-Laplace
approximation is a poor approximation of the posterior distribution.

7.3. Airline data set

To demonstrate our methodology applied to a real (and moderately large) data set we consider
the ‘Airline on-time performance’ data set which was used for the 2009 American Statistical Asso-
ciation data expo and can be obtained from http://stat-computing.org/dataexpo/
2009 /. The ‘airline’ data set consists in its entirety of a record of all flight arrival and departure
details for all commercial flights within the USA from October 1987 to April 2008. In total the
data set comprises 123534969 such flights together with 29 covariates.

For the purposes of this example we selected a number of covariates to investigate what effect
(if any) they may have on whether a flight is delayed. The Federal Aviation Administration
considers an arriving flight to be late if it arrives more than 15 min later than its scheduled
arrival time. As such we take the flight arrival delay as our observed data (given by ArrDelay in
the Airline data) and treat it as binary, taking a value of 1 for any flight delayed in excess of the
Federal Aviation Administration definition.

In addition to an intercept, we determine three further covariates which may reasonably affect
flight arrival: a weekend covariate, which we obtain by treating DayOfWeek as binary, taking
a value of 1 if the flight operated on a Saturday or Sunday, a night flight covariate, which we
obtain by taking DepTime (departure time) and treating it as binary, taking a value of 1 if the
departure is between 8 p.m. and 5 a.m., and flight distance, which we obtain by taking Distance
and normalizing by subtracting the minimum distance and dividing by the range.

The resulting data set that was obtained by the above process contained some missing en-
tries, and so all such flights were omitted from the data set (in total 2786730 rows), leaving
n=120748238 rows. We performed logistic regression taking the flight arrival delay variable as
the response and treating all other variables as covariates.

To allow computation of X and A as required by ScaLE the data were first divided into 13
subsets each of size 9288326 and the MLE and observed information matrix for each were
obtained by using the R glm package. The airline data set is highly structured, and so for
robustness the order of the flight records was first permuted before applying glm to the data
subsets. An estimate for the MLE and observed information matrix for the full data set was
obtained by simply taking the mean for each coefficient of the subset MLE fits, and summing
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the subset information matrices. The centring point X~ (—1.5609, —0.1698,0.2823,0.9865) was
chosen to be the computed MLE fit, and for simplicity A~! was chosen to be the square root
of the diagonal of the computed information matrix (A ~ diag(2.309470 x 10~%,4.632830 x
1074, 6.484359 x 1074, 1.2231 x 1072)). As before, and as detailed in Section 4.2, we use the
full data set to compute V log{m(X)} ~ (0.00249,0.0018,0.0021, 0.0029) (which again is small as
suggested by the theory, and required for efficient implementation of ScaLE) and A log{m(X)} ~
—3.999.

ScaLE was initialized by using the normal approximation that is available from the glm
fit. In total N =2'? particles were used in the simulation, and for computing the unbiased
estimator ¢ 4 (x) we used a subsample of size 2. The algorithm was executed so that »n individual
records of the data set were accessed (i.e. a single access to the full data set), which took 36 h of
computational time. The first tenth of the simulation trajectories were discarded as burn-in and
the remainder used to estimate the posterior density. The trace plots and posterior densities for
each marginal for the simulation can be found in Fig. 3.

For comparison, we also ran SGLD (Welling and Teh, 2011). This algorithm approximately
simulates from a Langevin diffusion which has the posterior distribution as its stationary dis-
tribution. The approximation comes from both simulating an Euler discretized version of the
Langevin diffusion and from approximating gradients of the log-posterior at each iteration. The
approximation error can be controlled by tuning the step size of the Euler discretization—with
smaller step sizes meaning less approximation but slower mixing. We implemented SGLD by
using a decreasing step size, as recommended by the theoretical results of Teh er al. (2016)
and used pilot runs to choose the smallest scale for the step size schedule which still led to a
well mixing algorithm. As such, the preprocessing expenditure matched that of ScaLE. The
accuracy of the estimate of the gradient is also crucial to the performance of SGLD (Dalalyan
and Karagulyan, 2019), and we employed an estimator that used control variates (similar to
that developed in ScaLE) and a mini-batch size of 1000, following the guidance of Baker ef al.
(2019), Nagapetyan et al. (2017) and Brosse et al. (2018). For comparable results we ensured
that SGLD had the same number of log-likelihood evaluations as ScaLE (i.e. equivalent to one
single access to the full data set) and initiated SGLD from the centring value that was used
for the control variates. In total the SGLD simulation took 4 h to execute. The first tenth was
discarded as burn-in and the remainder was used to estimate the marginal posteriors, which are
overlaid with those estimated by ScaLE in Fig. 3.

As can be seen in Fig. 3, SGLD estimates seem to be unstable here, with the algorithm
struggling to mix effectively under the decreasing step size constraint, particularly for the fourth
covariate. Indeed, the marginal posteriors should be convex and SGLD deviates strongly from
this. This unstable behaviour was confirmed in replicate SGLD runs, and indeed it would be
difficult to separate out bias from Monte Carlo error for SGLD without much longer runs. This
is in contrast with ScaLE which produces far more stable output in this example.

7.4. Large data scenario

In this subsection we consider an application of ScaLE to a five-dimensional logistic regression
model, considering data sets of up to size n =23*~ 10102, Logistic regression is a model that is
frequently employed within big data settings (Scott et al., 2016), and here the scalability of ScaLE
is illustrated for this canonical model. In this example, we generate a data set of size 23* from
model (24) by first constructing a design matrix in which the ith entry x; :==(1,¢ 1, .., Q,4)T,
where (1.1, ..., (y.4 are independent and identically distributed truncated normal random vari-
ables with support [—1, 1]. In the big data setting it is natural to assume such control on the
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extreme entries of the design matrix, either through construction or physical limitation. On sim-
ulating the design matrix, binary observations are obtained by simulation using the parameters
B=(1,1, —1,2, —2)T. Because of the extreme size of the data we realized observations only as
they were required to avoid storing the entire data set; see the code provided for implementation
details.

First considering the data set of size n =234, then following the approach that was outlined
in Section 7.3, X and A were chosen by breaking the data into a large number of subsets,
fitting the R g1lm package to each subset, then appropriately pooling the fitted MLE and ob-
served Fisher information matrices. In total the full data set was broken into 2!3 subsets of size
221 and the glm fitting and pooling were conducted entirely in parallel on a network of 100
cores. Consequently, X = 3* ~ (0.9999943,0.9999501, —0.9999813, 1.999987, — 1.999982) and
A~ diag(1.9710 x 1073, 3.6921 x 1073,3.6910 x 1073, 3.8339 x 1073, 3.8311 x 10~3). On com-
puting X an additional pass of the 2!3 subsets of the data of size 22! was conducted in parallel
to compute Vlog{n(X)}~ (—0.0735, — 0.0408,0.0428, — 0.09495,0.0987) and Alog{n(X)}~
—5.006 for construction of the control variate. Fully utilizing the 100 cores that were available
the full suite of preprocessing steps required for executing ScaLE (i.e. the computation of both
the g1lm fit and control variate) took 27 h of wall clock time.

ScaLE was applied to this example by using N = 2!0 particles initialized by using a normal
approximation given by the available glm fit, and a subsampling mechanism of size 2. The
simulation was run for 70 h, in which time 49665450 individual records of the data set were
accessed (equivalent to roughly 0.0029 full data evaluations). Trace plots for the simulation can
be found in Fig. 4. The first tenth of the simulation trajectories was discarded as burn-in and the
remainder used to estimate the posterior density of each marginal. These can also be found in
Fig. 4, together with the normal approximation to the posterior marginals given by the R glm
fit, which is again very accurate here, agreeing closely with the ScaLE output. Using the ESS
approach that was described in Section 7.2 and Appendix I, the average ESS per parameter was
found to be 553.

To investigate scaling with data size for this example, we considered the same model using
the same process as outlined above with data sets varying in size by a factor of 2 from n = 22!
to n =233, Computing explicitly the dominating intensity ):,,, k over the support of the density
the relative cost of ScaLE for each data set with respect to the data set of size n =23* can be
inferred. This is shown in Fig. 5.

7.5. Contaminated mixture

In this subsection we consider parameter inference for a contaminated mixture model. This
is motivated by big data sets obtained from Internet applications, in which the large data sets
are readily available, but the data are of low quality and corrupted with noisy observations. In
particular, in our example each datum comprises two features and a model is fitted in which the
likelihood of an individual observation (y;) is

1-— 1 1

e i e e e
In this model p represents the level of corruption and ¢ the variance of the corruption. A
common approach uses MCMC sampling with data augmentation (Tanner and Wong, 1987).
However, for large data sets this is not feasible as the dimensionality of the auxiliary variable
vector will be O(n). For convenience a transformation of the likelihood was made so that each
transformed parameter is on R. The details have been omitted, and the results that are presented
are given under the original parameterization.
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Fig. 5. Comparison of the bounding intensities and comparative cost for executing ScalLE for increasing
data set sizes in the large data example of Section 7.4

A data set of size n =2%7~ 108! was generated from the model with parameters . =[a, §, 0,
¢, p1=[2,5,1,10,0.05]. To illustrate a natural future direction for the ScaLE methodology, in
this example we instead implemented an approximate version of ScaLLE (as opposed to the exact
version that was illustrated in the other examples of Section 7). In particular, the primary imple-
mentational and computational bottleneck in ScaLE is the formal ‘localization procedure’ to
obtain almost sure bounds on the killing rate by constraining Brownian motion to a hypercube
(as fully detailed in Section 3.2 and Appendix C). Removing the localization procedure results in
the Brownian motion trajectories being unconstrained, and the resulting dominating intensity
X being infinite. However, in practice the probability of such an excursion by Brownian motion
outside a suitably chosen hypercube can be made vanishingly small (along with the consequent
effect on the Monte Carlo output) by simply adjusting the temporal resolution at which the
ergodic average is obtained from the algorithm (noting that Brownian motion scaling is O(4/1),
and inflating the bounds on the Hessian for computing the intensity. The resulting ‘approxi-
mate’ algorithm is approximate in a different (more controllable and monitorable) sense than
for instance SGLD, but results in substantial (10-50 times) computational speed-ups over the
available (but expensive) ‘exact’ ScaLE.

In contrast with the other examples of Section 7, rather than fitting an approximate model to
initialize the algorithm, instead in this example a single point mass to initialize the algorithm
was chosen (1 =[2.00045, 5.00025,0.999875, 10.005 0.0499675]), and this was also used as the
point to compute our control variate (described in Section 4.2). The preprocessing for executing
ScaLE took approximately 6 h o f computational time (and is broadly indicative of the length
of time that a single iteration of an alternative MCMC scheme such as the Metropolis adjusted
Langevin algorithm would require). As discussed in Section 5, this ‘misinitialization” impacts
the efficiency of the algorithm by a constant factor but is, however, representative of what
one in practice may conceivably be able to do (i.e. find by means of an optimization scheme a
point within the support of the target posterior close to some mode and conduct a single O(n)
calculation). The forgetting of this 1nitialization is shown in Fig. 6.

Applying ScaLE for this application we used a particle set of size N =2'! and ran the
algorithm for a diffusion time of 7'= 200, with observations of each trajectory at a resolution
of t; — t;_1 = 0.1. Again, the choice of N was made as in Section 7.4 as it provided the required

stability. The choice of T was made as it corresponded approximately to a computational
budget of 1 week.
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Each particle trajectory at each time ¢ € [0, T] was associated with a sub-sample of the full
data set of size 32, rather than 2, with the resulting likelihood estimates combined by simple
averaging. This size was chosen as it provided balance with other components of the algorithm
but allowed stabilization of the importance weights which was beneficial for the approximate
algorithm. In total the entire run required accessing 500 million individual data points, which
correspond to approximately four full evaluations of the data set.

An example of a typical run can be found in Fig. 6. A burn-in period of 100 was chosen,
and alongside the trace plots in Fig. 6 an estimate of the marginal density of the parameters is
provided by using the occupation measure of the trajectories in the interval r € [100, 200].

To assess the quality of the simulation, the same batch mean method is employed to estimate
the marginal ESS for the run post burn-in as detailed in Section 7.4. The mean ESS per dimension
for this run was around 930. An analysis of the Metropolis adjusted Langevin algorithm (for

a necessarily much smaller run, indicated that it is possible to achieve an ESS of around 773,

where T corresponds to the run length subsequent to burn-in. As indicated above, and neglecting
burn-in, this would mean an achievable ESS for a comparable computational budget for the

Metropolis adjusted Langevin algorithm would be around 10-15.

8. Conclusions

In this paper we have introduced a new class of QSMC methods which are genuinely continu-
ous time algorithms for simulating from complex target distributions. We have emphasized its
particular effectiveness in the context of big data by developing novel subsampling approaches
and the scalable Langevin exact algorithm ScaLE. Unlike its immediate competitors, our sub-
sampling approach within ScaLE is essentially computationally free and does not result in any
approximation to the target distribution. Our methodology is embedded within an SMC frame-
work, supported by underpinning theoretical results. In addition, examples to which ScaLE is
applied demonstrate its robust scaling properties for large data sets.

We show through theory and examples that the computational cost of ScaLE is more stable
to data set size than gold standard MCMC approaches. Moreover we have seen it substantially
outperform other approaches such as SGLD which are designed to be robust to data size at the
cost of bias and serial correlation. ScalLE can both confirm that simpler approaches such as
Laplace approximation are accurate and identify when such approximations are poor (as we see
in the examples). We see this as a first step in a fruitful new direction for computational statistics.
Many ideas for variations and extensions to our implementation exist and will stimulate further
investigation.

Firstly, the need to simulate a quasi-stationary distribution creates particular challenges.
Although quasi-stationarity is underpinned by an elegant mathematical theory, the develop-
ment of numerical methods for quasi-stationarity is understudied. We have presented an SMC
methodology for this problem, but alternatives exist. For instance, Blanchet, ez al. (2016) have
suggested alternative approaches.

Even within an SMC framework for extracting the quasi-stationary distribution, there are in-
teresting alternatives that we have not explored. For example, by a modification of our reweight-
ing mechanism it is possible to relate the target distribution of interest to the limiting smoothing
distribution of the process, as opposed to the filtering distribution as we do here. Within the
quasi-stationary literature this is often termed the type II quasi-stationary distribution. As such,
the rich SMC literature offers many other variations on the procedures that were adopted here.

Using SMC methods benefits from the rich theory that they have. However, the use of QSMC
methods actually demands new questions of SMC methods. Theorem 1 gives convergence as
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T — oo, whereas proposition 2 gives a precise description of the limit as the number of particles
N increases. Theoretical and practical questions are associated with letting both N and T tend
to oo together. Within the examples in this paper ad hoc rules are used to assign computational
effort to certain values of N and 7. However, the general question of how to choose these
parameters seems completely open.

Throughout the paper, we have concentrated on so-called exact approximate QSMC
methods. Of course in many cases good approximations are sufficiently good and frequently
computationally less demanding. However, for many approximate methods it will be difficult
to quantify the systematic error being created by the approximation. Moreover, we emphasize
that there are different strategies for creating effective approximations that emanate directly
from exact approximate methods, and where the approximation error can be well understood.
We have given an example of this in section 7.5 but other options are possible also.

There are interesting options for parallel implementation of SMC algorithms in conjunction
with ScaLE. For instance an appealing option would be to implement the island particle filter
(Del Moral et al., 2016) which could have substantial effects on the efficiency of our algorithms
where large numbers of particles are required. Alternatively one could attempt to embed our
scheme in other divide-and-conquer schemes as described in Section 1.

The approach in this paper has concentrated solely on killed (or reweighted) Brownian motion,
and this strategy has been demonstrated to have robust convergence properties. However, given
existing methodology for the exact simulation of diffusions in Beskos and Roberts (2005), Beskos
et al. (2006, 2008), Pollock (2013, 2015) and Pollock et al. (2016), there is scope to develop
methods which use proposal measures which much better mimic the shape of the posterior
distribution.

The subsampling and control variate approaches that were developed here offer dramatic
computational savings for tall data as we see from the examples and from the theory of results
like theorem 3. We have not presented ScaLLE as a method for high dimensional inference, and
the problem of large n and d will inevitably lead to additional challenges. However, there may be
scope to extend the ideas of ScaLE still further in this direction. For instance, it might be possible
to subsample dimensions and thus to reduce the dimensional complexity for implementing each
iteration.

We conclude by noting that, as a by-product, the theory behind our methodology offers new
insights into problems concerning the existence of quasi-stationary distributions for diffusions
killed according to a state-dependent hazard rate, complementing and extending current state
of the art literature (Steinsaltz and Evans, 2007).
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Appendix A: Proof of theorem 1

Here we present a proof of theorem 1. However, we first formally state the required regularity conditions.
We suppose that
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m(x) is bounded, (26)

and, defining v(x) =72(x), we further assume that, for some v >0,

2
liminf{ Av) AVl }>0, 7

X—00 ]/’Y*l/z(x) - y“/+3/2(x)

where A represents the Laplacian.

Proof. Consider the diffusion with generator given by
A f(x) = 3 A f(x) + 3 Vlog{v(x)}V f(x).

As v is bounded, we assume without loss of generality that its upper bound is 1. Our proof will proceed
by checking the conditions of corollary 6 of Fort and Roberts (2005), which establishes the result. In
particular, we need to check that the following conditions are satisfied.

Condition 3. For all 6 >0, the discrete time chain {X,s,n=0, 1,2, ...} is irreducible.
Condition 4. All closed bounded sets are petite.

Condition 5. We can find a drift function V(x) =v(x)", for some 7 > 0, that satisfies the condition
AV (x) < —¢, V(X)"™ (28)

for x outside some bounded set, for each 7 € [c, 1] with associated positive constant c,, and where
a=1-Q2y)~".
Condition 3 holds for any regular diffusion since the diffusion has positive continuous transition

densities over time intervals # > 0; and positivity and continuity of the density also imply condition 4. For
the final condition we require that

. AV (x)
ln SUP e ) @)
Now by direct calculation
7 _ m —n-2 2
AV (x) = TV(X) VeI —vx)Avx)}, (30)
so that
AVI(X) _ pyr(x) >
= VeI —vx)Avx)}. (€2

V(x)r—a 2

Therefore inequality (29) will hold whenever inequality (27) is true since we have the constraint that n < 1
and || Vv (x)||? is clearly non-negative. As such the result holds as required. O

Note that the condition in inequality (27) is essentially a condition on the tail of v. This will hold even
for heavy-tailed distributions, and we show that this is so for a class of one-dimensional target densities in
Appendix B.

Appendix B: Polynomial tails

In this appendix we examine condition (27) which we use within theorem 1. This is essentially a condition
on the tail of v, and so we examine the critical case in which the tails of v are heavy. More precisely, we
demonstrate for polynomial tailed densities in one dimension that condition (27) essentially amounts to
requiring that /2 is integrable. Recall that by construction v/ will be integrable as we have chosen v!/2 =7,

For simplicity, suppose that v is a density on [1, 00) such that v(x) =x~ 7. In this case we can easily
compute that, for p>1,
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Vu(x)=—px 771,
Av(x)=p(p+Dx "7

from which we can easily compute the quantity whose limit is taken in inequality (27) as

PO p(p+1) —p*}.
As such, we have that condition (27) holds if and only if
p+1—vp>0 (32)

and

p(y—1H—-2>0. (33)

Now we shall demonstrate that we can find such ~ for all p > 2. For instance, suppose that p=2-+¢. The
case € > 2 can be handled by just setting v =1, so suppose otherwise and set v = % —¢/4. In this case,
inequality (33) just gives €/2 — €2/4 > 0. Moreover expression (32) becomes 3¢/2 + €2 > 0, completing our
argument.

Appendix C: Simulation of a path space layer and intermediate points

In this appendix we present the methodology and algorithms that are required for simulating an individual
proposal trajectory of (layered) killed multivariate Brownian motion, which is what is required in Section
3. Our exposition is as follows. In Appendix C.1 we present the work of Devroye (2009), in which a
highly efficient rejection sampler was developed (based on the earlier work of Burq and Jones (2008)) for
simulating the first-passage time for univariate standard Brownian motion for a given symmetric boundary,
extending it to consider the case of the univariate first-passage times of d-dimensional standard Brownian
motion with non-symmetric boundaries. This construction enables us to determine an interval (given by
the first, first-passage time) and layer (a hypercube inscribed by the user-specified univariate boundaries)
in which the sample path is almost surely constrained, and by application of the strong Markov property
can be applied iteratively to find, for any interval of time, a layer (a concatenation of hypercubes) which
almost surely constrains the sample path. In Appendix C.2 we present a rejection sampler enabling the
simulation of constrained univariate standard Brownian motion as developed in Appendix C.1, at any
desired intermediate point. As motivated in Section 3 these intermediate points may be at some random
time (corresponding to a proposed killing point of the proposed sample path), or a deterministic time (in
which the sample path is extracted for inclusion within the desired Monte Carlo estimator of QSMC (7)).
Finally, in Appendix C.3 we present the full methodology that is required in Sections 3 and 4 in which
we simulate multivariate Brownian motion at any desired time marginal, with d-dimensional hypercubes
inscribing intervals of the state space in which the sample path almost surely lies.

C.1. Simulating the first-passage times of univariate and multivariate standard Brownian
motion

To begin with we restrict our attention to the (ith) dimension of multivariate standard Brownian motion
initialized at 0, and the first-passage time of the level 8 (which is specified by the user). In particular we
denote

7@ :=inf{r e R4+: WP — WS | >0} (34)

Recalling the self-similarity properties of Brownian motion (Karatzas and Shreve (1991), section 2.9), we
can further restrict our attention to the simulation of the first-passage time of univariate Brownian motion
of the level 1, noting that 7@ =P (§9)?7 where

7:=inf{r e R+:|W, — Wy| > 1}, (35)
noting that, at this level,

PW,=Wo+1)=PW,=W,—1)=1. (36)
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Denoting by f- the density of 7 (which cannot be evaluated pointwise), the approach that was outlined
in Devroye (2009) for drawing random samples from f- is a series sampler. In particular, an accessible
dominating density of f- is found (denoted g-) from which exact proposals can be made; then upper and
lower monotonically convergent bounding functions are constructed (lim,,_, o, fT . — frandlim, RN

f7 such that for any € R, and e >0 3n*(z, €) such that Va >n*(z, ¢) we have fin (t)— £+, (1) <e), and then
evaluated to sufficient precision such that acceptance or rejection can be made while retaining exactness.
A minor complication arises in that no known, tractable dominating density is uniformly efficient on
R, and furthermore no single representation of the bounding function converges monotonically to the
target density pointwise on R,. As such, the strategy that was deployed by Devroye (2009) is to exploit
a dual representation of f- given by Ciesielski and Taylor (1962) to construct a hybrid series sampler,
using one representation of f: for the construction of a series sampler on the interval (0, #;] and the other
representation for the interval [z, 00) (fortunately we have #; > ,, and so we have freedom to choose a
threshold t* € [1,, ;] in which to splice the series samplers). In particular, as shown in Ciesielski and Taylor
(1962) f-(t) =7, (—D¥ar (r) where the elements of the two expansions are given by

2\ ¥? 1 2 1\?2
(E) (k-l—i)exp{—;(k—ki) }, (37a)
1 1 1\?2
(k+§> exp{—§<k+§> ﬂzt}, (37b)

and so by consequence upper and lower bounding sequences can be constructed by simply taking either

representation and truncating the infinite sum to have an odd or even number of terms respectively (and
thresholding to between 0 and the proposal g, introduced below). More precisely,

ar(t) =

:L — 2n+1 Lk
f2.@): rkZ_%( Dfar(@® |

- * (38)
f;,n(l‘) = {TF I;O(—l)kak(l)} Agz(t).

As shown in lemma 1 of Devroye (2009), the bounding sequences based on the representation of f-(f) in
equation (37a) are monotonically converging for ¢ € (0,4/1og(3)], and for equation (37b) monotonically
converging for ¢ € [log(3) /72, 00). After choosing a suitable threshold * € [4/log(3), log(3)/7?] for which
to splice the series samplers, then by simply taking the first term in each representation of f-(f) a dominating
density can be constructed as follows:

2 1 2t
f7(®) < g7 (1) vy eXp(— E)HISI* + g eXP(- %) [ (39)

o o) g (1)

Devroye (2009) empirically optimized the choice of t* =0.64 to minimize the normalizing constant of
expression (39). With this choice M, := [ gf) (ndr~0.422599 (to six decimal places) and M, := [ g( )(ndr~
0.578103 (to six decimal places), and so we have a normalizing constant M = M, + M, =~ 1.000702 (to six
decimal places) which equates to the expected number of proposal random samples drawn from g- before
we would expect an accepted draw (the algorithmic ‘outer loop’). Now considering the iterative algorithmic
‘inner loop’—in which the bounding sequences are evaluated to precision sufficient to determine acceptance
or rejection—as shown in Devroye (2009), the exponential convergence of the sequences ensures that the
number of iterations that are required is uniformly bounded i m expectatlon by 3.

Slmulatlon from gT is possible by either simulating 7 ~ g ) with probablhty MI/M or else or 7~

). Simulating 7' ~ g U can be achieved by noting that, for t ~ gL, t =P * + 8X/7?, where X ~ Exp(l).

Slmulatmg T~g; @ can be achieved by noting that as outlined in Devroye (1986), section 1X.1.2, for  ~ g2,
t=P1*/(14+1*X)?, where

X:=inf{{X;}22, " Exp(1): (X)2 <2Xi /t*, (i — 1)/2€ Z}.



Quasi-stationary Monte Carlo Methods 33

Table 5. Algorithm 4: simulating (r, W), where r:=inf{t € R+ : W) — W, é’)|20(’)}
(Devroye, 2009)

1 Input Wéi) and 9O
2 g7: simulate u ~ U0, 1]:
(a) g< ) ifu < My /M, then simulate X ~ Exp(1) and set 7:=r* +8X /72
(b) g(z) ifu>M;/M, then set X :=inf; {{X el ~IDExp(1): (X;)2 <2Xi4 /1%,
(i— 1)/262} and set 7:=r* /(1 +1*X)?
3 u: simulate u ~ U[0, 1] dnd set n =0
4 le’n: while ugT(T) € (fT (D), fT (7)), setn=n+1
S friifugr(7) < fT-,n (7) accept; otherwise reject and return to step 2
67:set 7= (H(i))zf
7 Wﬁi) : with probability % set Wﬁi) = Wéi) +0D; otherwise set W(’) W(’) 0©
8 Return (1, W)

A summary of the above procedure for simulating jointly the first-passage time and location of the ith
dimension of Brownian motion of the threshold level % is provided in algorithm 4 in Table 5.

Generalizing to the case where we are interested in the first-passage time of Brownian motion of a
non-symmetric barrier, in particular for [, v® e R_,

0 =inf{te R+: W — Wg" ¢ (Wy" —1¥, Wy" +0D)}, (40)

is trivial algorithmically. In particular, using the strong Markov property we can iteratively apply algorithm
4, setting 09 :=min(I”,v?) and simulating intermediate first-passage times of lesser barriers, halting
whenever the desired barrier is attained. We suppress this (desirable) flexibility in the remainder of the
paper to avoid the resulting notational complexity.

C.2. Simulating intermediate points of multivariate standard Brownian motion

conditioned on univariate first-passage times

Clearly in addition to being able to simulate the first-passage times of a single dimension of Brownian mo-
tion, we want to be able to simulate the remainder of the dimensions of Brownian motion at that time, or
indeed the sample path at times other than its first-passage times. As the dimensions of standard Brownian
motion are independent (and so Brownian motion can be composed by considering each dimension sepa-
rately), we can restrict our attention to simulating a single dimension of the sample path for an intermediate
time g € [s, 7] given W, the extremal value W,, and constrained such that, V u €[s, 7], W, € [W, — 6, W, +6].
Furthermore, as we are interested in only the forward simulation of Brownian motion, by application of the
strong Markov property we need to consider only the simulation of a single intermediate point (although
by application of Pollock et al. (2016), section 7, simulation at times conditional on future information is
possible).

To proceed, note that (as outlined in Asmussen et al. (1995), proposition 2) the law of a univariate
Brownian motion sample path in the interval [s, 7] (where s < 7) initialized at (s, W;), and constrained
to attain its extremal value at (7, W), is simply the law of a three-dimensional Bessel bridge. We require
the additional constraint that, V u €[s, 7], W, € [W, — 6, W, + 0], which can be imposed in simulation by
deploying a rejection sampling scheme in which a Bessel bridge sample path is simulated at a single required
point (as above) and accepted if it meets the imposed constraint at either side of the simulated point, and
rejected otherwise.

As presented in Beskos et al. (2006) and Pollock (2013), the law of a Bessel bridge sample path (pa-
rameterized as above) coincides with that of an appropriate time rescaling of three independent Brownian
bridge sample paths of unit length conditioned to start and end at the origin (denoted by {6"};_,). Sup-
posing that we require the realization of a Bessel bridge sample path at some time g €[s, 7—] then by simply
realizing three independent Brownian bridge sample paths at that time marginal ({5{’}_,), we have
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2
W, =W, + (—1)“<Wf<Wv>\/((T —) HM +b§,1>} + B+ (b5,3>)2] ) (41)

(T —5)32

The method by which the proposed Bessel bridge intermediate point is accepted or rejected (recall, to
impose the constraint that, VY u €[s, 7], W, € [W, — 6, W, + 0]) is non-trivial as a closed form representation
of the required probability does not exist (which we shall denote in this appendix by p). Instead, as
shown in theorem 4, a representation for p can be found as the product of two infinite series, which as a
consequence of this form cannot be evaluated directly to make the typical acceptance-rejection comparison
(i.e. determining whether u < p or u > p, where u ~ U[0, 1]). The strategy that we deploy to retain exactness
and to accept with the correct probability p is that of a retrospective Bernoulli sampler (Pollock et al.
(2016), section 6.0). In particular, in corollary 1 we construct monotonically convergent upper and lower
bounding probabilities (p] and p} respectively) with the property that lim, .., p} — p and lim,_.o p} — p
such that for any u €[0, 1] and € >0 3 n*(r) such that Vn >n*(t) we have p] — p! <, which are then
evaluated to sufficient precision to make the acceptance-rejection decision, taking almost surely finite
computational time.

Theorem 4. The probability that a three-dimensional Bessel bridge sample path W ~ WfV, "w,, W)
for s < g < 7 attaining its boundary value at (7, W), remains in the interval [W; — 6, W, + 6], can be rep-
resented by the following product of infinite series (where we denote by m :=1(W, > W,) — 1(W, < W,)),

1= 3% {ogms s We = W, 0) — 0 (s Wy — W, 0) }
1 —exp[—20{m (W, — W,)+0}/(q — )]

P(W,qe[W,—0, W, +0]|W,, W,, W)=

=p1

X {1 + 2 AU Gy Wy = We, 0,m) + X (s Wy — Wr 0,m) }
Jj=1

=p

42)
where

202(2j—1)> 22— 106

a(j;6,0):=2expq — # cosh # , (43)
A A
862 2 406

apA(j;é,@):=2exp<— AJ )cosh(Tj), 44)

. . 40j+méb 40 )
Va8, 0.m) = xa (6.0, —m) 1= =2 exp{ - 0] +m6>}. (45)

Proof. Begin by noting that the strong Markov property enables us to decompose our required proba-
bility as follows:

D:D(‘/V[x,7'] € [Ws - 0, W+ e]lwv; qu WT)
= |]:D(W/[x,q] S [Wv - 0’ Wr + g]lwra Wq) P(W[qﬂ'] S [Wr - 93 Wv +0]|qu WT) . (46)

pP1 P2

Relating the decomposition to the statement of theorem 4, p; follows directly from the
parameteriza-tion given and the representation in Pollock (2013), theorem 6.1.2, of the result in Beskos
et al. (2008), proposition 3. p, similarly follows from the representation found in Pollock et al. (2016),
theorem 5.

Corollary 1. Letting p:=P (W, €[W, —0, W, +6]), monotonically convergent upper and lower bound-
ing probabilities (p] and p} respectively) with the property that lim, .~ p} — p and lim,_, p! — p can
be found (where ng := [ /(7 — q+46%)/407),
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i T T i W= W) + S Pams s We = Wy 0)
ne 1 — exp[—20{m(W,— W,) + 0} /(g — )]

no+n no+n—1
X {1+ 2 Vg G Wy =Webom)+ >° X (s Wq—WT,G,m)}, 4N
Jj=1 Jj=1

. 1 - Z_r;zl gq—,r(j; Wv - an 0) +Z;’-=1 Qﬁq—x(j; Wv - an 0)

pn =
1 — exp[—20{m(W,— W,) + 0} /(g — )]
no+n notn
X {1 + Z T/JT—q(j; Wq - Wn H,m) + Z Xr—q(j; Wq - WTa 0) m)} (48)
j=1 j=1
Furthermore we have
T _ pi
PP i <req., 49)
Pu—17 Pna
and so
Ri=21pl =pil=1pl = pil+ LIl r'=1— <oo. (50)
i=1 i=2 j=2 i=0 -r

Proof. The summations in the first term of the sequences (47) and (48) follow from theorem 4 and
Beskos et al. (2008), proposition 3. The summations in the second term of the sequences (47) and (48), and
the necessary condition on ng, follow from Pollock et al. (2016), corollary 5. The validity of the product
form of sequences (47) and (48) follows from Pollock ez al. (2016), corollary 1. The bound on the ratio of
subsequent bound ranges of p in expression (49) follows from the exponential decay in n of ¢(n), p(n),
1 (n) and x(n) of theorem 4, and, as shown in the proof of Pollock (2013), theorem 6.1.1, and Pollock
(2013), corollary 6.1.3. Expression (50) follows directly from expression (49). O

Having established theorem 4 and corollary 1 we we can now construct a (retrospective) rejection
sampler in which we simulate W, (as per the law of a Bessel bridge) and, by means of an algorithmic loop
in which the bounding sequences of the acceptance probability are evaluated to sufficient precision, we
make the determination of acceptance or rejection. This is summarized in algorithm 5 in Table 6 further
noting that, although the embedded loop is of random length, by corollary 1 we know that it halts in finite
expected time (K can be interpreted as the expected computational cost of the nested loop, noting that
E[iterations] := X2,iP(halt at step i) = X2, P(halt at step i or later) = K).

C.3. Simulation of a single trajectory of constrained Brownian motion

We now have the constituent elements for Section 3, in which we simulate multivariate Brownian motion
at any desired time marginal, with d-dimensional hypercubes inscribing intervals of the state space in
which the sample path almost surely lies (layers, more formally defined in Pollock er al. (2016)). Recall
from Section 3 that the killing times are determined by a random variable whose distribution depends on
the inscribed layers, and so the presentation of algorithm 6 in Table 7 necessitates a loop in which the
determination of whether the stopping time occurs in the interval is required.

We require the user-specified vector 6 to determine the default hypercube inscription size. In practice,
as with other MCMC methods, we might often apply a preconditioning matrix to the state space before
applying the algorithm.

Further note that, because of the strong Markov property, it is user preference whether this algorithm is
run in its entirety for every required time marginal, or whether it resets layer information whenever any one
component breaches its boundary and reinitializes from that time on according to algorithm 6, step 4(b).

Appendix D: Path space rejection sampler for pr

A path space rejection sampler for py can be constructed by drawing from Brownian motion measure,
X ~ W7, accepting with probability P(X) given by
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Table 6. Algorithm 5: simulating Wy ~ W§&sW7|(Ws, W,, ), given g €[s, 7], the end points
(Ws and the extremal value W, ), and constrained such that V u € [s, 7], W,, € [Ws — 0, Ws + 6]

1 {bg)}?:lz simulate
bz(ll),b((f),bé}) 1D N{O, W}

(r—15)2
2 Wy set
O(r — 2
Wy im Wy 4 (= DI (Ve <o) ((T—s) Hﬁﬂ;y)} +(b§2))2+(b(<]3>)2]>

3 u: simulate u ~ U[0,1] and set n =1
4 p.i,pTZ while u ¢[pi,p2], setn=n+1

5 p:ifu < p;; accept; otherwise reject and return to step 1
6 Return (g, W)

Table7. Algorithm 6: simulating constrained Brownian motion at a desired time marginal
W)

1 Input W, and ¢

27:forie{l,...,d}, simulate D, wy )) as per algorithm 4

37:set 7:=inf; {T(’)} set ji={ie{l,...,d}:79 =7}; 1:if required, simulate r as outlined
in Section 3

4t ift &[s, 7],
(a) (1, W;‘)), forie{l,...,d}\ j, simulate (7, Wg)) as per algorithm 5;

(b) (+O, Wﬁj )), simulate (7(), WT(j )) as per algorithm 4;
(c) s, set s:=7, and return to step 3

5, W, )) forie{l,...,d}, simulate (r, W, l)) as per algorithm 5
6 Return (t, Wy)

TiNT X
P(X)_exp{q)T ZL“{(T,M)—T, 1}} Hexp|: / {6(X,) — LY} ds} (51
=P X)€l0,1] =P2)(X)
ngR AT .
=11 ( exp[(® — L{( AT — 721} exp[ / {o(X,) - LY} ds} ) : (52)
= =:P(L)(X)e[0,1] -
=:P20(X)

The algorithmic pseudocode for this approach is thus presented in algorithm 7 in Table 8.

Crucially, determination of acceptance is made using only a path skeleton (as introduced in Pollock ez al.
(2016), a path skeleton is a finite dimensional realization of the sample path, including a /ayer constraining
the sample path, sufficient to recover the sample path at any other finite collection of time points without
error as desired). The path space rejection sampler for u7 outputs the skeleton composed of all intermediate
simulations:

Spars (X) = {Xo. (€. X)Ly RO (53)

which is sufficient to simulate any finite dimensional subset of the remainder of the sample path (denoted
by X™™) as desired without error (as outlined in Pollock ez al. (2016), section 3.1 and Appendix C,
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Table 8. Algorithm 7: path space rejection sampler for p; algorithm

1 Input: X
2 R: simulate layer information R~ R as per Appendix C
3 P with probability 1 — exp[®T — Egl L;é) {(ri ANT) — 1;_1 }] reject and return to step 2
dng:foriinl—ng,
(a) [U(') set j=0, k; =0, 50 :=7,_1 and E(’) NExp(U(’) g?), while ZjE;i) < (AT —Ti_1,
(i) €", set j=j+1and 5(’) 5(’) +E(l)

(i) X - simulate X ) ~MVN{X -0 Ry,

(iif) P%-), with probability 1 — {U;é) qb(XE(,))}/(U(’) Lgé)), reject path and return to step 2,

@) _ (l))

(iv) E(+1’ simulate E( D 1~ Exp(Ux

(b) X7, a7: simulate Xp A7 ~ MVN[X£<_,~) A@AD — f;i)}]l Rg?
j

Table 9. Algorithm 8: killed Brownian motion algorithm

1 Initialize: set i =1, j=0, 79 =0; input initial value X

2 R: simulate layer information Rg? ~ TR as per Appendix C, obtaining 7, Ug)
3 E: simulate EwExp(U)((i) —d)

4¢set j=j+1 andéj:(fj 1+E)AT

5 X, simulate Xe, ~MVN{X¢,_, (& — & D}HRY

67 1f£]_r,, setz_z+1 and return to step 2

7 P: with probability {U)((') ¢(X51)}/(U(’) ) return to step 3

8 (7, X7): return (7, X7 )_(Ej,Xg ), is=i, j7i=]

Xrem ng ki W [5(1) N f(l)] o 54
0.~ Bz | L €0 ¢ Ry (54)
J— i

Appendix E: Killed Brownian motion

In algorithm 4 we detailed an approach to simulate the killing time and location, (7, X-), for killed Brownian
motion. To avoid unnecessary algorithmic complexity, note that we can recover the pair (7, X;) by a simple
modification of algorithm 7 in which we set VzL(’) := ® and return the first rejection time. ThlS is presented
in algorithm 8 in Table 9. A variant in which LX is incorporated would achieve greater efficiency, but has
been omitted for notational clarity.

As in the path space rejection sampler for pr that was presented in Appendix D, in killed Brownian
motion (algorithm 8) we can recover in the interval [0, 7) the remainder of the sample path as desired
without error as follows (where for clarity we have suppressed the full notation, but can be conducted as
described in Appendix C):

Skem(X) = {Xo, (€, Xe, ). (RO (55)
X5~ W|Skpu.
Appendix F: Rejection-sampling-based quasi-stationary Monte Carlo algorithm

In Section 3.3 we considered the embedding of the importance sampling killed Brownian motion of
algorithm 1 within an SMC algorithm. A similar embedding for the rejection sampling variant (killed
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Table 10. Algorithm 9 (continuous time) rejection QSMC algorithm R-QSMC

1 Initialization step (m =0):
(a) input, starting value X, number of particles, N;
0 XY, fork 1,..., N set X5 =% and w'™ = 1/n;
0 ] fo
(c ‘F('), fork1,...,N, simulate (f(k),X(fk))Kt(k),X(k)) as per algorithm 8
1 1 T1 1o
2 Iterative update steps (m=m+1):
- = . _(k - = —(k
(@) Tm, set Ty ::1nf{{r£nzk)}1?'=l}, k_:: {k:Tm ZTIE”zk)};
(b) K, simulate K ~U{{l,...,n}\k};
(c) X(T;) , simulate Xi:k) ~ W\SI(J;)M as given by expression (55) and as per algorithm 5;

- (k) x®

= . = &) .
(d) Tp41, simulate (Tm(lé)+1’ P )\(Tm,XT:m) as per algorithm 8

Brownian motion) of Algorithm 8 is considered here as the probability of the killed Brownian motion
trajectory of algorithm 8 remaining alive becomes arbitrarily small as the diffusion time increases. As
such, if one wanted to approximate the law of the process conditioned to remain alive until large 7T it
would have prohibitive computational cost.

Considering the killed Brownian motion algorithm that was presented in Appendix E, in which we
simulate trajectories of killed Brownian motion, the most natural embedding of this within an SMC
framework is to assign each particle constant unnormalized weight while alive, and zero weight when
killed. Resampling in this framework simply consists of sampling killed particles uniformly at random
from the remaining alive particle set. The manner in which we have constructed algorithm 8 enables
us to conduct this resampling in continuous time, and so we avoid the possibility of at any time hav-
ing an alive particle set of size zero. We term this the (continuous time) rejection QSMC approach,
R-QSMC, and present it in algorithm 9 in Table 10. In algorithm 9 we denote by m(k) as a count of
the number of killing events of particle trajectory k in the time elapsed until the mth iteration of the
algorithm.

Iterating R-QSMC beyond some time t* at which point we believe that we have obtained convergence
and, halting at time 7> t*, we can approximate the law of the killed process by the weighted occupation
measures of the trajectories (where V rw!’ = 1/N):

T N

m(dx) ~ 7(dx) := el 3

w®8 w (dx)dr. (56)
1 T

In some instances the tractable nature of Brownian motion will admit an explicit representation of expres-
sion (56). If not, one can simply sample the trajectories exactly at equally spaced points to find an unbiased
approximation of expression (56), by means detailed in Appendix C.2 and algorithm 4. In particular, if
we let tp:=0<# <...<t,:=T such that t; — t;_; := T/m, then we can approximate the law of the killed
process as we did in expression (7), where w,(”TV) =1/N.

Appendix G: Rejection sampling scalable Langevin exact algorithm (R-ScaLE)

In Section 4 we noted that the survival probability of a proposal Brownian motion sample path was related
to the estimator P(X) of Appendix D and in section 4.2 where we developed a replacement estimator. The
construction of control variates in Section 4.2 enables us to construct the replacement estimator such
that it has good scalability properties. In a similar fashion to the embedding of this estimator within
a QSMC algorithm (algorithm 2) resulting in ScaLE (algorithm 3), we can embed this estimator with
the rejection sampling variant R-QSMC (algorithm 9) resulting in the rejection scalable Langevin exact
algorithm R-ScaLE which we present in algorithm 10 in Table 11. ~

As presented in algorithm 10 we may also be concerned with the absolute growth of ¢ (relative to ®) as
a function of n to study its computational complexity. Note, however, as remarked on in Appendix E, if
t}}gs growth is not favourable one can modify algorithm 8 to incorporate the additional path space bound
Ly for each layer. Details of this modification have been omitted for notational clarity.
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Table 11. Algorithm 10: R-ScaLE (as per algorithm 9 unless stated otherwise)

Initialize: choose X and compute V log{m(X)}, Alog{m(X)}, ®
1(c) On calling algorithm 8:
(i) replace ® with &;
(ii) replace U)((') in step 2 with U §?,
(iii) replace step 7 with simulate 7, J~"Py{0,. .., n}, and with probability {U §? -
<;5(X51)}/(UX> — @) return to step 3

2(d) As for step 1(c)

Appendix H: Discrete time sequential Monte Carlo construction

Consider the discrete time system with state space E; = (C(h(k — 1), hk], Z;) at discrete time k, with the
process denoted X = (X hx—1),nk]> 3¢) in which the auxiliary variables 3, take values in some space Z;.

ScaL.E, with resampling conducted deterministically at times , 24, . . ., coincides exactly with the mean
field particle approximation of a discrete time Feynman—Kac flow, in the sense and notation of Del Moral
(2004), with transition kernel

X ;
My (X1, d %) =W, 550 (X iem1y. ) Ok (X =1y, 4. 35)
and a potential function G, (X;), which is left intentionally unspecified to allow a broad range of variants

of the algorithm to be included: the property which it must have to lead to a valid form of ScaLE is specified
below. Allow

. k
W e (¥1) = W™ (dX o) T1 Oi (X hii-1,n1-d3)
=l

and specify an extended version of the killed process via

KX
d O (X1 )o<1'[G(3€,)

AW e i=
The validity of such a ScaLE algorithm depends on the following identity holding:
dI<G i
dWS Ik

L (Xom) Ew:, {H Gi(X; )‘Xo hk:|

It is convenient to define some simplifying notation. We define the law of a discrete time process (in which
is embedded a continuous time process taking values in C[0, 00)):

=X Xy
W' (d%) =W, ,dx)) H W) e (d)

and of a family of processes indexed by %, K;, again incorporating a continuous time process taking values
in C[0, c0), via

— X

x

With a slight abuse of notation, we use the same symbol to refer to the associated finite dimensional
distributions, with the intended distribution being indicated by the argument. We also define the marginal
laws W* and [} via

W (dX) = Wx{dXx(pr Z)
K (dX) =K {dX x (&%, Z,)}.
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Proposztzon 3. Under mild regularity conditions (see Del Moral (2004) and Chopin (2004)), for any
p: R > R, any algorithm within the framework described admits a central limit in that

= orc(p)Z

: 1 X i x i
A}I_I};O VN |:N ZJI e (X)) — K {e (X0}
where Z is a standard normal random variable, ‘=’ denotes convergence in distribution and

G (XD [H G(x)|£1:|

ai(p)=Eyy - Ex; [l (Xn) — W5 {o (X }P1X3]
W{ I G(ae,«)}
i=1
—_ [ pl ?
1 W { l]}) G(E&)} ‘ !
+ 3 B —G(%,,)EW-[ [I G&) th}
p=2 i=p+1

W‘{ I G(xi)}
i=0

x By [[p(Xin) = WG {p (X0} 1 Xa,)

2

GE) | [o(Xn) — K {o(Xm) 1

H.1.  Proof outline

It follows by a direct application of the argument underlying the proposition of Johansen and Doucet
(2008) (which itself follows from simple but lengthy algebralc manipulations from the results of Del Moral
(2004) and Chopin (2004)) that, for any test function ¢: R'>R satisfying mild regularity conditions (see
Del Moral (2004) and Chopin (2004))

. IR
Jim VN |3 S - Ko i) S oneo12

where, Z is a standard normal random variable, ‘=’ denotes convergence in distribution and
2 dKi q ’ < 2| T
o6 =y W(X(O,h]ssl) [EK;[[SD(XM)— K { (X 3171 F1]

=X

k=l dK 2 —x .
+2 Eg fok(x(o,hp],&:p)} E [l (Xn) — Kk{w(xk)}ﬁfp]]
p=2 P de—l k

dIs;, ?
+Eg, H (X 0.1k 31k)} [@(th)—Kk{SO(th)}]Z}
A<

with {F,},>0 being the natural filtration that is associated with W'
This can be straightforwardly simplified to
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2

~

Gy (X)) Ey [H <3e)|ael}

i=2

ar(p) =y Ei; [l (X i) — I {p (X0 1T 1 X0

Wx

—
=

G(fi)}
1

2

=
I

Q

e

T

k
G(*{[))[EW"|: H G(ﬁz) th:|

p=2 i=p+1

J’_
M
A
12*
L
=)
.
oo [

:?v-
2
®

Il
<)

x By [l (X) = KG { o (X} 1 X0, ]

W{ﬁG@ﬁ

i=0

W{ 1 G(xo}
i=0

We conclude with the following corollary, showing that the particular combination of subsampling
scheme and path space sampler fits into this framework and providing its particular asymptotic variance
expression.

+Eg: G | LX) — K {eX)} P

Corollary 2. Such a central limit theorem is satisfied in particular

(a) if no subsampling is used and one evaluates the exact (intractable) killing rate (as described in
algorithm 2), and

(b) if subsampling is employed within the construct of the layered path space rejection sampler (as
described in algorithm 3).

Proof. Both claims follow directly by the above argument with the appropriate identifications:1pt
(a) is established by setting
Z, =0,
G (X)) = G(Xnk—1),nk)
Wy
dW;)f(l}:f]]))hk (h(k—1):hk])5

(b) is established by setting (Where we denote by ¢ the number of pairs of data points employed by the
subsampling mechanism; ¢ =1 for the examples in this paper)

U ®R(Tkp 15 Tk, p)a

mg=1 p=1
o0
R(s,n)= U{Ii} X (s, 1" x {1,...,n}>",
k=0
3k=(VkA1,---,"k,mk),
Te,p = (’ik,pa gk,]),la cees £kAp.nk,],7 Sk, j 1, 1:2¢s + + + 5 Sk, p, sy, F,I:Zc)a

i m ke ((Up(Xe ) — (X Sk p,j1:2¢)
Gkoek):exp{ ZLe(ka D@ p =T p- o} I H{ Ur(X. _Z”(‘;( ”) }
Tk.p—l Tk, p—1
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mg

O X =11, d30) = [T |PP(AEk .1y 51U (X, ) = Lo (X ,_ )} [Tk p15 Tr p))
p=1

Kk, p

1 2¢
x [T = TT6¢1,..ony s 1)
j=1 17 1=1

where PP(:; A, [a, b]) denotes the law of a homogeneous Poisson process of rate A over interval [a, b], 6(1,....»}
denotes the counting measure over the first n natural numbers and a number of variables which correspond
to deterministic transformations of the X-process have been defined to lighten the notation:

(k—T1)h p=0,
Th,p = inf{z:|X,—X,k‘pfl|>6‘} p=1...,m—1,
kh p=my

and m, is the number of distinct layer pairs that are employed in interval k of the discrete time embedding
of the algorithm (i.e. it is the number of first-passage times simulated within the continuous time algorithm
after time (k — 1)A until one of them exceeds kh, as detailed in Appendices C.1 and C.2).

Appendix I: Estimation of effective sample size

Assume that the QSMC algorithm (or ScalLE) has been run for an execution (diffusion) time of length
T, and that the weighted particle set (of size N) is to be used at the following auxiliary mesh times
t*, ..., t, ;=T (recalling from Section 3.3 that t* € (¢, ..., t,) is a user-selected quasi-stationary burn-in
time) for computation of the Monte Carlo estimators (7) and (8).

_ The posterior mean for the parameters at time #; € [r*, T] is simply estimated by using the particle set by
X, = zﬁzlw;“xff% An overall estimate of the posterior mean and variance can be computed as follows:

i

_ 1 m o
X=——— X, 57
m(T —t*)/T i=m(TZ—t*)/T !
1 m N _
% Sl (X —X)?, (58)

Ox = >
m(T —=t*)/T (=) k=1

The marginal ESS for particles at a single time point can be estimated as the ratio of the variance of X, to
the estimate of the posterior variance:

-1

1 m . -

ESSy =038 ——— X, —X)?p . (59
M X{m(T—l*)/T t=m(7Z—:1*)/T f

Although in total we have m(T —t*)/T sets of particles (after burn-in), these will be correlated. This is

accounted for by using the lag 1 auto-correlation of X;«, ..., X7, which we denote p. Our overall estimated

ESS is
ESS:=

m(T—t¥) 1—p
S ESSy. 60
55 SSy (60)
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