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1. Proofs

1.1. The proof of Lemma 3.1
Define W0 := (v1, . . . ,vn−1,−v1, . . . ,−vn−1)

⊤ and W1 := 12n−2, b1 := λ12n−2 and b2 := 0. Then
h(x) := σ∗b2W1σb1

W0x ∈ H1,2n−2 can be rewritten as

h(x) = 1

{n−1∑
i=1

{
(v⊤
i x− λ)+ + (−v⊤

i x− λ)+
}
> b2

}
= 1{∥C(x)∥∞ > λ} = hCUSUM

λ (x),

as desired.

1.2. The Proof of Lemma 3.2
As Γ is invertible, (2) in main text is equivalent to

Γ−1X = Γ−1Zβ + Γ−1cτϕ+ ξ.

Write X̃ = Γ−1X, Z̃ = Γ−1Z and c̃τ = Γ−1cτ . If c̃τ lies in the column span of Z̃, then the model
with a change at τ is equivalent to the model with no change, and the likelihood-ratio test statistic
will be 0. Otherwise we can assume, without loss of generality that c̃τ is orthogonal to each column of
Z̃: if this is not the case we can construct an equivalent model where we replace c̃τ with its projection
to the space that is orthogonal to the column span of Z̃.

As ξ is a vector of independent standard normal random variables, the likelihood-ratio statistic for
a change at τ against no change is a monotone function of the reduction in the residual sum of squares
of the model with a change at τ . The residual sum of squares of the no change model is

X̃
⊤
X̃ − X̃

⊤
Z̃(Z̃

⊤
Z̃)−1Z̃

⊤
X̃.
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The residual sum of squares for the model with a change at τ is

X̃
⊤
X̃−X̃

⊤
[Z̃, c̃τ ]([Z̃, c̃τ ]

⊤[Z̃, c̃τ ])
−1[Z̃, c̃τ ]

⊤X̃ = X̃
⊤
X̃−X̃

⊤
Z̃(Z̃

⊤
Z̃)−1Z̃

⊤
X̃−X̃

⊤
c̃τ (c̃

⊤
τ c̃τ )

−1c̃⊤τ X̃.

Thus, the reduction in residual sum of square of the model with the change at τ over the no change
model is

X̃
⊤
c̃τ (c̃

⊤
τ c̃τ )

−1c̃⊤τ X̃ =

 1√
c̃⊤τ c̃τ

c̃⊤τ X̃

2

Thus if we define
vτ =

1√
c̃⊤τ c̃τ

c̃⊤τ Γ
−1,

then the likelihood-ratio test statistic is a monotone function of |vτX|. This is true for all τ so the
likelihood-ratio test is equivalent to

max
τ∈[n−1]

|vτX| > λ,

for some λ. This is of a similar form to the standard CUSUM test, except that the form of vτ is
different. Thus, by the same argument as for Lemma 3.1 in main text, we can replicate this test with
h(x) ∈ H1,2n−2, but with different weights to represent the different form for vτ .

1.3. The Proof of Lemma 4.1
Proof. (a) For each i ∈ [n− 1], since ∥vi∥2 = 1, we have v⊤

i X ∼ N(0, 1). Hence, by the Gaussian
tail bound and a union bound,

P
{
∥C(X)∥∞ > t

}
≤

n−1∑
i=1

P
(∣∣∣v⊤

i X
∣∣∣ > t

)
≤ n exp(−t2/2).

The result follows by taking t =
√

2 log(n/ε).
(b) We write X = µ + Z, where Z ∼ Nn(0, In). Since the CUSUM transformation is linear, we

have C(X) = C(µ) + C(Z). By part (a) there is an event Ω with probability at least 1 − ε on which
∥C(Z)∥∞ ≤

√
2 log(n/ε). Moreover, we have ∥C(µ)∥∞ = |v⊤

τ µ| = |µL − µR|
√
nη(1− η). Hence on Ω,

we have by the triangle inequality that

∥C(X)∥∞ ≥ ∥C(µ)∥∞ − ∥C(Z)∥∞ ≥ |µL − µR|
√
nη(1− η)−

√
2 log(n/ε) >

√
2 log(n/ε),

as desired.

1.4. The Proof of Corollary 4.1
Proof. From Lemma 4.1 in main text with ε = ne−nB

2/8, we have

P(hCUSUM
λ (X) ̸= Y | τ, µL, µR) ≤ ne−nB

2/8,

and the desired result follows by integrating over π0.

1.5. Auxiliary Lemma
Lemma S1. Define T ′ := {t0 ∈ Z+ : |t0 − τ | ≤ min(τ, n− τ)/2}, for any t0 ∈ T ′, we have

min
t0∈T ′

|v⊤
t0µ| ≥

√
3

3
|µL − µR|

√
nη(1− η).
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Proof. For simplicity, let ∆ := |µL − µR|, we can compute the CUSUM test statistics ai = |v⊤
i µ|

as:

ai =

∆(1− η)
√

ni
n−i 1 ≤ i ≤ τ

∆η

√
n(n−i)

i τ < i ≤ n− 1

It is easy to verified that aτ := maxi(ai) = ∆
√
nη(1− η) when i = τ . Next, we only discuss the case

of 1 ≤ τ ≤ ⌊n/2⌋ as one can obtain the same result when ⌈n/2⌉ ≤ τ ≤ n by the similar discussion.
When 1 ≤ τ ≤ ⌊n/2⌋, |t0 − τ | ≤ min(τ, n − τ)/2 implies that tl ≤ t0 ≤ tu where tl := ⌈τ/2⌉, tu :=

⌊3τ/2⌋. Because ai is an increasing function of i on [1, τ ] and a decreasing function of i on [τ +1, n−1]
respectively, the minimum of at0 , tl ≤ t0 ≤ tu happens at either tl or tu. Hence, we have

atl ≥ aτ/2 = aτ

√
n− τ

2n− τ

atu ≥ a3τ/2 = aτ

√
2n− 3τ

3(n− τ)

Define f(x) :=
√

n−x
2n−x and g(x) :=

√
2n−3x
3(n−x) . We notice that f(x) and g(x) are both decreasing

functions of x ∈ [1, n], therefore f(⌊n/2⌋) ≥ f(n/2) =
√
3/3 and g(⌊n/2⌋) ≥ g(n/2) =

√
3/3 as

desired.

1.6. The Proof of Theorem 4.2
Proof. Given any L ≥ 1 and m = (m1, . . . ,mL)

⊤, let m0 := n and mL+1 := 1 and set W ∗ =∑L+1
r=1 mr−1mr. Let d := VCdim(HL,m), then by Bartlett et al. (2019, Theorem 7), we have d =

O(LW ∗ log(W ∗)). Thus, by Mohri et al. (2012, Corollary 3.4), for some universal constant C > 0, we
have with probability at least 1− δ that

P(hERM(X) ̸= Y | D) ≤ min
h∈HL,m

P(h(X) ̸= Y ) +

√
8d log(2eN/d) + 8 log(4/δ)

N
. (S1)

Here, we have L = 1, m = 2n − 2, W ∗ = O(n2), so d = O(n2 log(n)). In addition, since hCUSUM
λ ∈

H1,2n−2, we have minh∈HL,m
≤ P(hCUSUM

λ (X) ̸= Y ) ≤ ne−nB
2/8. Substituting these bounds into (S1)

we arrive at the desired result.

1.7. The Proof of Theorem 4.3
The following lemma, gives the misclassification for the generalised CUSUM test where we only test
for changes on a grid of O(log n) values.

Lemma S2. Fix ε ∈ (0, 1) and suppose that X ∼ P (n, τ, µL, µR) for some τ ∈ [n− 1] and µL, µR ∈
R.

(a) If µL = µR, then
P
{
max
t∈T0

|v⊤
t X| >

√
2 log(|T0|/ε)

}
≤ ε.

(b) If |µL − µR|
√
η(1− η) >

√
24 log(|T0|/ε)/n, then we have

P
{
max
t∈T0

|v⊤
t X| ≤

√
2 log(|T0|/ε)

}
≤ ε.

Proof. (a) For each t ∈ [n− 1], since ∥vt∥2 = 1, we have v⊤
t X ∼ N(0, 1). Hence, by the Gaussian

tail bound and a union bound,

P
{
max
t∈T0

|v⊤
t X| > y

}
≤

∑
t∈T0

P
(∣∣∣v⊤

t X
∣∣∣ > y

)
≤ |T0| exp(−y2/2).
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The result follows by taking y =
√

2 log(|T0|/ε).
(b) There exists some t0 ∈ T0 such that |t0 − τ | ≤ min{τ, n− τ}/2. By Lemma S1, we have

|v⊤
t0EX| ≥

√
3

3
∥C(EX)∥∞ ≥

√
3

3
|µL − µR|

√
nη(1− η) ≥ 2

√
2 log(|T0|/ε).

Consequently, by the triangle inequality and result from part (a), we have with probability at least
1− ε that

max
t∈T0

|v⊤
t X| ≥ |v⊤

t0X| ≥ |v⊤
t0EX| − |v⊤

t0(X − EX)| ≥
√

2 log(|T0|/ε),

as desired.

Using the above lemma we have the following result.

Corollary S3. Fix B > 0. Let π0 be any prior distribution on Θ(B), then draw (τ, µL, µR) ∼ π0,
X ∼ P (n, τ, µL, µR), and define Y = 1{µL ̸= µR}. Then for λ∗ = B

√
3n/6, the test hCUSUM∗

λ∗ satisfies

P(hCUSUM∗
λ∗ (X) ̸= Y ) ≤ 2⌊log2(n)⌋e−nB

2/24.

Proof. Setting ε = |T0|e−nB
2/24 in Lemma S2, we have for any (τ, µL, µR) ∈ Θ(B) that

P(hCUSUM∗
λ∗ (X) ̸= 1{µL ̸= µR}) ≤ |T0|e−nB

2/24.

The result then follows by integrating over π0 and the fact that |T0| = 2⌊log2(n)⌋.

Proof (Proof of Theorem 4.3). We follow the proof of Theorem 4.2 up to (S1). From the
conditions of the theorem, we have W ∗ = O(Ln log n). Moreover, we have hCUSUM∗

λ∗ ∈ H1,4⌊log2(n)⌋ ⊆
HL,m. Thus,

P(hERM(X) ̸= Y | D) ≤ P(hCUSUM∗
λ∗ (X) ̸= Y ) + C

√
L2n log n log(Ln) log(N) + log(1/δ)

N

≤ 2⌊log2(n)⌋e−nB
2/24 + C

√
L2n log2(Ln) log(N) + log(1/δ)

N

as desired.

1.8. Generalisation to time-dependent or heavy-tailed observations
So far, for simplicity of exposition, we have primarily focused on change-point models with independent
and identically distributed Gaussian observations. However, neural network based procedures can also
be applied to time-dependent or heavy-tailed observations. We first considered the case where the
noise series ξ1, . . . , ξn is a centred stationary Gaussian process with short-ranged temporal dependence.
Specifically, writing K(u) := cov(ξt, ξt+u), we assume that

n−1∑
u=0

K(u) ≤ D. (S2)

Theorem S4. Fix B > 0, n > 0 and let π0 be any prior distribution on Θ(B). We draw
(τ, µL, µR) ∼ π0, set Y := 1{µL ̸= µR} and generate X := µ + ξ such that µ := (µL1{i ≤
τ}+µR1{i > τ})i∈[n] and ξ is a centred stationary Gaussian process satisfying (S2). Suppose that the
training data D :=

(
(X(1), Y (1)), . . . , (X(N), Y (N))

)
consist of independent copies of (X, Y ) and let

hERM := argminh∈LL,m
LN (h) be the empirical risk minimiser for a neural network with L ≥ 1 layers

and m = (m1, . . . ,mL)
⊤ hidden layer widths. If m1 ≥ 4⌊log2(n)⌋ and mrmr+1 = O(n log n) for all

r ∈ [L− 1], then for any δ ∈ (0, 1), we have with probability at least 1− δ that

P(hERM(X) ̸= Y | D) ≤ 2⌊log2(n)⌋e−nB
2/(48D) + C

√
L2n log2(Ln) log(N) + log(1/δ)

N
.
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Proof. By the proof of Wang and Samworth (2018, supplementary Lemma 10),

P
{
max
t∈T0

|v⊤
t ξ| > B

√
3n/6

}
≤ |T0|e−nB

2/(48D).

On the other hand, for t0 defined in the proof of Lemma S1, we have that |µL−µR|
√
τ(n− τ)/n > B,

then |v⊤
t0EX| ≥ B

√
3n/3. Hence for λ∗ = B

√
3n/6, we have hCUSUM∗

λ∗ satisfying

P(hCUSUM∗
λ∗ (X ̸= Y )) ≤ |T0|e−nB

2/(48D).

We can then complete the proof using the same arguments as in the proof of Theorem 4.3.

We now turn to non-Gaussian distributions and recall that the Orlicz ψα-norm of a random variable
Y is defined as

∥Y ∥ψα
:= inf{η : E exp(|Y/η|α) ≤ 2}.

For α ∈ (0, 2), the random variable Y has heavier tail than a sub-Gaussian distribution. The following
lemma is a direct consequence of Kuchibhotla and Chakrabortty (2022, Theorem 3.1) (We state the
version used in Li et al. (2023, Proposition 14)).

Lemma S5. Fix α ∈ (0, 2). Suppose ξ = (ξ1, . . . , ξn)
⊤ has independent components satisfying

Eξt = 0, Var(ξt) = 1 and ∥ξt∥ψα
≤ K for all t ∈ [n]. There exists cα > 0, depending only on α, such

that for any 1 ≤ t ≤ n/2, we have

P
(
|v⊤
t ξ| ≥ y

)
≤ exp

{
1− cαmin

{(
y

K

)2

,

(
y

K∥vt∥β(α)

)α}}
,

where β(α) = ∞ for α ≤ 1 and β(α) = α/(α− 1) when α > 1.

Theorem S6. Fix α ∈ (0, 2), B > 0, n > 0 and let π0 be any prior distribution on Θ(B). We draw
(τ, µL, µR) ∼ π0, set Y := 1{µL ̸= µR} and generate X := µ+ξ such that µ := (µL1{i ≤ τ}+µR1{i >
τ})i∈[n] and ξ = (ξ1, . . . , ξn)

⊤ satisfies Eξi = 0, Var(ξi) = 1 and ∥ξi∥ψα
≤ K for all i ∈ [n]. Suppose

that the training data D :=
(
(X(1), Y (1)), . . . , (X(N), Y (N))

)
consist of independent copies of (X, Y )

and let hERM := argminh∈LL,m
LN (h) be the empirical risk minimiser for a neural network with L ≥ 1

layers and m = (m1, . . . ,mL)
⊤ hidden layer widths. If m1 ≥ 4⌊log2(n)⌋ and mrmr+1 = O(n log n) for

all r ∈ [L − 1], then there exists a constant cα > 0, depending only on α such that for any δ ∈ (0, 1),
we have with probability at least 1− δ that

P(hERM(X) ̸= Y | D) ≤ 2⌊log2(n)⌋e1−cα(
√
nB/K)α + C

√
L2n log2(Ln) log(N) + log(1/δ)

N
.

Proof. For α ∈ (0, 2), we have β(α) > 2, so ∥vt∥β(α) ≥ ∥vt∥2 = 1. Thus, from Lemma S5,
we have P(|v⊤

t ξ| ≥ y) ≤ e1−cα(y/K)α . Thus, following the proof of Corollary S3, we can obtain that
P(hCUSUM∗

λ∗ (X ̸= Y )) ≤ 2⌊log2(n)⌋e1−cα(
√
nB/K)α . Finally, the desired conclusion follows from the

same argument as in the proof of Theorem 4.3.

1.9. Multiple change-point estimation
Algorithm 1 is a general scheme for turning a change-point classifier into a location estimator. While it
is theoretically challenging to derive theoretical guarantees for the neural network based change-point
location estimation error, we motivate this methodological proposal here by showing that Algorithm 1,
applied in conjunction with a CUSUM-based classifier have optimal rate of convergence for the change-
point localisation task. We consider the model xi = µi+ ξi, where ξi

iid∼ N(0, 1) for i ∈ [n∗]. Moreover,
for a sequence of change-points 0 = τ0 < τ1 < · · · < τν < n = τν+1 satisfying τr − τr−1 ≥ 2n for all
r ∈ [ν + 1] we have µi = µ(r−1) for all i ∈ [τr−1, τr], r ∈ [ν + 1].
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Theorem S7. Suppose data x1, . . . , xn∗ are generated as above satisfying |µ(r) − µ(r−1)| > 2
√
2B

for all r ∈ [ν]. Let hCUSUM∗
λ∗ be defined as in Corollary S3. Let τ̂1, . . . , τ̂ν̂ be the output of Algorithm 1

with input x1, . . . , xn∗ , ψ = hCUSUM∗
λ∗ and γ = ⌊n/2⌋/n. Then we have

P
{
ν̂ = ν and |τi − τ̂i| ≤

2B2

|µ(r) − µ(r−1)|2

}
≥ 1− 2n∗⌊log2(n)⌋e−nB

2/24.

Proof. For simplicity of presentation, we focus on the case where n is a multiple of 4, so γ = 1/2.
Define

I0 := {i : µi+n−1 = µi},

I1 :=

{
i : |µi+n−1 − µi|max

r∈[ν]

√
(τr − i)(i+ n− τr)

n2
≥ B

}
.

By Lemma S2 and a union bound, the event

Ω =
{
hCUSUM∗
λ∗ (X∗

[i,i+n)) = k, for all i ∈ Ik, k = 0, 1
}

has probability at least 1 − 2n∗⌊log2(n)⌋e−nB
2/24. We work on the event Ω henceforth. Denote

∆r := 2B2/|µ(r) − µ(r−1)|2. Since |µ(r) − µ(r−1)| > 2
√
2B, we have ∆r < n/4. Note that for each

r ∈ [ν], we have {i : τr−1 < i ≤ τr − n or τr < i ≤ τr+1 − n} ⊆ I0 and {i : τr − n + ∆r < i ≤
τr − ∆r} ⊆ I1. Consequently, L̄i defined in Algorithm 1 is below the threshold γ = 1/2 for all
i ∈ (τr−1 + n/2, τr − n/2] ∪ (τr + n/2, τr+1 − n/2], monotonically increases for i ∈ (τr − n/2, τr −∆]
and monotonically decreases for i ∈ (τr + ∆, τr + n/2] and is above the threshold γ for i ∈ (τr −
∆, τr +∆]. Thus, exactly one change-point, say τ̂r, will be identified on (τr−1 + n/2, τr+1 − n/2] and
τ̂r = argmaxi∈(τr−1+n/2,τr+1−n/2] L̄i ∈ (τr −∆, τr +∆] as desired. Since the above holds for all r ∈ [ν],
the proof is complete.

Assuming that log(n∗) ≍ log(n) and choosing B to be of order
√
log n, the above theorem shows

that using the CUSUM-based change-point classifier ψ = hCUSUM∗
λ∗ in conjunction with Algorithm 1

allows for consistent estimation of both the number of locations of multiple change-points in the data
stream. In fact, the rate of estimating each change-point, 2B2/|µ(r) − µ(r−1)|2, is minimax optimal
up to logarithmic factors (see, e.g. Verzelen et al., 2020, Proposition 6). An inspection of the proof
of Theorem S7 reveals that the same result would hold for any ψ for which the event Ω holds with
high probability. In view of the representability of hCUSUM∗

λ∗ in the class of neural networks, one would
intuitively expect that a similar theoretical guarantee as in Theorem S7 would be available to the
empirical risk minimiser in the corresponding neural network function class. However, the particular
way in which we handle the generalisation error in the proof of Theorem 4.3 makes it difficult to proceed
in this way, due to the fact that the distribution of the data segments obtained via sliding windows
have complex dependence and no longer follow a common prior distribution π0 used in Theorem 4.2.

2. Simulation and Result

2.1. Simulation for Multiple Change-types
In this section, we illustrate the numerical study for one-change-point but with multiple change-types:
change in mean, change in slope and change in variance.

The data set with change/no-change in mean is generated from P (n, τ, µL, µR). We employ the
model of change in slope from Fearnhead et al. (2019), namely

xt = ft + ξt =

{
ϕ0 + ϕ1t+ ξt if 1 ≤ t ≤ τ

ϕ0 + (ϕ1 − ϕ2)τ + ϕ2t+ ξt τ + 1 ≤ t ≤ n,

where ϕ0, ϕ1 and ϕ2 are parameters that can guarantee the continuity of two pieces of linear function
at time t = τ . We use the following model to generate the data set with change in variance.

yt =

{
µ+ εt εt ∼ N(0, σ21), if t ≤ τ

µ+ εt εt ∼ N(0, σ22), otherwise
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Table S1. The parameters for weak and strong signal-to-noise ratio (SNR).
Chang in mean µl µu µdl µdu

Weak SNR -5 5 0.25 0.5
Strong SNR -5 5 0.6 1.2

Chang in variance σl σu σdl σdu
Weak SNR 0.3 0.7 0.12 0.24
Strong SNR 0.3 0.7 0.2 0.4

Change in slope ϕl ϕu ϕdl ϕdu
Weak SNR -0.025 0.025 0.006 0.012
Strong SNR -0.025 0.025 0.015 0.03

where σ21, σ
2
2 are the variances of two Gaussian distributions. τ is the change-point in variance. When

σ21 = σ22, there is no-change in model. The labels of no change-point, change in mean only, change in
variance only, no-change in variance and change in slope only are 0, 1, 2, 3, 4 respectively. For each
label, we randomly generate Nsub time series. In each replication of Nsub, we update these parameters:
τ, µL, µR, σ1, σ2, α1, ϕ1, ϕ2. To avoid the boundary effect, we randomly choose τ from the discrete
uniform distribution U(n′ + 1, n − n′) in each replication, where 1 ≤ n′ < ⌊n/2⌋, n′ ∈ N. The other
parameters are generated as follows:

• µL, µR ∼ U(µl, µu) and µdl ≤ |µL − µR| ≤ µdu, where µl, µu are the lower and upper bounds of
µL, µR. µdl, µdu are the lower and upper bounds of |µL − µR|.

• σ1, σ2 ∼ U(σl, σu) and σdl ≤ |σ1 − σ2| ≤ σdu, where σl, σu are the lower and upper bounds of
σ1, σ2. σdl, σdu are the lower and upper bounds of |σ1 − σ2|.

• ϕ1, ϕ2 ∼ U(ϕl, ϕu) and ϕdl ≤ |ϕ1 − ϕ2| ≤ ϕdu, where ϕl, ϕu are the lower and upper bounds of
ϕ1, ϕ2. ϕdl, ϕdu are the lower and upper bounds of |ϕ1 − ϕ2|.

Besides, we let µ = 0, ϕ0 = 0 and the noise follows normal distribution with mean 0. For flexibility,
we let the noise variance of change in mean and slope be 0.49 and 0.25 respectively. Both Scenarios 1
and 2 defined below use the neural network architecture displayed in Figure S5.

Benchmark. Aminikhanghahi and Cook (2017) reviewed the methodologies for change-point de-
tection in different types. To be simple, we employ the Narrowest-Over-Threshold (NOT) (Baranowski
et al., 2019) and single variance change-point detection (Chen and Gupta, 2012) algorithms to detect the
change in mean, slope and variance respectively. These two algorithms are available in R packages: not
and changepoint. The oracle likelihood based tests LRoracle means that we pre-specified whether we
are testing for change in mean, variance or slope. For the construction of adaptive likelihood-ratio
based test LRadapt, we first separately apply 3 detection algorithms of change in mean, variance and
slope to each time series, then we can compute 3 values of Bayesian information criterion (BIC) for
each change-type based on the results of change-point detection. Lastly, the corresponding label of
minimum of BIC values is treated as the predicted label.

Scenario 1: Weak SNR. Let n = 400, Nsub = 2000 and n′ = 40. The data is generated by the
parameters settings in Table S1. We use the model architecture in Figure S5 to train the classifier.
The learning rate is 0.001, the batch size is 64, filter size in convolution layer is 16, the kernel size
is (3, 30), the epoch size is 500. The transformations are (x, x2). We also use the inverse time decay
technique to dynamically reduce the learning rate. The result which is displayed in Table 1 of main
text shows that the test accuracy of LRoracle, LRadapt and ResNet based on 2500 test data sets are
0.9056, 0.8796 and 0.8660 respectively.

Scenario 2: Strong SNR. The parameters for generating strong-signal data are listed in Table S1.
The other hyperparameters are same as in Scenario 1. The test accuracy of LRoracle, LRadapt and
ResNet based on 2500 test data sets are 0.9924, 0.9260 and 0.9672 respectively. We can see that the
neural network-based approach achieves higher classification accuracy than the adaptive likelihood
based method.

https://CRAN.R-project.org/package=not
https://CRAN.R-project.org/package=changepoint
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Table S2. Test classification accuracy of likelihood-
ratio (LR) based classifier (Chen and Gupta, 2012,
p.59) and our residual neural network (ResNet) based
classifier with 21 residual blocks for setups with weak
and strong signal-to-noise ratios (SNR). Data are gen-
erated as a mixture of no change-point (Class 1),
change in mean and variance at a same change-point
(Class 2). We report the true positive rate of each
class and the accuracy in the last row. The optimal
threshold value of LR is chosen by the grid search
method on the training dataset.

Weak SNR Strong SNR

LR ResNet LR ResNet
Class 1 0.9823 0.9668 1.0000 0.9991
Class 2 0.8759 0.9621 0.9995 0.9992

Accuracy 0.9291 0.9645 0.9997 0.9991

2.2. Some Additional Simulations

2.2.1. Simulation for simultaneous changes
In this simulation, we compare the classification accuracies of likelihood-based classifier and ResNet-
based classifier under the circumstance of simultaneous changes. For simplicity, we only focus on two
classes: no change-point (Class 1) and change in mean and variance at a same change-point (Class 2).
The change-point location τ is randomly drawn from Unif{40, . . . , n−41} where n = 400 is the length
of time series. Given τ , to generate the data of Class 2, we use the parameter settings of change in mean
and change in variance in Table S1 to randomly draw µL, µR and σ1, σ2 respectively. The data before
and after the change-point τ are generated from N(µL, σ

2
1) and N(µR, σ

2
2) respectively. To generate

the data of Class 1, we just draw the data from N(µL, σ
2
1). Then, we repeat each data generation of

Class 1 and 2 2500 times as the training dataset. The test dataset is generated in the same procedure
as the training dataset, but the testing size is 15000. We use two classifiers: likelihood-ratio (LR)
based classifier (Chen and Gupta, 2012, p.59) and a 21-residual-block neural network (ResNet) based
classifier displayed in Figure S5 to evaluate the classification accuracy of simultaneous change v.s. no
change. The result are displayed in Table S2. We can see that under weak SNR, the ResNet has a
good performance than LR-based method while it performs as well as the LR-based method under
strong SNR.

2.2.2. Simulation for heavy-tailed noise
In this simulation, we compare the performance of Wilcoxon change-point test (Dehling et al., 2015),
CUSUM, simple neural network HL,m as well as truncated HL,m for heavy-tailed noise. Consider the
model: Xi = µi + ξi, i ≥ 1, where (µi)i≥1 are signals and (ξi)i≥1 is a stochastic process. To test the
null hypothesis

H : µ1 = µ2 = · · · = µn

against the alternative

A : There exists 1 ≤ k ≤ n− 1 such that µ1 = · · · = µk ̸= µk+1 = · · · = µn.

Dehling et al. (2015) proposed the so-called Wilcoxon type of cumulative sum statistic

Tn := max
1≤k<n

∣∣∣∣∣∣2
√
k(n− k)

n

1

n3/2

k∑
i=1

n∑
j=k+1

(
1{Xi<Xj} − 1/2

)∣∣∣∣∣∣ (S3)
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to detect the change-point in time series with outlier or heavy tails. Under the null hypothesis H, the
limit distribution of Tn‡ can be approximately by the supreme of standard Brownian bridge process
(W (0)(λ))0≤λ≤1 up to a scaling factor (Dehling et al., 2015, Theorem 3.1). In our simulation, we choose
the optimal thresh value based on the training dataset by using the grid search method.

The truncated simple neural network means that we truncate the data by the z-score in data
preprocessing step, i.e. given vector x = (x1, x2, . . . , xn)

⊤, then xi[|xi − x̄| > Zσx] = x̄+sgn(xi−x̄)Zσx,
x̄ and σx are the mean and standard deviation of x.

The training dataset is generated by using the same parameter settings of Figure 2(d) of the main
text. The result of misclassification error rate (MER) of each method is reported in Figure S1. We
can see that truncated simple neural network has the best performance. As expected, the Wilcoxon
based test has better performance than the simple neural network based tests. However, we would like
to mention that the main focus of Figure 2 of the main text is to demonstrate the point that simple
neural networks can replicate the performance of CUSUM tests. Even though, the prior information
of heavy-tailed noise is available, we still encourage the practitioner to use simple neural network by
adding the z-score truncation in data preprocessing step.

200 400 600 800 1000
N
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0.15

0.20

0.25

0.30

0.35

0.40

M
ER

 A
ve
ra
ge CUSUM

Wilcoxon
m(2),L=1
m(2),L=1, Z=3

Fig. S1. Scenario S3 with Cauchy noise by adding Wilcoxon type of change-point detection method (Dehling
et al., 2015) and simple neural network with truncation in data preprocessing. The average misclassification
error rate (MER) is computed on a test set of size Ntest = 15000, against training sample size N for detecting
the existence of a change-point on data series of length n = 100. We compare the performance of the CUSUM
test, Wilcoxon test, H1,m(2) and H1,m(2) with Z = 3 where m(2) = 2n − 2 and Z = 3 means the truncated
z-score, i.e. given vector x = (x1, x2, . . . , xn)

⊤, then xi[|xi − x̄| > Zσx] = x̄+ sgn(xi − x̄)Zσx, x̄ and σx are the
mean and standard deviation of x.

2.2.3. Robustness Study
This simulation is an extension of numerical study of Section 5 in main text. We trained our neural
network using training data generated under scenario S1 with ρt = 0 (i.e. corresponding to Figure 2(a)

‡The definition of Tn in Dehling et al. (2015, Theorem 3.1) does not include 2
√
k(n− k)/n. However, the

repository of the R package robts (Dürre et al., 2016) normalises the Wilcoxon test by this item, for details
see function wilcoxsuk in here. In this simulation, we adopt the definition of (S3).

https://r-forge.r-project.org/scm/viewvc.php/pkg/src/wilcox.c?view=markup&root=robts
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of the main text), but generate the test data under settings corresponding to Figure 2(a, b, c, d). In
other words, apart the top-left panel, in the remaining panels of Figure S2, the trained network is
misspecified for the test data. We see that the neural networks continue to work well in all panels,
and in fact have performance similar to those in Figure 2(b, c, d) of the main text. This indicates
that the trained neural network has likely learned features related to the change-point rather than any
distributional specific artefacts.
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(a) Trained S1 (ρt = 0) → S1 (ρt = 0) (b)Trained S1 (ρt = 0) → S1 (ρt = 0.7)
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(c) Trained S1 (ρt = 0) → S2 (d) Trained S1 (ρt = 0) → S3

Fig. S2. Plot of the test set MER, computed on a test set of size Ntest = 30000, against training sample size N
for detecting the existence of a change-point on data series of length n = 100. We compare the performance
of the CUSUM test and neural networks from four function classes: H1,m(1) ,H1,m(2) , H5,m(1)15

and H10,m(1)110

where m(1) = 4⌊log2(n)⌋ and m(2) = 2n−2 respectively under scenarios S1, S2 and S3 described in Section 5.
The subcaption “A → B” means that we apply the trained classifier “A” to target testing dataset “B”.

2.2.4. Simulation for change in autocorrelation
In this simulation, we discuss how we can use neural networks to recreate test statistics for various
types of changes. For instance, if the data follows an AR(1) structure, then changes in autocorrelation
can be handled by including transformations of the original input of the form (xtxt+1)t=1,...,n−1. On
the other hand, even if such transformations are not supplied as the input, a deep neural network of
suitable depth is able to approximate these transformations and consequently successfully detect the
change (Schmidt-Hieber, 2020, Lemma A.2). This is illustrated in Figure S3, where we compare the
performance of neural network based classifiers of various depths constructed with and without using
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the transformed data as inputs.
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Fig. S3. Plot of the test set MER, computed on a test set of size Ntest = 30000, against training sample size N
for detecting the existence of a change-point on data series of length n = 100. We compare the performance
of neural networks from four function classes: H1,m(1) ,H1,m(2) , H5,m(1)15

and ResNet with 21 residual blocks
where m(1) = 4⌊log2(n)⌋ and m(2) = 2n − 2 respectively. The change-points are randomly chosen from
Unif{10, . . . , 89}. Given change-point τ , data are generated from the autoregressive model xt = αtxt−1 + ϵt

for ϵt
iid∼ N(0, 0.252) and αt = 0.21{t<τ} + 0.81{t≥τ}.

2.2.5. Simulation on change-point location estimation
Here, we describe simulation results on the performance of change-point location estimator constructed
using a combination of simple neural network-based classifier and Algorithm 1 from the main text.
Given a sequence of length n′ = 2000, we draw τ ∼ Unif{750, . . . , 1250}. Set µL = 0 and draw µR|τ
from 2 different uniform distributions: Unif([−1.5b,−0.5b] ∪ [0.5b, 1.5b]) (Weak) and Unif([−3b,−b] ∪
[b, 3b]) (Strong), where b :=

√
8n′ log(20n′)
τ(n′−τ) is chosen in line with Lemma 4.1 to ensure a good range

of signal-to-noise ratio. We then generate x = (µL1{t≤τ} + µR1{t>τ} + εt)t∈[n′], with the noise ε =
(εt)t∈[n′] ∼ Nn′(0, In′). We then draw independent copies x1, . . . ,xN ′ of x. For each xk, we randomly
choose 60 segments with length n ∈ {300, 400, 500, 600}, the segments which include τk are labelled
‘1’, others are labelled ‘0’. The training dataset size is N = 60N ′ where N ′ = 500. We then draw
another Ntest = 3000 independent copies of x as our test data for change-point location estimation.
We study the performance of change-point location estimator produced by using Algorithm 1 together
with a single-layer neural network, and compare it with the performance of CUSUM, MOSUM and
Wilcoxon statistics-based estimators. As we can see from the Figure S4, under Gaussian models where
CUSUM is known to work well, our simple neural network-based procedure is competitive. On the other
hand, when the noise is heavy-tailed, our simple neural network-based estimator greatly outperforms
CUSUM-based estimator.
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(a) S1 with ρt = 0, weak SNR (b) S1 with ρt = 0, strong SNR
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Fig. S4. Plot of the root mean square error (RMSE) of change-point estimation (S1 with ρt = 0 and S3), com-
puted on a test set of size Ntest = 3000, against bandwidth n for detecting the existence of a change-point on
data series of length n∗ = 2000. We compare the performance of the change-point detection by CUSUM, MO-

SUM, Algorithm 1 and Wilcoxon (only for S3) respectively. The RMSE here is defined by
√
1/N

∑N
i=1(τ̂i − τi)2

where τ̂i is the estimator of change-point for the i-th observation and τi is the true change-point. The
weak and strong signal-to-noise ratio (SNR) correspond to µR|τ ∼ Unif([−1.5b,−0.5b] ∪ [0.5b, 1.5b]) and
µR|τ ∼ Unif([−3b,−b] ∪ [b, 3b]) respectively.
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3. Real Data Analysis

The HASC (Human Activity Sensing Consortium) project aims at understanding the human activities
based on the sensor data. This data includes 6 human activities: “stay”, “walk”, “jog”, “skip”, “stair up”
and “stair down”. Each activity lasts at least 10 seconds, the sampling frequency is 100 Hz.

3.1. Data Cleaning
The HASC offers sequential data where there are multiple change-types and multiple change-points,
see Figure 3 in main text. Hence, we can not directly feed them into our deep convolutional residual
neural network. The training data fed into our neural network requires fixed length n and either
one change-point or no change-point existence in each time series. Next, we describe how to obtain
this kind of training data from HASC sequential data. In general, Let x = (x1, x2, . . . , xd)

⊤, d ≥ 1
be the d-channel vector. Define X := (xt1 ,xt2 , . . . ,xtn∗ ) as a realization of d-variate time series
where xtj , j = 1, 2, . . . , n∗ are the observations of x at n∗ consecutive time stamps t1, t2, . . . , tn∗ . Let
Xi, i = 1, 2, . . . , N∗ represent the observation from the i-th subject. τ i := (τi,1, τi,2, . . . , τi,K)⊤,K ∈
Z+, τi,k ∈ [2, n∗ − 1], 1 ≤ k ≤ K with convention τi,0 = 0 and τi,K+1 = n∗ represents the change-
points of the i-th observation which are well-labelled in the sequential data sets. Furthermore, define
n := mini∈[N∗]mink∈[K+1](τi,k − τi,k−1). In practice, we require that n is not too small, this can be
achieved by controlling the sampling frequency in experiment, see HASC data. We randomly choose
q sub-segments with length n from Xi like the gray dash rectangles in Figure 3 of main text. By the
definition of n, there is at most one change-point in each sub-segment. Meanwhile, we assign the label
to each sub-segment according to the type and existence of change-point. After that, we stack all the
sub-segments to form a tensor X with dimensions of (N∗q, d, n). The label vector is denoted as Y with
length N∗q. To guarantee that there is at most one change-point in each segment, we set the length
of segment n = 700. Let q = 15, as the change-points are well labelled, it is easy to draw 15 segments
without any change-point, i.e., the segments with labels: “stay”, “walk”, “jog”, “skip”, “stair up” and
“stair down”. Next, we randomly draw 15 segments (the red rectangles in Figure 3 of main text) for
each transition point.

3.2. Transformation
Section 3 in main text suggests that changes in the mean/signal may be captured by feeding the raw
data directly. For other type of change, we recommend appropriate transformations before training
the model depending on the interest of change-type. For instance, if we are interested in changes in
the second order structure, we suggest using the square transformation; for change in auto-correlation
with order p we could input the cross-products of data up to a p-lag. In multiple change-types, we
allow applying several transformations to the data in data pre-processing step. The mixture of raw
data and transformed data is treated as the training data.

We employ the square transformation here. All the segments are mapped onto scale [−1, 1] after the
transformation. The frequency of training labels are list in Figure S7. Finally, the shapes of training
and test data sets are (4875, 6, 700) and (1035, 6, 700) respectively.

3.3. Network Architecture
We propose a general deep convolutional residual neural network architecture to identify the multiple
change-types based on the residual block technique (He et al., 2016) (see Figure S5). There are two
reasons to explain why we choose residual block as the skeleton frame.

• The problem of vanishing gradients (Bengio et al., 1994; Glorot and Bengio, 2010). As the
number of convolution layers goes significantly deep, some layer weights might vanish in back-
propagation which hinders the convergence. Residual block can solve this issue by the so-called
“shortcut connection”, see the flow chart in Figure S5.



14 Jie Li et al.

• Degradation. He et al. (2016) has pointed out that when the number of convolution layers increases
significantly, the accuracy might get saturated and degrade quickly. This phenomenon is reported
and verified in He and Sun (2015) and He et al. (2016).

Fig. S5. Architecture of our general-purpose change-point detection neural network. The left column shows
the standard layers of neural network with input size (d, n), d may represent the number of transformations or
channels; We use 21 residual blocks and one global average pooling in the middle column; The right column
includes 5 dense layers with nodes in bracket and output layer. More details of the neural network architecture
appear in the supplement.

There are 21 residual blocks in our deep neural network, each residual block contains 2 convolutional
layers. Like the suggestion in Ioffe and Szegedy (2015) and He et al. (2016), each convolution layer
is followed by one Batch Normalization (BN) layer and one ReLU layer. Besides, there exist 5 fully-
connected convolution layers right after the residual blocks, see the third column of Figure S5. For
example, Dense(50) means that the dense layer has 50 nodes and is connected to a dropout layer with
dropout rate 0.3. To further prevent the effect of overfitting, we also implement the L2 regularization
in each fully-connected layer (Ng, 2004). As the number of labels in HASC is 28, see Figure S6, we
drop the dense layers “Dense(20)” and “Dense(10)” in Figure S5. The output layer has size (28, 1).

We remark two discussable issues here. (a) For other problems, the number of residual blocks, dense
layers and the hyperparameters may vary depending on the complexity of the problem. In Section 6
of main text, the architecture of neural network for both synthetic data and real data has 21 residual
blocks considering the trade-off between time complexity and model complexity. Like the suggestion
in He et al. (2016), one can also add more residual blocks into the architecture to improve the accuracy
of classification. (b) In practice, we would not have enough training data; but there would be potential
ways to overcome this via either using Data Argumentation or increasing q. In some extreme cases
that we only mainly have data with no-change, we can artificially add changes into such data in line
with the type of change we want to detect.

3.4. Training and Detection

Fig. S6. Label Dictionary

There are 7 persons observations in this dataset. The first 6 persons sequential data are treated
as the training dataset, we use the last person’s data to validate the trained classifier. Each person
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Fig. S7. Label Frequency
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Fig. S8. The Accuracy Curves

performs each of 6 activities: “stay”, “walk”, “jog”, “skip”, “stair up” and “stair down” at least 10 seconds.
The transition point between two consecutive activities can be treated as the change-point. Therefore,
there are 30 possible types of change-point. The total number of labels is 36 (6 activities and 30 possible
transitions). However, we only found 28 different types of label in this real dataset, see Figure S6.

The initial learning rate is 0.001, the epoch size is 400. Batch size is 16, the dropout rate is 0.3, the
filter size is 16 and the kernel size is (3, 25). Furthermore, we also use 20% of the training dataset to
validate the classifier during training step.

Figure S8 shows the accuracy curves of training and validation. After 150 epochs, both solid and
dash curves approximate to 1. The test accuracy is 0.9623, see the confusion matrix in Figure S9. These
results show that our neural network classifier performs well both in the training and test datasets.

Next, we apply the trained classifier to 3 repeated sequential datasets of Person 7 to detect the
change-points. The first sequential dataset has shape (3, 10743). First, we extract the n-length sliding
windows with stride 1 as the input dataset. The input size becomes (9883, 6, 700). Second, we use
Algorithm 1 to detect the change-points where we relabel the activity label as “no-change” label and
transition label as “one-change” label respectively. Figures S10 and S11 show the results of multiple
change-point detection for other 2 sequential data sets from the 7-th person.
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Fig. S10. Change-point Detection of Real Dataset for Person 7 (2nd sequence). The red line at 4476 is the
true change-point, the blue line on its right is the estimator. The difference between them is caused by the
similarity of “Walk” and “StairUp”.
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Fig. S11. Change-point Detection of Real Dataset for Person 7 (3rd sequence). The red vertical lines represent
the underlying change-points, the blue vertical lines represent the estimated change-points.
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