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Abstract

Citizen science mobilises many observers and gathers huge datasets but often without strict sampling

protocols, resulting in observation biases due to heterogeneous sampling effort, which can lead to biased

statistical inferences. We develop a spatiotemporal Bayesian hierarchical model for bias-corrected estimation

of arrival dates of the first migratory bird individuals at a breeding site. Higher sampling effort could

be correlated with earlier observed dates. We implement data fusion of two citizen-science datasets with

fundamentally different protocols (BBS, eBird) and map posterior distributions of the latent process, which

contains four spatial components with Gaussian process priors: species niche; sampling effort; position and

scale parameters of annual first arrival date. The data layer includes four response variables: counts of

observed eBird locations (Poisson); presence-absence at observed eBird locations (Binomial); BBS occurrence

counts (Poisson); first arrival dates (Generalised Extreme-Value). We devise a Markov Chain Monte Carlo

scheme and check by simulation that the latent process components are identifiable. We apply our model to

several migratory bird species in the northeastern United States for 2001–2021 and find that the sampling

effort significantly modulates the observed first arrival date. We exploit this relationship to effectively

bias-correct predictions of the true first arrivals.

Key words: Bayesian hierarchical model; Bias correction; Bird phenology; Opportunistic data; Sampling effort;

Species distribution

1 Introduction

1.1 The rise of citizen science

Defining citizen science and its boundaries is difficult (Haklay

et al., 2021). Broadly, the field involves a collaborative approach

to scientific inquiry that engages volunteers and non-professionals

in the collection, analysis, and interpretation of data. This

participatory model is not new. Friedrich Wilhelm Herschel, a

musician by training, discovered the planet Uranus in 1781 using

his telescopes. Charles Darwin conducted crowd-sourcing projects

in the 19th century by recruiting acquaintances and travellers

to write to him about their observations (Browne, 1996). The

longest-running citizen science initiative is the annual Christmas

Bird Count (Bock and Root, 1981), a census administered by

the National Audubon Society of wintering birds in the Western

Hemisphere by volunteer birdwatchers since 1900.

Citizen science has gained significant traction over the past

two decades, spurred on by growing world literacy levels and the

advent of devices and infrastructures in information technology

for gathering, reporting, sharing and storing data (Newman

et al., 2012; Wynn, 2017). These datasets are often collected at

relatively low cost and sometimes with unconventional funding

sources (Silvertown, 2009). Zooniverse1, the world’s largest

platform for volunteer-based research, has seen a surge in

registered volunteers to over 1.9 Million since its inception in

2009. Climateprediction.net runs climate modelling experiments

using the home computers of thousands of volunteers. There is

now a peer-reviewed journal (Bonney et al., 2016) dedicated to

disseminating research on citizen science, and the 2019 Citizen

Science Association biannual conference attracted 818 registered

delegates from 28 countries.

Citizen science is expected to grow in importance. Technological

progress continually improves how machines and citizen science

work together; for example, volunteer-classified training sets have

1 https://www.zooniverse.org/
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already been used to improve the performance of machine learning

approaches in astronomy (Marshall et al., 2015). Fraisl et al.

(2020) note that traditional data sources are not sufficient for

measuring the United Nations Sustainable Development Goals

(UN, 2015), but sources from citizen science are required to

better inform policies and actions. Citizen-science initiatives can

also have community-level impacts on the participants (Jordan

et al., 2012), such as by empowering them and giving them a

voice in local environmental decision-making (Bonney et al., 2016)

while increasing public awareness of the scientific process. Though

citizen science’s global economic value has been estimated to

amount to over 2.5 billion USD annually, the majority of data

collected through citizen-science initiatives have not yet reached

analysis in peer-reviewed literature (Theobald et al., 2015). There

is a need to develop and disseminate statistical methods that

facilitate wider scientific use of these datasets.

1.2 Analysis of data for species monitoring

Much of the recent growth in citizen science has occurred in

the ecological and environmental sciences (McKinley et al., 2015;

Pocock et al., 2018; Fraisl et al., 2022). A prominent example

in ecology is the eBird project (Cornell Lab of Ornithology,

2022), launched in 2002, which has led to a database of over

200 Gigabytes providing information on over 600 million bird

observations. Another important bird monitoring program within

the scope of citizen science is the North American Breeding Bird

Survey (BBS). It was launched in 1966 for official monitoring

purposes and engages large numbers of trained volunteers in

collecting standardised data on bird populations according to a

rather strict sampling protocol along several selected routes and

during each year. BBS data can be considered of high quality

but sampling is relatively sparse in space and occurs only during

fixed periods in the year, whereas the sampling of eBird data is

much more heterogeneous but provides a generally denser spatio-

temporal coverage, as we will detail in Section 2. We exploit

these two data sources in this work. Regarding non-avian species,

another recent example among many others is the deployment of

camera-trapping projects for mammal monitoring (Hsing et al.,

2022).

Many observation data in ecology are opportunistic, i.e.,

they were collected incidentally or without a predefined research

question in mind, so information on the criteria applied by

the observer for sampling and reporting observations is limited.

However, opportunistic data often allow for a spatiotemporal

coverage of species monitoring that would not be attainable

with protocol-based data collected by professionals at relatively

sparse and deterministically chosen sampling locations. Citizen-

science data is particularly valuable for statistical inference on

low-probability events (e.g., occurrences of rare species, or unusual

or extreme phenological events) and on occurrence times of events,

such as the arrival of migratory birds at their breeding site in

spring. The general data quality from citizen-science initiatives

is high (Kosmala et al., 2016), though the need for statistical

methods to account for different data biases prevails. Isaac

et al. (2014) discuss bias-correction approaches for ecological

trend estimates, and conclude that opportunistic data would be

further enhanced if information on the sampling effort at the

data collection points can be captured. They further identify

four key aspects of biases induced by volunteer sampling, due

to uneven sampling in time, space, effort per visit, and uneven

detectability of species individuals, which can vary by observer,

species and land cover. For example, detectability could be higher

in open landscapes than in dense forests. Moreover, the expertise

of individual observers for detecting and identifying species may

increase over time due to increasing experience and knowledge-

sharing with other observers, thus reducing observation biases

(Kelling et al., 2015; Johnston et al., 2018).

Using eBird, statistical modelling of sampling effort expressed

through various criteria was discussed by Tang et al. (2021). More

generally, a large body of literature has emerged to characterise

heterogeneous sampling effort and quantify it from available data

(e.g., Gelfand and Shirota, 2019; Fink et al., 2020; Johnston et al.,

2021, 2023).

Another problem arises when only the presence of species is

reported but not their absence (presence-only data), so areas

and times without any reported occurrences could correspond

either to the true absence of the species or to the presence

of the species but the absence of any observer. The BBS and

eBird datasets do not explicitly report absences, but both rely

on observation protocols requiring that all species detected at the

sampled location and identified by the observer be reported. In

eBird, data entries satisfying this protocol are known as checklist

data, with a unique space-time coordinate associated with each

checklist; these account for the vast majority of eBird entries.

Checklist data in eBird are quality-controlled by experts, and

non-expert observers can train in birding with resources offered

by eBird, such as tutorials, online courses and bird identification

apps. Observer skill for detecting and correctly identifying various

bird species still varies across observers, even for experts. Due to

the large number of observers contributing to the eBird dataset,

our model will capture an observation effort that represents the

average observation skill.

We adopt the common approach of considering species not

reported within a checklist as being absent from the space-

time location of the checklist. By systematically adding such

(pseudo-)absence information to the dataset, we obtain a binary

observation for each combination of checklist and species, with

1 corresponding to presence and 0 corresponding to (pseudo-

)absence of the species. We can then estimate the species presence

probability using available predictors with a binomial likelihood.

1.3 Extreme-value analysis for migratory bird arrivals

Extreme-Value Theory (EVT, Coles, 2001) is a branch of

probability theory and statistics that originated in the first half

of the 20th century. It provides a theoretically justified framework

to model extreme events, i.e., the tails of data distributions. It has

been extensively used in fields such as finance and environmental

sciences, especially for climate data. Applications in ecology

have so far mostly focused on extremes of abiotic environmental

processes (Gaines and Denny, 1993; Katz et al., 2005) but which

can have a strong influence on biotic processes, for example when

very low winter temperatures contribute to limiting the extent of

outbreaks of forest pests (Thibaud et al., 2016). However, direct

applications of EVT to biotic variables are scarce, due perhaps

to the strongly discretised nature of species observation data,

often collected in the form of presence-absence information or

relatively small occurrence counts. By contrast, standard EVT

is more focused on variables measured on a continuous scale.

Recent ecological studies leveraging EVT aim to model species

accumulation curves (Borda-de Água et al., 2021), extremes of
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species movements (Wijeyakulasuriya et al., 2019) or the first

arrival dates of migratory birds (Wijeyakulasuriya et al., 2023).

However, the aforementioned approaches do not explicitly consider

the specific observation biases inherent to ecological datasets,

which is the focus of our work.

The first arrivals of migratory birds at their destination for

a given year are an example of phenological events, i.e., of

recurring life history events of species, such as migration or

breeding. Bird migration is a complex phenomenon taking place

over large geographic scales (Somveille et al., 2015), with possible

temporal trends in migration patterns resulting from changes in

climate, land cover and other ecological and evolutionary factors

(Cotton, 2003; Conklin et al., 2021). The study of migration

patterns, and particularly of arrival times at the breeding site, has

attracted strong interest (Linden, 2011; Youngflesh et al., 2021).

Approximately 20% of all bird species are concerned by migration,

which allows birds to adapt to seasonal cycles in climatic stresses

and in the availability of resources such as food, especially during

their breeding period.

Previous studies often used rather complex approaches to define

and estimate a date that can be viewed as representative of the

arrival of birds at their breeding site. Throughout this paper, we

will simply write “first arrival” to refer to the calendar date of first

arrival. Youngflesh et al. (2021) based the representative date for

a given area and year on both the first arrival of an individual bird

and the first local maximum of the species’ detection probabilities

estimated from eBird data. In our approach, we focus only on the

first arrival for each pixel of a spatial mesh covering the study

area, i.e., we model the minimum of all dates of occurrence of the

species during the year. We use the Generalised Extreme-Value

distribution motivated by EVT to model this sample extreme of all

observed occurrence times in the year, similar to Wijeyakulasuriya

et al. (2023). We consider dates as a continuous variable, which is

sensible since the distribution of observed first arrivals spans over

a long enough period so that discretisation effects have a weak

influence; Figure 1 suggests that observed dates span over several

months. Although distributions for discrete extremes have been

proposed in the literature (e.g., Prieto et al., 2014; Hitz et al.,

2017; Ranjbar et al., 2022), they usually come with overhead

for numerical computation and modelling. Moreover, asymptotic

theory is limited to heavy-tailed variables, by contrast with our

setting where tails have a natural finite bound and are therefore

light-tailed.

In the northeastern US, birds arrive during spring from more

southern regions where they have spent overwintering. Our goal

is to analyse how the probability distribution of the first arrivals

varies across bird species and space in this region, and in response

to factors related to climate and land cover. The mapping of the

arrival at breeding sites should be restricted to locations where

birds are present during the year, i.e., locations that provide a

suitable environment for birds to breed, and so the considered

locations must be part of the spatial area forming the ecological

niche occupied by the bird species for breeding. We thus design our

statistical model to predict both the niche and the first arrivals.

At locations where the species presence probability is very low

according to the niche model, we will not map arrival times.

To our knowledge, the modelling approach developed here is the

first that aims to appropriately capture the interplay of the niche,

the sampling effort and the observed first arrivals to provide bias-

corrected predictions of the true first arrivals. Wijeyakulasuriya

et al. (2023) used only eBird data and focused on modelling the

spatial dependence among the first arrivals for each year using

the class of max-infinitely divisible models, so that first arrivals

at locations without observations during certain years can be

predicted. We extend their approach and consider the niche and

the sampling effort when predicting first arrivals, and we focus

on revealing spatial patterns that remain stable across the whole

study period. The approach of Youngflesh et al. (2021) is based

on a different metric for the arrival dates, with a less direct and

intuitive interpretation, and it does not account for sampling effort

except for choosing a study area with a relatively high overall

sampling effort in eBird.

1.4 Bayesian modelling of complex ecological data

Observation data in ecology often do not directly measure the

latent (i.e., not directly observed) processes of interest, such

as the ecological niche, the sampling effort and the timing of

a phenological event in our case. This is due to observation

biases and complex interactions among such processes. Moreover,

different data sources (e.g., eBird and BBS) can contribute

complementary information about the same latent process (e.g.,

the ecological niche). The data we use here provide a concrete

illustration. The eBird checklists are available for spatiotemporal

locations chosen by the observers and provide generally good

spatiotemporal coverage of the study area, especially for the

most recent years in the study period. By contrast, the BBS

observations are only available along predefined routes of length

around 40 km, with up to 50 stops separated by around 800 m

at which observers can report occurrence numbers of detected

bird species. Time intervals for observation are also imposed by

the study protocol. Therefore, observation always takes place

at prespecified spatiotemporal locations in BBS, with the land-

cover type at those locations marked by the presence of a usually

relatively large road. As a consequence, BBS data may be less

representative of all possible land-cover types in comparison to

eBird, and also provide no direct information about events taking

place outside the prescribed observation time interval, such as first

arrivals. On the other hand, within BBS many routes have been

sampled during each year since the 1970s, so the temporal coverage

of BBS over the full study period is more homogeneous and

complete than eBird. Combining information from both datasets

offers the possibility of improved inferences for properties of the

niche and of phenological events of bird species.

With Bayesian hierarchical models (BHMs, Banerjee et al.,

2003), data are assumed to be generated conditional on latent

processes, which in turn are conditioned on hyperparameters

(e.g., variance or spatial correlation range). This makes it

possible to account for spatial patterns, complex relationships

and uncertainties. Using Bayes’ Theorem, the combination of

prior information based on expert knowledge and the data

likelihood results in posterior distributions for latent processes and

hyperparameters that reflect updated beliefs about the processes

of interest given the observed data (van de Schoot et al., 2021).

An interesting application of BHMs in ecology is the fusion

of presence-only data, available through large datasets but

with strongly heterogeneous and unknown sampling effort, with

presence-absence data, available through smaller datasets but

with known sampling effort, to infer species distribution maps

(e.g., Gelfand and Shirota, 2019). An important element of

such approaches is the inclusion of a latent Gaussian field that
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represents spatial heterogeneity in preferential sampling, similar

to the foundational work of Diggle et al. (2010).

To infer the complex BHM we design for mapping the niche,

observation effort and first arrivals, we devise a Markov Chain

Monte Carlo scheme with Vecchia likelihood approximations

(Vecchia, 1988; Katzfuss and Guinness, 2021) and Metropolis-

adjusted Langevin Algorithm (MALA, Roberts and Rosenthal,

2001) updates for the latent Gaussian fields. Our approach marks

the first use of the Vecchia approximation in Bayesian hierarchical

modelling for spatial extremes, extending other recent approaches

in EVT (Huser et al., 2023; Majumder et al., 2024).

1.5 Outline of the paper

Section 2 presents the datasets and extensive preprocessing

steps. In Section 3, we recall the basics of EVT and introduce

the Bayesian hierarchical model we use to identify the spatial

variability of three aspects (sampling effort; niche of a given

species; date of arrival of the first individuals during spring

migration for a given species). Details of latent Gaussian process

models and Markov-Chain Monte-Carlo inference are presented

in Section 4, together with a simulation study that confirms

the statistical identifiability of the model components.Results for

estimated first arrivals and other model components are presented

for several species in Section 5. A discussion and an outlook

towards future research related to our approach and to citizen-

science data more generally concludes the paper in Section 6.

2 Datasets and preprocessing steps

2.1 Bird observation data

We extracted bird observation data from eBird and BBS databases

for the study period 2001–2021. Both databases provide separate

data files for each state in the selected study area in the

northeastern US composed of the following states: Connecticut,

Maine, Massachusetts, New Hampshire, New Jersey, New York,

Pennsylvania, Rhode Island, Vermont. We merged the extracted

data into a single dataset. We extracted the full observation

record of the eBird Basic Dataset, where each entry reports the

observation of one or several individuals of a species, and retained

the following attributes: name of species, count of observed

individuals, longitude, latitude, date, duration of observation (i.e.,

temporal sampling effort), and a flag indicating if the observation

is part of a so-called checklist. Recall that a checklist is an

observation event where observers report all species they observe,

provided they succeed in identifying the species. For BBS, we

extracted information about observed species at the level of the

survey route and year.

The first arrivals of migratory birds in the study area are known

to take place at the earliest towards the end of March. Here

we identify migratory species as having no observations during

the winter months of December and January in eBird. For the

migratory species characterized by this property, we remove a

few February occurrences that are understood as carryovers from

the preceding autumn season. Only migratory species that had at

least 200 occurrences in eBird for 2021 and were also observed in

BBS are kept. This selection procedure led us to consider around

50 species as migratory, and we apply our modelling approach

to the ten species with the largest number of reported presences

in eBird: Red-eyed Vireo, Eastern Wood-Pewee, Chimney Swift,

Great Crested Flycatcher, Warbling Vireo, Veery, Chestnut-

sided Warbler, Magnolia Warbler, Purple Martin, Blackburnian

Warbler, in decreasing order of occurrence entries.

The following two data tables were generated from eBird:

• eBird checklists: each row corresponds to one checklist in

eBird, with attributes longitude, latitude, year and duration

of observation;

• eBird species occurrence: for each migratory species, the table

contains the same number of rows as there are checklists, and

each row contains the attributes of the checklist, the name of

the species, and the binary presence-absence flag to indicate

if the species was observed. Species observations flagged as

“flyover” in eBird (i.e., where birds did not nest or breed near

the observation location) were declared as absences.

We define four response variables for the components of our

regression model based on BBS species counts and eBird data

aggregated to a regular pixel grid of 20km width. This pixel size

is similar to the spatial mapping unit used for most official eBird

communications. Our response variables are:

• BBS species counts: the number of observed birds, available for

each combination of migratory species, route and year, where

only routes surveyed during the specific year are considered;

we use the Poisson distribution for this variable;

• eBird checklist count: the number of available checklists,

calculated for each configuration of year and pixel; we use the

Poisson distribution for this variable;

• eBird occurrence count: the number of checklists (among all

available checklists) for which the species was reported present,

calculated for each configuration of species, year and pixel; we

use the binomial distribution for this variable;

• eBird first arrivals: the minimum date of observation,

expressed as the number of days since January 1st, calculated

for each configuration of species, year and pixel where at least

one observation of the species occurred; we use the Generalised

Extreme-Value distribution (GEV) for the negated variable,

which therefore represents a maximum.

Some of the above datasets and their components are illustrated

in Figure 3.

2.2 Effect of observation effort on first arrivals

Figure 1 shows observed first arrivals plotted against positive

checklist counts, for each pixel-year combination and two species.

Observed dates tend to occur later during the year when fewer

checklists are available, i.e., when sampling effort was lower in

space. This gives strong motivation for modelling the influence of

sampling effort on observed dates, and then using the estimated

relationship to bias-correct predictions for true dates by setting the

sampling effort to a very high value during the prediction step.

Figure 2 further explores whether the duration of observation

during a checklist helps explain the residuals obtained after fitting

a local regression curve in Figure 1. We detect a slight effect of

duration for the two example species in Figure 2, with relatively

earlier arrivals arising for longer durations. This suggests that

both the number of checklists and the duration of observation per

checklist are relevant components of the overall sampling effort

modulating the distribution of the observed first arrival of birds

at their breeding sites, with higher effort associated with earlier

observation of the first arrival.
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Fig. 1: Scatterplots of the logarithm positive checklist counts (x-

axes) and first arrivals (y-axes, with later dates corresponding to

lower values) observed at each pixel-year combination for Chimney

Swift (left) and Chestnut-sided Warbler (right). The larger dots

show 20 binned estimates, the black line a smooth fitted curve,

and the shaded region the 95% pointwise confidence intervals of

the curve.

Fig. 2: Scatterplots of the inverse duration of observation during

checklists (x-axis) and the residuals obtained from fitting a

smooth local regression curve to the first arrivals (with later dates

corresponding to lower values) as a function of the logarithm (with

base 10) of positive checklist counts (y-axis), for Chimney Swift

(left) and Chestnut-sided Warbler (right). To improve readability,

the range of values shown for the residuals does not include all

points.

To explain the remaining variability in the residuals in

Figures 1 and 2, we conjecture that other factors related to

spatial variation in bird phenology and in species presence are

relevant. We construct our model to estimate spatial effects for

these properties and then use them to correct predicted first

arrivals.

2.3 Climate and land-cover data

The North Atlantic Oscillation (NAO) Index describes changes in

the strength of two recurring pressure patterns in the atmosphere

over the North Atlantic: a low near Iceland, and a high near

the Azores Islands. Positive NAO indicates these features are

strong, creating a big pressure difference between them. Strongly

positive values are linked to warm conditions across the Eastern

US and Northern Europe, and cold conditions across Southern

Europe. Negative NAO indicates these features are relatively weak,

and the pressure difference between them is smaller. Strongly

negative NAO is linked to cold conditions in the Eastern US and

Northern Europe, and warm conditions in Southern Europe. As a

covariate at annual temporal resolution, we use the average NAO

for March, which was identified as a relevant climate predictor for

bird migration timing by Wijeyakulasuriya et al. (2023).

We use the 2021 National Land Cover Database (NLCD) of

the US to extract land-cover information. To facilitate model

construction and identifiability, we will not use land-cover

variables as covariates within our BHM. Instead, we will compare

posterior maps of the niche, observation effort and components of

the first arrival distribution with land cover maps to detect and

interpret significant correlations between model components and

land cover. Land cover proportions for the pixel grid are reported

in the Appendix (Figure 10) for four land-cover types, defined

by merging original NLCD categories: Developed areas (including

all areas with buildings and infrastructure such as roads); Forest;

Vegetation (excluding forest but including planted and cultivated

land); Water (including wetlands).

Figure 3 shows a schematic summarising the different data

sources and preprocessing steps of our approach, and the overall

workflow of the model. The plot in Panel 1 illustrates a strong

increase in eBird checklists and in spatial coverage between

the beginning and the end of the study period; the plot in

Panel 2 highlights that the median duration per checklist varies

substantially in both space and time. In fact, in 2001 we see

relatively longer durations in specific spatial regions, while in 2021

the durations are more homogeneous across larger areas and also

generally longer. The display in Panel 3 shows the occurrence dates

of observations of a species pooled together for a pixel-year, and

we extract the minimum day of the year, which will serve as an

observation for the GEV response variable in our BHM. Finally,

the figure in Panel 4 shows the number of BBS stops in 2001 and

2021.

3 Bayesian hierarchical model

3.1 General setting and notations

Figure 3 also highlights the four components in the data layer

of the BHM we propose, and we here detail its notations and

structure.

We write S × T for the space-time study domain, and denote

by Ai, i = 1, . . . , D × T , the set of non-intersecting space-time

cells based on a division of the study area S into D = 1268 pixels,

replicated over T = 21 years. We identify each cell Ai with a

representative location (si, ti), such as its barycenter, where si ∈
S and ti = 1, . . . , T .

Let Nckl
i be the number of eBird checklists in Ai. If Nckl

i > 0,

then Nspc
i ∈ {0, 1, . . . , Nckl

i } denotes the sum of the binary

indicators of detecting a given species from each of the Nckl
i

checklists. Binary indicators equal 1 if the species was detected and

0 otherwise. Given Nspc
i > 0, we write Yi = (Yi,1, . . . , Yi,Nspc

i
) ∈

[1, 365]N
spc
i to denote the corresponding first arrivals in si within

the year ti from the Nspc
i observed species occurrences. Based

on these arrival dates, we calculate Z′
i = −min

Nspc
i

j Yi,j =

max
Nspc

i

j (−Yi,j), the first arrival in year ti within si. We set

Zi = − log(−Z′
i/366) to reflect that Z′

i has a natural lower bound

at −366, and model Zi > 0 instead.

3.2 Extreme-value distribution for first arrivals

Provided that the partitioning of S provides enough ‘effectively

independent’ arrival times within each pixel-year Ai, Extreme-

Value Theory (EVT, Coles, 2001) motivates using a Generalised

Extreme-Value distribution (GEV) to model the transformed

first arrivals in Ai. Invoking EVT, we assume convergence in

distribution of each Zi to a limiting GEV as Nspc
i → ∞.
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Fig. 3: Schematic summarising the data sources, the data preprocessing steps and the four components in the data layer of the BHM

(panels labelled with numbers 1 to 4). The dashed lines illustrate our modelling choices and how model components interact, but they

need not show the chronology of how these components are estimated, since the whole model is estimated jointly using a fully Bayesian

approach. The plots in the panels numbered ‘1’, ‘2’ and ‘4’ show the number of available eBird checklists, the median duration spent per

checklist in each pixel, and the number of stops along a route from the BBS data, respectively, in 2001 (left display in each panel) and

2021 (right display).

Let Mn denote the maxima of independent and identically

distributed random variables X1, . . . , Xn. If Mn converges

in distribution to a non-degenerate distribution after linear

renormalisation, then this distribution must be a GEV; this

theoretical result was further extended and shown to hold

for maxima over dependent data, although under technical

assumptions that are difficult to formally validate in applications.

In practice, for fixed n large enough (where n = Nspc
i in our

setting), one uses the approximation

Pr(Mn ≤ z) ≈


exp

{
− exp

(
− z−µ

σ

)}
, ξ = 0,

exp

{
−

[
1 + ξ

(
z−µ
σ

)]−1/ξ
}
, ξ ̸= 0,

(1)

where the right-hand side of (1) is the distribution function of the

GEV, defined on {z : 1 + ξ(z − µ)/σ > 0} with location µ ∈ R,
scale σ > 0 and shape ξ ∈ R. The shape parameter determines

the tail behaviour of the GEV: for ξ > 0, the GEV has support

with a finite lower endpoint and an upper heavy tail of power-

law form; for ξ < 0, the GEV has a finite upper endpoint but

is unbounded below; for ξ = 0, the support of the GEV has no

finite bounds, and the upper tail exhibits an exponential decay

rate. In our application, some sample sizes Nspc
i can be very small

and dates Yi,j , j = 1, . . . , Nspc
i can be dependent, but the three-

parameter GEV remains a flexible model to accommodate relevant

distributional properties of the maxima Zi, even in cases where

the theoretical asymptotics are not reached. The transformation

from Z′
i to Zi is very close to linear in a large neighbourhood of

Z′
i = 100 (corresponding to approximately mid-April), so it does

not substantially modify the shape ξ but the parameters µ and σ.

We incorporate linear predictors into the GEV regression equation

used to model Zi in our BHM: one for the location µ and another

for the scale σ.

3.3 Data layer of the Bayesian hierarchical model

We construct a system of four regression equations with latent

Gaussian processes used in the linear predictors. We denote the
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response variables, as described in Section 2.1, as follows: Nckl
i

– eBird checklist count per pixel-year i; NBBS
j – BBS counts of

the species of interest per year-route j; Nspc
i – eBird occurrence

count for the species of interest per pixel-year i; Zi – transformed

negated first arrivals for the species of interest in eBird per pixel-

year i.

For the response variable Nckl
i reporting the checklist counts,

we weight the Poisson intensities according to the surface areas

Ai of the pixels (i.e., we use an offset of logAi in the linear

predictor), since some pixels at the boundary of the study region

have smaller area. For the response variable NBBS
j reporting the

BBS occurrence counts, observations are made along a subset of

50 equidistant stops along each of the routes, and we weight the

Poisson intensities accordingly with the number of stops (between

1 and 50) that were visited. To alleviate notations in the predictor

formulas below, we do not explicitly write down these weights

related to pixel surface areas and road lengths. Moreover, routes

can span across several pixels, so we construct the Poisson intensity

parameters as a weighted mean of the parameters for the involved

pixels with weights wk defined as the percentage length inside each

of the cells Ak.

The hierarchical system of the four regression equations is

NBBS
j | λBBS, θbbs ∼ Pois

 ∑
k∈routej

ωkλ
BBS(sk; θbbs)

 ,

Nckl
i | λckl, θckl ∼ Pois

{
λckl(si, ti; θckl)

}
,

Nspc
i | Nckl

i , pspc, θspc ∼ Bin{Nckl
i , pspc(si, ti; θspc)},

Zi | µ, θµ, σ, θσ ∼ GEV{µ(si, ti; θµ), σ(si; θσ), ξ},

where

θbbs, θckl, θspc, θµ, θσ ∼ Hyperpriors

are hyperparameters for the random predictors λBBS, λckl, pspc,

µ and σ that govern the different model components; we discuss

their specifics next. Checklist occurrences form a point pattern,

and due to the structure of the Nckl
i -related model component, we

model them as a spatiotemporal log-Gaussian Cox point process

(Møller et al., 1998), discretised according to the cells Ai.

3.4 Structure of latent Gaussian processes

We write X(•) to denote any latent Gaussian effect, here either

indexed by pixels s ∈ S or years t ∈ T . We use Gaussian

process priors for all latent effects. We further use the exponential

covariance function to parametrise the spatial effects, given as

follows for two locations s1 and s2:

Cov{X(s1), X(s2)} = σ2 exp(−||s1 − s2||/κ), σ, κ > 0,

with Euclidean distance || · ||, standard deviation σ > 0 and range

parameter κ > 0.

The four spatial Gaussian process priors included in our model

are

Xpref(•) ∼ GP(ω1), Xniche(•) ∼ GP(ω2),

XGEV-µ(•) ∼ GP(ω3), XGEV-σ(•) ∼ GP(ω4), (2)

where ω1, ω2, ω3 and ω4 contain individual range and standard

deviation parameters that control the spatial dependence of

each process. These hyperparameters are assigned identical joint

Penalised Complexity priors (Fuglstad et al., 2018). We also

impose sum-to-zero constraints on all spatial effects to aid with

identifiability. Spatial patterns of the niche of the species are

captured by Xniche, whereas spatial patterns of the sampling

effort are modelled through Xpref . Moreover, we include a

temporal latent effect Xyear to capture the variability in checklist

counts across years, and set the prior Xyear(·) ∼ GP(ω5) where

ω5 contains the range and standard deviation parameters of a

temporal exponential correlation function.

The structure of link functions and linear predictors, explained

in detail subsequently, is:

log λBBS(si) = βBBS
0 +Xniche(si),

log λckl(si, ti) = βckl
0 +Xyear(ti) +Xpref(si),

cloglog{pspc(si, ti)} = βspc
0 +Xniche(si) +

βact

dsi,ti

,

µ(si, ti) = g{βGEV-µ
0 +XGEV-µ(si) + βGEV-µ

1 NAOti

+ θniche-GEVXniche(si), xeffort(si, ti)},

log σ(si) = βGEV-σ
0 +XGEV-σ(si).

The climate covariable, i.e. the NAO value for year ti, is denoted as

NAOti , and we include it inside the link function g (detailed below)

as a fixed effect modulating the upper bound of the GEV location

parameter. The scaling parameter θniche-GEV controls the scale of

sharing of the niche spatial effect. All scaling hyperparameters and

intercepts in the model, along with ξ, are given flat normal prior

distributions with mean 0 and variance 100. The complementary

log-log link function cloglog(p) = log(− log(1 − p)) for binomial

probabilities allows interpreting them as the probabilities of

observing at least one count in a Poisson model (which is equal

to 1 − exp(−λ)) with Poisson intensity λ = exp(x). This ensures

consistency with the Poisson model for the BBS counts.

We differentiate between two dimensions of sampling effort that

we combine into xeffort. The first one is modelled through the

space-time intensity λckl of checklists, which we call the preference.

We hypothesise that it influences the first arrivals Zi, where a

higher preference likely leads to more and thus earlier sightings

in the year. The second dimension of sampling effort that we

consider here is the median duration of observation per checklist

in a pixel-year dsi,ti , which we call the activity. This effect could

influence both the binomial probability of observing the species

of interest in a checklist, and again the first arrivals. A higher

activity could increase the probability of observing the species in

a checklist, which could also induce an earlier observed first arrival.

We combine the two effects preference and activity into

xeffort(si, ti) = θeff+θpref log λckl(si, ti) +
θact

dsi,ti

(3)

with real-valued scaling hyperparameters θpref (typically expected

to be positive) and θact (typically expected to be negative), and

an intercept θeff representing a baseline sampling effort that is

modulated according to the checklist abundance and observer

activity. With this structure, setting an infinite duration dsi,ti

causes the activity term to vanish.

The next subsection explains the choice we make for the

nonlinear link function g of the GEV location parameter.
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3.5 Saturated sharing towards the GEV predictor

Sharing latent processes across carefully chosen regression

equations, as implemented in Section 3.4, enables us to

leverage data from several response variables to identify the four

latent processes. Specifically, we want to identify the effect of

spatiotemporally heterogeneous sampling effort and correct it in

predictions, such as those of the true first arrivals.

The most often used approach of sharing latent effects between

regression equations is via a linear structure where the linear

predictor of one regression equation has an additive component

X(•), while another has an additive component β × X(•), with a

scaling factor β ∈ R. This yields models akin to the preferential-

sampling framework of Diggle et al. (2010) and Pati et al. (2011),

and to Koh et al. (2023) and Yadav et al. (2023) in the context of

joint modelling of occurrences and sizes of wildfires or landslides.

However, such linear sharing is not flexible enough for sharing the

sampling effort towards the linear predictor of the µ parameter

of the GEV for first arrival dates. Letting the effort tend to

infinity with linear sharing would lead to first arrivals tending

to January 1st, the smallest possible value. As illustrated by the

exploratory data analysis in Figure 1, the observation effort effect

on first arrivals saturates at very high levels. Therefore, we share

xeffort with the µ component of the GEV through the following

upper-bounded function

g(xbound, xeffort) =
exp(xbound)

1 + exp(−xeffort)
, (4)

where the first argument determines the upper bound in the

GEV location parameter, which is modulated by the sampling

effort in the second argument and can be attained with unlimited

(i.e., infinite) effort. The g-function is always positive, which is

appropriate here when considering as response the transformed

dates Zi > 0. Figure 4 illustrates that the class of functions (4)

is bounded and monotonically increasing, therefore allowing the

effect of the sampling effort on the first arrivals to saturate with

high effort.

The structure we put into (4) is also inspired by species

accumulation curves in ecology (Colwell et al., 1994), but here

we replace the species abundance with the first observed arrival

dates. To our knowledge, such an approach has not yet been

considered in the literature. It establishes a representation that

is both parsimonious and “physically meaningful”, a feature that

is desirable in statistical modelling in various contexts such as

landslide prediction in Opitz et al. (2022) or temperature extremes

in Noyelle et al. (2024).

4 Simulation-based Bayesian inference

Fast and relatively accurate off-the-shelf implementations of

Bayesian hierarchical inference exist, such as the INLA framework

(Rue et al., 2017). However, due to certain specifics of our model,

such as the nonlinear sharing of latent spatial effects and the

inclusion of linear predictors in several parameters of the GEV, it is

not feasible to use them here. Instead, we develop a Markov-Chain

Monte-Carlo sampler for simulation-based inference.

4.1 Vecchia approximation for Gaussian components

Due to the large number of spatial cells in our case study

(D = 1268), keeping spatial latent Gaussian effects and their

conditional distributions numerically tractable is challenging.
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Fig. 4: Plots of the nonlinear sharing function g in (4) for varying

xeffort (x-axis) and xbound (colours).

Various solutions have been proposed to tackle this fundamental

problem in spatial statistics with large-dimensional data, including

Gauss–Markov random fields used to approximate certain types

of covariance functions based on Stochastic Partial Differential

Equations (Lindgren et al., 2011, SPDE approach,), or Nearest-

Neighbor Gaussian processes (NNGPs, Datta et al., 2016).

Here we use another flexible and popular option to construct

approximate Gauss–Markov representations of any Gaussian

covariance function through the Vecchia (1988) approximation,

which leads to a sparse Cholesky factor of the precision matrix.

We write {x1, . . . , xD} for the set of observations of a Gaussian

field X evaluated at locations s1, . . . , sD ∈ S, and we consider a

permutation m : {1, . . . , D} → {1, . . . , D} defining a reordering of

the observations. Based on this reordering, we can write H(i;m) =

{j ∈ {1, . . . , D} : m(j) < m(i)} for the “history” of the ith

index based on the permutation m, with xH(i;m) denoting the

corresponding subvector of observations. For a chosen permutation

m, the exact joint density of the observations can be written as

the product of conditional densities, i.e.,

f(x1, . . . , xD) = f(xm(1))
D∏

i=2

f(xm(i) | xH(i;m)).

The Vecchia approximation still represents a valid Gaussian

process, but assumes that

f(x1, . . . , xD) ≈ f̂(x1, . . . , xD)

= f(xm(1))
D∏

i=2

f(xm(i) | xS(i;m)), (5)

where S(i;m) ⊆ H(i;m) and |S(i;m)| = k. The approximation

reduces the conditioning history in the conditional densities, which

decreases the computational complexity of evaluating the density

from O(D3) to O(Dk3). This reduction is considerable if k ≪
D, as in our setting with D > 1000. An active research area

(Katzfuss and Guinness, 2021) is to understand how one should

choose the permutation m and order the conditioning variables

in (5) to obtain approximations that satisfy certain criteria of

optimality. Vecchia (1988) suggested to order the conditioning

variables lexicographically based on their spatial coordinates, but

this approach has been shown to be inefficient (Guinness, 2018).

Instead, we follow the ordering proposed by the latter study, which

ensures that points are ordered in a quasi-random fashion. We

select k = 5 conditioning locations in our case study to make
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inference feasible. The simulation study detailed in Section 4.3

confirms that estimation works well.

4.2 Proposal scheme for Markov-Chain Monte-Carlo

We draw posterior inference on the parameters using a

general Markov-Chain Monte-Carlo (MCMC) sampling scheme

with customised Metropolis-Hastings (MH) updates. The

hyperparameters are updated using Gibbs sampling. The most

computationally intensive part of our scheme involves sampling

from the latent Gaussian components, which are updated jointly

through a Metropolis Adjusted Langevin Algorithm (MALA;

Roberts and Rosenthal, 2001) designed to speed up mixing of the

chains. We write x for the current state of the latent Gaussian

component of interest, x⋆ for a proposal for that component, and

y for the data vector. A discrete approximation of the Langevin

diffusion implies that MALA is a MH algorithm with proposal

distribution

(x⋆|x) ∼ Np

(
x+

δ2

2
∇θ log π(x|y), δ2Wp

)
, (6)

where tuning parameters are the pre-whitening matrix Wp, used

to account for the correlation between parameters within the

component, and the stepsize δ. For example, if we set x =

{Xniche(s1), . . . , Xniche(sD)}, the gradient in (6), when updating

this component, is

∇x log π(x|y) ≈∇x log πBBS(N
BBS | x) +∇x log πspc(N

spc | x)

+∇x log πGEV(Z | x) +∇x log πVecchia(x),

where the first three terms represent the gradients of log-

likelihoods for the model components that Xniche is included in,

and

∇x log πVecchia(x) = −Σ̃−1
ω2

x,

where theD×D precision matrix Σ̃−1
ω2

is the Vecchia-approximated

precision of the Gaussian field prior assigned to Xniche, as detailed

in §4.1 and implied by (5). The precision matrix is parametrised by

the vector ω2 = (σ, κ), see §3.4, to which we assign a hyperprior.

For our data application, we parallelise and run separate

chains for each species. We generate 80′000 posterior samples and

discard the first 60′000 as the burn-in period. We then perform a

standard thinning operation of the Markov chains and keep one

of four consecutive samples, thus obtaining 5′000 samples overall

to perform posterior inference. We divide the number of posterior

samples and the burn-in period by two for our simulation study for

computational reasons. We monitor the convergence and mixing of

the chains through trace plots and by assessing the effective sample

size. Code implemented for the MCMC procedure is available

at https://github.com/kohrrelation/mcmc_birds. To obtain a

shorter burn-in period and to avoid having initial values too far

from the region where posterior mass concentrates, we ran test

chains that model each model component separately first (where

we can estimate all parameters except the sharing parameters).

When possible, we then used the last values of those chains as

starting values when fitting the full model. Calculations were

performed on UBELIX2, the HPC cluster at the University of

Bern, and the computational time of our algorithm there is roughly

6 seconds per iteration.

2 https://www.id.unibe.ch/hpc

4.3 Simulation study

We check by simulation that the model parameters are identifiable

and can be estimated appropriately through posterior mean

estimates obtained from the above Bayesian inference procedure.

We especially wish to check whether the spatiotemporal field

of first arrivals and the niche of the species are identifiable.

This verification is important for the proposed models owing to

their high structural complexity with a relatively large number

of parameters. For the simulation study, we mimic our data

application and choose the same spatial domain and temporal

replicates, i.e., we simulate datasets at the D = 1268 pixels

over the T = 21 years from 2001 to 2021 with the same

covariates and data structures, including the climate covariate

(NAO), the number of BBS stops and the median duration in each

pixel-year. The values we set for latent Gaussian processes and

hyperparameters are similar to those obtained when having fitted

this model to the species Chimney Swift . To test model robustness,

we allow for potential model misspecification and overdispersion

in the checklist counts. So we add another layer of randomness to

the count component, giving

Nckl
i | Λckl

i , θckl ∼ Pois(Λckl
i ),

Λckl
i ∼ Γ{r, rλckl(si, ti; θckl)},

where Γ(a, b) is the Gamma distribution with shape a > 0 and

scale b > 0. As a result, Nckl
i has negative binomial distribution

with mean λckl(si, ti) and an inflated variance λckl(si, ti) +

λckl(si, ti)2/r. We set r = 10 and estimate all the parameters

for 100 independent replicates of such data.

The different model components are generally well identified

and reproduced by our estimation procedure. The results in the

Appendix (Figure 11) suggest that the posterior means of the

median first arrivals estimated with this procedure are indeed

essentially unbiased, and the truth is mostly well recovered.

Importantly, the temporal evolution and spatial patterns are also

captured satisfactorily. For example, in our simulation setting we

have spatially more homogeneous and later first arrivals for the

earlier years such as 2003, and the estimated posterior means

reproduce this property. The boxplots in Figure 11 suggest that

first arrivals for certain pixels are harder to estimate than others,

but the truth falls within the predicted interquartile ranges in most

cases. We obtained similar simulation results in the setting where

there is no model misspecification (not shown), i.e., r = ∞.

5 Results

We now apply the model constructed and checked in Sections 3

and 4 to the bird data described in Section 2, where we run

separate models for the 10 species with largest occurrence numbers

in eBird. We report a selection of results for four species: Chimney

Swift, Great Crested Flycatcher, Chestnut-sided Warbler and

Purple Martin. The MCMC trace plots in the Appendix (Figure

12) for one of the aforementioned species indicate that the chains

are mixing relatively well, though some parameters like θact and

βGEV-µ
0 still display autocorrelation after the burn-in period and

thinning.

To compare our approach with a simpler one where only the

first arrivals are considered but without modelling the niche or

sampling effort, we also report results for a model using only the

Zi-variables but not NBBS
i , Nckl

i and Nspc
i . We fit this model

https://github.com/kohrrelation/mcmc_birds
https://www.id.unibe.ch/hpc
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Fig. 5: Observed numbers of checklists, Nckl
i (left) against model-based posterior mean estimates of the Poisson mean number of checklists,

λckl(si, ti) (right), using the model fitted to Chimney Swift in 2001 (top) and 2021 (bottom).

separately and call it the GEV-only model, for which θniche-GEV

is null and xeffort set to a constant.

Figure 5 illustrates that there have been more checklists in

recent years, and the model captures these temporal differences

and also the spatial pattern in observed checklist numbers.

The posterior means of the sharing parameters are all positive

for θpref and mostly negative (or positive with 95% posterior

credible interval including zero) for θact (see Table 1), which

corroborates our exploratory findings from Section 2 that higher

sampling effort leads to earlier observed dates of first arrival.

Table 1 shows that the sharing parameter θniche-GEV often

has posterior credible intervals that do not contain zero, with

most posterior means in the range [0, 0.15]. This means that birds

tend to be observed earlier in areas where they are relatively

abundant. For βGEV-µ
1 , posterior means are generally hovering

around [0.01, 0.03] but often not containing 0 in its credible

intervals, indicating that first arrivals can take place slightly earlier

in years with high NAO. Higher NAO and temperature anomaly

correspond to warmer weather, which could explain earlier arrivals.

However, for the majority of the species we investigate these

slightly positive NAO coefficients appear not to be significant, as

their credible intervals include zero. We conclude that the slight

NAO effect on first arrivals could be present for some species but

there is no strong signal of a significant NAO effect across all

species; Wijeyakulasuriya et al. (2023) obtained a similar result

when applying their analyses to the Magnolia Warbler.

The GEV shape parameters are negative for all species and

have posterior means around −0.6 to −0.9, indicating that the

estimated first arrival dates have a fixed lower bound.

5.1 Excursion sets of latent spatial fields

We study the spatial patterns in the posterior estimation of the

four latent spatial fields in (2) for the sampling effort, the species

niche, and the µ and σ parameters of the distribution of the first

arrivals.

To identify areas with very high or low values of the spatial

random effects, we utilise credible sets for excursion regions

(Bolin and Lindgren, 2015). We evaluate where the fields exceed

or fall below certain thresholds. To visualise excursion sets

simultaneously for all values of the probability level α ∈ (0, 1),

Bolin and Lindgren (2015) introduced the positive and negative

excursion functions F+
u (s) = 1 − inf{α | s ∈ E+

u,α} ∈ [0, 1] and

F−
u (s) = 1−inf{α | s ∈ E−

u,α} ∈ [0, 1], where E+
u,α is the subregion

with maximal surface area in which the spatial field fully exceeds

the threshold u with probability α (with an analogous definition

of E−
u,α for threshold deficits below u). Figure 6 highlights these

excursion functions for the species Purple Martin. Sampling effort

is high in the southeastern areas near the ocean and strongly

decreases in the further northwestern areas. The niche of the

species tends to concentrate in southwestern areas. The fields

related to first arrivals show more fragmented spatial patterns for

this species.
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Table 1. Examples of predictions related to first arrivals for two pixel-years in 2022. The first five rows report the species and the posterior mean estimates

of selected parameters, with 95% credible intervals in brackets. The next rows give the observed, predicted (with the GEV-only model, and with the full

model), and debiased (with the full model) median first arrivals (in day/month format) at the two pixels indicated by the two triangles in Figure 8); the

first four rows here correspond to the pixel in the southeastern area, the last four rows to the pixel located in the middle of the study region. An “NA”

value in the Observed row indicates that there were no observations within that pixel in 2022. The strikethroughs over the dates indicate that our full

model estimates a species presence probability of less than 1% for that pixel-year.

Species Chimney Swift Great Crested Flycatcher Chestnut-sided Warbler Purple Martin

θ̂pref 0.191 (0.184,0.202) 0.204 (0.199,0.21) 0.187 (0.183,0.191) 0.2 (0.178,0.217)

θ̂act -0.15 (-0.217,-0.061) -0.818 (-0.911,-0.696) -0.548 (-0.619,-0.454) -0.03 (-0.269,0.236)

θ̂niche-GEV (×10−2) 4.9 (4.664,5.134) 4 (3.894,4.133) 0.2 (0.17,0.278) 6 (5.541,6.443)

βGEV-µ
1 (×10−1) 0.1 (-0.083,0.204) 0.2 (0.125,0.331) 0.3 (0.295,0.409) 0 (-0.384,0.526)

Observed NA NA NA NA

Predicted (GEV only) 28/05 27/05 01/07 18/06

Predicted 09/05 03/05 21/05 07/06

Debiased 03/04 13/04 03/05 28/03

Observed 01/05 04/05 04/05 29/06

Predicted (GEV only) 25/05 20/05 15/05 19/05

Predicted 09/05 15/05 12/05 12/05

Debiased 22/04 05/05 03/05 07/04

Fig. 6: Excursion set analysis for the four latent spatial fields Xeffort (top left), Xniche (top right), XGEV-µ (bottom left) and XGEV-σ

(bottom right) estimated by the model fitted to the Purple Martin. Thresholds are fixed at 2 ,1, 0.1 and 0.1 for the four fields, using the

same order.

5.2 Correlation of latent spatial fields with land cover

To further explain the patterns in the four latent spatial fields, we

calculate the correlation of their posterior means with the land-

cover maps described in Section 2 and shown in the Appendix

(Figure 10). This can improve our understanding of the land-cover

types that drive the four latent processes for a given species.

Figure 7 shows these correlations for four species. The

correlations between the estimated latent field for sampling effort

and land-cover proportions are very similar across species, which

is expected since the checklist count data for the corresponding

regression equation are the same in the four models. Sampling

effort has strong positive correlation with Developed (built)

areas, weaker correlation with Water-dominated or Vegetation-

dominated areas, and negative correlation with Forest. Regarding

the latent field for niche, it shows different patterns for different

species, for example with positive correlations with Forest for
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Fig. 7: Correlations of land-cover proportions (x-axis) with

posterior means of the latent fields Xeffort, Xniche, XGEV-µ and

XGEV-σ (y-axis), for four species: Chimney Swift (top left), Great

Crested Flycatcher (top right), Chestnut-sided Warbler (bottom

left) and Purple Martin (bottom right).

species that are known to breed in forests (e.g., Chestnut-sided

Warbler), and with Developed land cover for species known to

breed in Developed areas (e.g., Chimney Swift). The latent fields

describing the spatial variability in first arrivals show generally

weaker correlations with specific land-cover types. For example,

Chimney Swift tends to settle earlier in Developed and Vegetation

areas than in Water- and Forest-dominated areas.

5.3 Predicting true first arrivals

To illustrate the utility of our model, we predict the true first

arrivals in all pixels. Firstly, Figure 8 shows that the model

reproduces generally well the spatial variability in the probability

of observing species presence in eBird, with some differences in

empirical and model-predicted probabilities due to the additional

information provided by BBS data. We use this component of

the model to avoid predicting first arrivals at locations where

the presence of the species is uncertain in terms of the estimated

niche. Therefore, we do not map predictions of first arrival dates at

pixel-years where the estimated presence probability pspc{(si, ti)}
is smaller than 1%. This feature of our model avoids making

predictions in areas where data give no clear signal of a species’

breeding activity.

For the prediction of the true first arrivals, we set λckl(si, ti)

and dsi,ti to be close to infinity to mimic infinite sampling effort,

so we expect to retrieve the true and unbiased dates of first arrival.

This approach is illustrated in Figure 9 for the Great Crested

Flycatcher, where we also show that the model captures the spatial

pattern in the observed first arrivals.

To expand on our prediction procedure, we focus on two pixels,

marked with triangles in Figure 8. The first pixel is chosen near

the southwestern boundary of our study region and has 83% Forest

cover but only 6% Developed land cover. It is located in a rather

secluded region with generally low sampling effort. In 2022, there

were no reported sightings of the four species of interest in this

pixel. Table 1 highlights that the model can extrapolate and draw

posterior predictive samples for that pixel-year. The second pixel

is chosen in the central area of the study region. For example, a

first arrival was observed in 2022 for the Purple Martin on the

29th of June, but Table 1 (last two rows) shows that our model

flags this pixel as being uncertain to be located in the species’

niche; it is thus possible that in general no breeding activity takes

place in this pixel. This illustrates the capability of our model to

prevent inaccurate extrapolation to spatial regions with very low

species presence probability. Table 1 also shows that the GEV-only

model generally estimates a later first arrival than that from the

full model after correcting biases. The former predictions usually

fall outside of what is expected of the four species’ phenology in

our study region, i.e., late spring/early summer rather than early

spring.

6 Discussion and outlook

6.1 Statistical learning from participatory data

Participatory data collection and citizen-science programs can

contribute to advancing and sharing scientific knowledge, thanks

particularly to the large volume of data and their diversity in terms

of spatiotemporal coverage. However, sampling protocols from

these sources are usually lenient, with different levels of observer

expertise, and so statistical techniques are required to correct for

heterogeneous sampling effort and observation biases.

In this work, we developed a Bayesian hierarchical model where

sampling effort and its influence on the observation bias of a

phenological event can be quantified and then corrected during

prediction. Our results show that the necessary corrections are

often substantial. By singling out the sampling effort, we were

also able to estimate spatial probabilities of species presence, which

allowed for filtering out implausible regions when providing model-

based predictions of the phenological event, since it might never

occur.

6.2 Bayesian statistics and machine learning

We carefully constructed statistical models allowing for the

inference and interpretation of latent components. Bayesian

hierarchical models (BHMs) have many advantages: they permit

to identify various latent processes (such as sampling effort) and

their interactions, to keep track of uncertainties and assess them

through posterior sampling, to incorporate expert knowledge, and

to properly separate the process describing how data are observed

from the latent ecological processes we seek to infer. The Bayesian

framework is also relatively robust to noisy data and overdispersion

in count data, through the inclusion of appropriately designed

random effects.

Regarding alternative approaches, various machine learning

and deep learning tools have found important use in ecology

for their skill in predicting observed data, though they may

be less effective at capturing complex latent processes. Further

developments are needed to allow such algorithms to predict

the processes of interest if these are not directly observed, to

extrapolate beyond the range of observed data (as we have

done by setting the observation effort to a very high level in

predictions), and to avoid propagating or even reinforcing biases

from the input data when generating predictive outputs (Dunson,

2018). An interesting goal involves devising mechanisms similar to

the sharing of random effects in BHMs but implemented within

the architectures of general machine learning and deep learning

approaches.
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Fig. 8: Empirical mean probability (left displays) of observing the species Great Crested Flycatcher (top) and Purple Martin (bottom)

in checklists aggregated over all years; posterior mean probability (right displays) of observing the species from the presence model by

using the mean checklist duration aggregated over all years as covariate. The two triangles are the two pixels used in the predictions of

first arrivals detailed in Section 5.3.

6.3 Modelling sampling effort

The eBird sampling effort has various dimensions. We have here

considered the annual number of visits to an area (using checklists)

and the median duration of those visits. Understanding how the

combination of these two aspects influences the number of detected

species individuals is a complex task (e.g., see Tang et al., 2021),

and would merit exploration beyond the additive structure of

xeffort that we posed in (3). Other relevant attributes that we

did not consider here are partially reported for eBird checklists,

such as the surface of the area where observations took place, or

the distance over which the observers moved during the checklist

event. Such information could be further studied for a more

complete characterisation of the sampling effort and its impact on

observation biases with respect to species distributions. Identifying

sampling effort through Bayesian hierarchical models could also be

of interest in various other domains, for example for reports of hail

events and damages, and more generally for citizen-science data

in climate science.

6.4 Detectability of species

Observation biases related to the detectability of species by the

observer remain a major challenge since they are difficult to

identify with available data, i.e., it is possible that a present species

was not reported. This risk of non detection can vary with land

cover, species behaviour, observer experience and other factors. In

our model, detectability can be viewed as being included in the

niche process (which could more precisely be called the detectable

niche), but it is difficult to devise a general statistical approach

to further disentangle the niche and the detectability. Expert

knowledge about the conditions of detectability could provide

further insights and improve models, but including it was beyond

the scope of this work. It would also require designing models

adapted to the specific properties of each species and would hinder

the intercomparison of models for different species.

6.5 Validation of results

Validation of modelling results is inherently challenging with data

that are obtained through heterogeneous sampling efforts and

ridden with unknown biases. Certainly, we can validate whether
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Fig. 9: Maps for the species Great Crested Flycatcher : Observed first arrivals of Great Crested Flycatcher in 2022 (top left), posterior

mean of the GEV median first arrivals in 2022 (top right), bias-corrected mean of the GEV median first arrivals in 2022 (bottom left),

and the same plot as before though with indications (in white rectangles over the corresponding pixels) for where the model estimates

a presence probability of less than 1% for the species (bottom right). The grey pixels in the top left display indicate where no species

occurrences were recorded in 2022, or where no checklists and therefore no median durations were available in that pixel.

the model appropriately reproduces data as they have been

observed. For example, we performed such checks for checklist

counts and observed first arrivals in Section 5. However, the latent

processes of interest, as well as sampling effort and observation

biases, can be entangled in complex ways. Direct validation of

inferences on the latent processes of interest is thus difficult,

so careful construction of models and inference algorithms is

paramount.

External data sources not suffering from these drawbacks can

be used, but they often have much smaller space, time and species

coverages. The fusion of data sources, such as in our study with

BBS and eBird data, can help improve the estimation of certain

model components, but could also be used for validation purposes

at space-time locations covered by both datasets.

Data collection projects are increasingly initiated with

advanced sensing technologies that require no human observers,

therefore providing opportunities to collect large amounts of data

obeying strict sampling protocols. For instance, one could track

bird arrivals with radar data (e.g., Nussbaumer et al. (2021), or

the vogelwarte.ch project). Camera traps combined with artificial

intelligence for species identification can provide near-continuous

temporal coverage, although with rather limited spatial coverage.

6.6 Possible extensions of our approach

Here we focused on identifying past and present spatiotemporal

trends in ecological processes. In species distribution modelling,

important research concerns the potential impact of climate

change and its interplay with other global change processes (e.g.,

land use). Our modelling approach could be further refined

to establish the relationships between ecological dynamics and

climate variables in more detail, and could then be used for

projecting first arrivals under future climate simulations, similar

to Wijeyakulasuriya et al. (2023).

We have fixed the spatial pixel mesh using a size similar to

that routinely used in modelling results published by the eBird

project. It would be interesting to further explore the influence of

the mesh size on the properties of the observed first arrivals. For

example, a larger mesh size leads to larger numbers of observations

within each pixel, and this potentially reduces the observation

bias or better facilitates its quantification. On the other hand, it

vogelwarte.ch
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would also decrease the spatial resolution of predictive maps and

hamper the identification of relationships of ecological processes

with land cover. Further research could investigate the role of the

mesh choice, or how to optimally combine results from different

mesh sizes.

Regarding temporal trends, the seasonal variation of sampling

effort and of the species presence probability, along with how these

properties interact with first arrivals, could also be modelled more

precisely.

If some spatiotemporal domains are visited at high frequency,

the corresponding sampling effort could be regarded as being

exhaustive, and the structure of the model (e.g., the g-function in

(4)) could be modified accordingly to improve the identifiability of

model components.

Another extension consists of studying interactions among

different species in terms of their niche and phenological events,

e.g., to infer which groups of species show similar spring

migration patterns. This could involve implementing joint species

distribution models with each having a set of regression equations

and with the possibility to share certain spatial random effects

between several species; this could be feasible with our current

approach for a small number of species. Alternatively, one could

fit models separately for each species as done here, and then apply

classification approaches on the posterior estimates of latent model

components to group species that show similar model behaviour.

6.7 Ecological extreme-value analysis

We believe that Extreme-Value Theory could play a significantly

more prominent in ecological science. An important domain of

application is the analysis and probabilistic prediction of extreme

climatic and environmental events, which are known to have

major impacts on biodiversity. A second domain of application, of

which the present work is part, concerns the analysis of extreme

phenological events using Extreme-Value Theory. Though analyses

of this type are still in their early infancy, we hope that our

work will motivate more widespread applications of extreme-value

techniques.
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(2021). Species Accumulation Curves and Extreme Value

Theory, pp. 211–226. Ecology, Biodiversity and Conservation.

Cambridge University Press.

Browne, J. (1996). Charles darwin: A biography, vol. i, voyaging.

Journal of the History of Biology 29 (2), 314–316.

Coles, S. (2001). An introduction to statistical modeling of extreme

values. Springer.

Colwell, R. K., J. A. Coddington, and D. L. Hawksworth (1994).

Estimating terrestrial biodiversity through extrapolation.

Philosophical Transactions of the Royal Society of London.

Series B: Biological Sciences 345 (1311), 101–118.

Conklin, J. R., S. Lisovski, and P. F. Battley (2021). Advancement

in long-distance bird migration through individual plasticity in

departure. Nature Communications 12 (1), 4780.

Cornell Lab of Ornithology (2022). eBird Basic Dataset, Version:

EBD relNov-2022.

Cotton, P. A. (2003). Avian migration phenology and global

climate change. Proceedings of the National Academy of

Sciences 100 (21), 12219–12222.

Datta, A., S. Banerjee, A. O. Finley, and A. E. Gelfand (2016).

Hierarchical nearest-neighbor gaussian process models for large

geostatistical datasets. Journal of the American Statistical

Association 111 (514), 800–812.

Diggle, P. J., R. Menezes, and T.-l. Su (2010). Geostatistical

inference under preferential sampling. Journal of the Royal

Statistical Society: Series C (Applied Statistics) 59 (2), 191–232.

Dunson, D. B. (2018). Statistics in the big data era: Failures of

the machine. Statistics & Probability Letters 136, 4–9.

Fink, D., T. Auer, A. Johnston, V. Ruiz-Gutierrez, W. M.

Hochachka, and S. Kelling (2020). Modeling avian full annual

cycle distribution and population trends with citizen science

data. Ecological Applications 30 (3), e02056.

Fraisl, D., J. Campbell, L. See, U. Wehn, J. Wardlaw, M. Gold,

I. Moorthy, R. Arias, J. Piera, J. L. Oliver, J. Masó, M. Penker,
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A Appendix

A.1 Land-cover plots

Figure 10 shows plots of the four land-cover covariates defined as

proportions of certain land-cover categories in the pixels of the

study area.

A.2 Plots from the simulation study

Figure 11 shows plots assessing the identifiability of the observed

first arrivals in our simulation study.

A.3 Further plots of MCMC results

Figure 12 shows trace plots from the MCMC run of the model on

the species Great Crested Flycatcher. Figure 13 shows spatial plots

of the four latent spatial fields from the model estimated for the

species Chimney Swift.
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Fig. 10: Land-cover proportions in the study area (NLCD, 2021) according to four types described in Section 2.
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Fig. 11: Simulation study: Truth vs. posterior means for the median first arrivals in 2003 (left) and 2020 (right), shown with spatial maps
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based on 100 simulations. The boxplot shows results for 150 randomly chosen pixels, marked with black boxes in the spatial plots.
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Fig. 13: Posterior means plots of the four spatial random effects in (2) for the model fitted to the species Chimney Swift.
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