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The supplement contains all technical proofs and additional simulation and real data analysis results. Specifically,
Section S1 presents theoretical results on single change-point estimation and includes several important lemmas to
be used for deriving theoretical results on multiple change-point estimation. Section S2 gathers proofs for the main
proposition and theorem. Section S3 contains auxiliary lemmas and proofs. Section S4 proposes the multi-scanning
M-GOALS. Section S5 conducts numerical experiments to examine the finite sample performance of (M-)GOALS and
multi-scanning M-GOALS. Section S6 presents additional results for real data analysis.

We first introduce some notations. Let (Ω, F, P ) be the underlying probability space. Let ⇒ denote process
convergence (or weak convergence) in some suitable function space,→D denote convergence in distribution and→p

denote convergence in probability. For any compact set T ∈ Òd , C (T ) denotes the space of real-valued continuous
functions on T endowed with the uniform topology; l∞ (T) is the space of real-valued bounded functions on T
endowed with the uniform topology; C (Òd × T) is the space of real-valued continuous functions onÒd × T endowed
with the topology of locally uniform convergence. In addition, we assume C is a generic constant that may vary from
line to line.

Without loss of generality, for GOALS, we can assume Qτ (ε) = 0 (otherwise, we can let β̃t (τ) = θt + Qτ (εt )γt
and ε̃t = εt − Qτ (εt ) so that Yt = X>t θt + [X>t γt ]εt = X>t β̃t (τ) + [X>t γt ]ε̃t ) and we drop “(τ)" in βt = βt (τ) and
β̂bnr1c,bnr2c = β̂bnr1c,bnr2c (τ) for 0 ≤ r1 ≤ r2 ≤ 1.

S1 | THEORY FOR SINGLE CHANGE-POINT ESTIMATION

For simplicity, we consider a fixed quantile level τ ∈ τM . Under the model (5) with one change-point, i.e. Yt =
X>t θt + (X>t γt )εt , and Qτ (Yt ) = X>t [θt + Qτ (ε)γt ] := X>t βt , we have β (i ) = θ (i ) + γ (i )Qτ (ε) , i = 1, 2 such that

βt =

{
β (1) , 1 ≤ t ≤ k1
β (2) , k1 + 1 ≤ t ≤ n,

for some k1 = bnq1 c, q1 ∈ (0, 1) .

It is natural to estimate the change-point location by

k̂ = arg max
k ∈[h,n−h ]

Tn,δ (k ),
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where Tn,δ (k ) = Dn (1, k , n)>Vn,δ (1, k , n)−1Dn (1, k , n) . The next proposition presents the consistency of the change-
point location estimator under the single change-point setting.

Proposition 1 Suppose the model (5) admits a single change-point and Assumptions 1-3 hold. Let b = β (2) − β (1) and
κ = ‖b‖ satisfies log(n)−2nκ2 →∞ and κ → 0 as n →∞. Let q̂ = k̂ /n , we have q̂ →p q1 .

The proof of Proposition 1 is deferred to Section S2. Below we present several key lemmas. In particular, Lemma
2 gives the uniform Bahadur representation of β̂bnr1c+1,bnr2c when there is no change-point, see also Zhou and Shao
(2013); Lemma 3 derives the asymptotic behavior ofTn,δ (k1) under the single change-point setting; Lemma 4 obtains
the uniform distributional limits for β̂bnr1c+1,bnr2c after suitable centering and standardization under the single change-
point setting; Lemma 5 generalizes Lemma 4 to the multiple change-point setting.

To simplify the notation, we define ϕt = [X>t γt ]εt , gt (β) = ρτ (Yt − X>t β) − ρτ (ϕt ) , where ρτ (u) = uψτ (u) is the
quantile check function. Let ω (a, b ; η) = {(r1, r2) |a ≤ r1 < r2 ≤ b, r2 − r1 ≥ η } for some η > 0 and 0 ≤ a < b ≤ 1.
In addition, when change-points are present, recall ci ∈ Ò2/{(0, 0)> } in Assumption 4 denotes the slope difference
normalized by κ , we let αi =

∑i
`=1 c` for i = 1, · · · ,m0 and α0 = (0, 0)>.

Lemma 2 Suppose Assumptions 1-3 hold. Then for all η ∈ (0, 1) , if there is no change-point, then (i)

sup
(r1,r2 )∈ω (0,1;η)

���√n (β̂bnr1c+1,bnr2c − β) − 1
√
n
[Σ1 (r2) − Σ1 (r1) ]−1f (0)−1

bnr2c∑
t=bnr1c+1

Xtψτ (εt )
��� = op (1) ;

(ii) on a richer probability space, there exist i.i.d. standard normal random variablesV1,V2, · · · ,Vn such that

max
1≤i≤j≤n

��� j∑
t=i

Xt f (0)−1ψτ (εt ) − Γε
j∑
t=i

XtVt

��� = op (1) .
The proof of Lemma 2 follows by using the same arguments in the proofs of Lemma 4 and Proposition 3 in Zhou and
Shao (2013), hence omitted.

Lemma 3 Under the conditions of Proposition 1,

(nκ2)−1Tn,δ (k1) →D q
2
1 (1 − q1)

2 (κ−1b)>Vδ (q1)−1 (κ−1b), (S1)

whereVδ (s) = Lδ (s) + Rδ (s) and

Lδ (s) =
∫ s−δ

δ

r 2 (s − r )2

s2

{
Σ1 (r )−1BX (r ) − [Σ1 (s) − Σ1 (r ) ]−1 [BX (s) − BX (r ) ]

}⊗2
dr ,

Rδ (s) =
∫ 1−δ

s+δ

(r − s)2 (1 − r )2

(1 − s)2
{
[Σ2 (1) − Σ2 (r ) ]−1 [BX (1) − BX (r ) ] − [Σ2 (r ) − Σ2 (s) ]−1 [BX (r ) − BX (s) ]

}⊗2
dr .

The proof of Lemma 3 is deferred to Section S3.

Lemma 4 Define r = (r1, r2) ∈ [0, q1 − η ] × [q1 + η, 1] := T ⊂ [0, 1]2 for some η ∈ (0, δ) . For observations {Yt }nt=1 under
the single change-point alternative, let

ĉn (r) = argmin
c∈Ò2

Zn (c, r), (S2)
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where

Zn (c, r) =
1

nκ2

bnr2c∑
t=bnr1c+1

gt (β) +
(nr2 − bnr2 c)

nκ2
g bnr2c+1 (β) +

( bnr1 c + 1 − nr1)
nκ2

g bnr1c (β) (S3)

is the objective function based on partial observations {Yt }bnr2c+1t=bnr1c
satisfying c = κ−1 (β − β (1) ) . Furthermore, for each

r ∈ T, let c(r) = argminc∈Ò2 Z∞ (c, r) , such that

Z∞ (c, r) =
f (0)
2

{ ∫ q1

r1

[ (1, x )c]2
(1, x )γ (1)

dx +

∫ r2

q1

[ (1, x ) (c −α) ]2
(1, x )γ (2)

dx
}
, (S4)

whereα = κ−1b ∈ Ò2. Then, under the conditions of Proposition 1,

ĉn ( ·) ⇒ c( ·),

where c(r) = [Σ1 (q1) − Σ1 (r1) + Σ2 (r2) − Σ2 (q1) ]−1 [Σ2 (r2) − Σ2 (q1) ]α is unique.

The proof of Lemma 4 is deferred to Section S3.

Remark When 0 < c < κ < ∞, i.e. the change size in the coefficients is not diminishing, we have

Z∞ (c, r) =κ−1
{ ∫ q1

r1

∫ (1,x )c

0
[F ( [X (s)>γ (1) ]−1κs) − F (0) ]dsdx

+ κ−1
∫ r2

q1

∫ (1,x ) (c−α)

0
[F ( [X (s)>γ (2) ]−1κs) − F (0) ]dsdx

}
.

In this case, c(r) = argminc∈Ò2 Z∞ (c, r) depends on the exact form of the distribution function F ( ·) . Similarly to the
diminishing case, we have {κ−1 (β̂bnr1c,bnr2c − β

(1) ) }r∈T ⇒ {c(r) }r∈T , and in particular, β̂1,n →p κc(0, 1) + β (1) .

Lemma 5 Let q = (q1, · · · , qm0 ) be the change-point locations. If m0 ≥ 1, and for pairs of r = (r1, r2) ∈ [qi−1, qi − η ] ×
[q j + η, q j+1 ] := T ⊂ [0, 1]2 for some 1 ≤ i ≤ j ≤ m0 and η ∈ (0, δ) , (i.e. (r1, r2) contains j − i + 1 change-points).

Let
ĉn (r) = argminc∈Ò2 Zn (c, r) , where Zn (c, r) is defined in (S3) satisfying c = κ−1 (β − β (1) ) . Furthermore, for each

r ∈ T, let c(r) = argminc∈Ò2 Z∞ (c, r) such that

Z∞ (c, r) =
f (0)
2

[ ∫ qi

r1

[ (1, x ) (c −αi−1) ]2
(1, x )γ (i )

dx +

j−i∑
`=1

∫ qi+`

qi+`−1

[ (1, x ) (c −αi+`−1) ]2
(1, x )γ (i+` )

dx

+

∫ r2

qj

[ (1, x ) (c −αj ) ]2

(1, x )γ (j+1)
dx

]
.

Then under the conditions of Theorem 1 in the case of change-points, ĉn ( ·) ⇒ c( ·), where

c(r) =
{
Σi (qi ) − Σi (r1) +

j−i∑
`=1

[Σi+` (qi+` ) − Σi+` (qi+`−1) ] + Σj+1 (r2) − Σj+1 (q j )
}−1

×
{
[Σi (qi ) − Σi (r1) ]αi−1 +

j−i∑
`=1

[Σi+` (qi+` ) − Σi+` (qi+`−1) ]αi+`−1 + [Σj+1 (r2) − Σj+1 (q j ) ]αj
}
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is unique with Σi (r ) =
∫ r
0
[X (s)>γ (i ) ]−1X (s)X (s)>ds .

The proof of Lemma 5 is similar to that of Lemma 4, hence omitted.

S2 | PROOF OF MAIN THEOREMS

S2.1 | Proof of Proposition 1

By Lemma 3, we have that with probability tending to one, (nκ2)−1Tn,δ (k1) > 0. That is, at the true change-point, the
statisticTn,δ (k1) diverges at the rate nκ2. Letting Mn,η = {k : | kn − q1 | > η } for any η ∈ (0, δ) , then it suffices to show
that

(nκ2)−1 max
k ∈[h,n−h ]∩Mn,η

Dn (1, k , n)>Vn,δ (1, k , n)−1Dn (1, k , n) = op (1) . (S5)

That is, we show that for points far away from k1, the statistic is of smaller order. By symmetry, it suffices to consider
the points k ∈ M (1)n,η := {k : kn < q1 − η }.

Note that supq∈(0,q1−η) |
√
n (β̂1,bnqc − β (1) ) | = Op (1) by Lemma 2, hence using nκ2 → ∞ as n → ∞, we have

κ−1 supq∈(0,q1−η) |β̂1,bnqc−β
(1) | →p 0. By Lemma4, we can show that {κ−1 (β̂bnqc+1,n−β (1) ) }q∈(0,q1−η) ⇒ {c(q , 1) }q∈(0,q1−η) ,

hence {
(nκ2)−1/2Dn (1, bnq c, n)

}
q∈(0,q1−η)

⇒
{
− q (1 − q )c(q , 1)

}
q∈(0,q1−η)

, (S6)

where c(q , 1) is defined in Lemma 4. Next, for each k < k1, we decompose Rn,δ (1, k , n) by

Rn,δ (1, k , n) =
[ k1+bnδc−1∑
i=k+bnδc

+

n−bnδc∑
i=k1+bnδc

] (i − 1 − k )2 (n − i + 1)2
n2 (n − k )2

(β̂i ,n − β̂k+1,i−1)⊗2

:=Rn,δ,1 (1, k , n) + Rn,δ,2 (1, k , n) .

where we have

Rn,δ,2 (1, k , n) =
n−bnδc∑

i=k1+bnδc

(i − 1 − k )2 (n − i + 1)2

n2 (n − k )2
(β̂i ,n − β̂k+1,i−1)⊗2 .

By Lemma 4, we obtain that{
κ−1

(
β̂bnr c,n − β (2)

)}
r ∈(q1,1)

⇒ 0{
κ−1

(
β̂bnqc+1,bnr c−1 − β (1)

)}
(q ,r )∈(0,q1−η)×(q1,1)

⇒ {c(q , r ) } (q ,r )∈(0,q1−η)×(q1,1) .

Hence, using the continuous mapping theorem, we obtain that{
(nκ2)−1Rn,δ,2 (1, bnq c, n)

}
q∈(0,q1−η)

⇒
{
R δ,2 (q )

}
q∈(0,q1−η)

, (S7)
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where R δ,2 (q ) =
∫ 1−δ
q1+δ

(r−q )2 (1−r )2
(1−q )2 [α − c(q , r ) ]⊗2dr .

Now, provided that R δ,2 (q ) is invertible when k ∈ M (1)n,η (which is shown in Lemma 10), we have

Dn (1, k , n)>V −1n,δ (1, k , n)Dn (1, k , n)

≤Dn (1, k , n)>R−1n,δ,2 (1, k , n)Dn (1, k , n)

=[ (nκ2)−1/2Dn (1, k , n) ]> [ (nκ2)−1Rn,δ,2 (1, k , n) ]−1 [ (nκ2)−1/2Dn (1, k , n) ],

where in the first inequality we use the fact thatVn,δ (1, k , n)−1 ≤ Rn,δ (1, k , n)−1 ≤ Rn,δ,2 (1, k , n)−1 with the conven-
tion that A ≤ B implies B − A is semi-positive definite when A and B are square matrices.

Then, by (S6) and (S7), we see that

max
k ∈M (1)n,η

[ (nκ2)−1/2Dn (1, k , n) ]> [ (nκ2)−1Rn,δ,2 (1, k , n) ]−1 [ (nκ2)−1/2Dn (1, k , n) ]

→D sup
q∈(0,q1−η)

[q2 (1 − q )2c(q , 1)>R−1δ,2 (q )c(q , 1) ] .

Therefore, (S5) follows as nκ2 →∞.

S2.2 | Proof of Theorem 1

Case 1: First, we derive the asymptotic distributions for GOALS and M-GOALS when there is no change-point, and
both methods will not deliver any estimates with probability tending to one.

(i) For GOALS, when there is no change-point, using the similar arguments as in Lemma 2 and Lemma 6 in Zhou
and Shao (2013), we have{ (q − u1) (u2 − q )

(u2 − u1)3/2
√
n (β̂bnu1c,bnqc − β̂bnqc+1,bnu1c )

}
q∈(ε,1−ε) ,(u1,u2 )∈Gε (q )

⇒
{
ΓεD (u1, q ,u2)

}
q∈(ε,1−ε) ,(u1,u2 )∈Gε (q )

,{
Ln,δ ( bnu1 c, bnq c, bnu2 c)

}
q∈(ε,1−ε) ,(u1,u2 )∈Gε (q )

⇒ Γ2ε

{
Lδ (u1, q ,u2)

}
q∈(ε,1−ε) ,(u1,u2 )∈Gε (q )

,

and
{
Rn,δ ( bnu1 c, bnq c, bnu2 c)

}
q∈(ε,1−ε) ,(u1,u2 )∈Gε (q )

⇒ Γ2ε

{
Rδ (u1, q ,u2)

}
q∈(ε,1−ε) ,(u1,u2 )∈Gε (q )

,

where D (u1, q ,u2), Lδ (u1, q ,u2), Rδ (u1, q ,u2) are defined in Theorem 1.

Therefore{
Tn,ε,δ ( bnq c)

}
q∈(ε,1−ε)

⇒
{

max
(u1,u2 )∈Gε (q )

D (u1, q ,u2)>Vδ (u1, q ,u2)−1D (u1, q ,u2)
}
q∈(ε,1−ε)

.

Hence by continuous mapping theorem, it follows

max
k=h,··· ,n−h

Tn,ε,δ (k ) →D sup
q∈(ε,1−ε)

max
(u1,u2 )∈Gε (q )

D (u1, q ,u2)>Vδ (u1, q ,u2)−1D (u1, q ,u2) .
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(ii) For M-GOALS, using results in (i) for GOALS, we can obtain that for any τ ∈ [τL , τU ], for all η ∈ (0, 1) ,

sup
(r1,r2 )∈ω (0,1;η)

���√n {(β̂0;br1nc+1,br2nc (τ)
β̂1;br1nc+1,br2nc (τ)

)
−

(β0
β1

)}
− 1
√
n
[Σ1 (r2) − Σ1 (r1) ]−1f (Qτ (ε))−1

bnr2c∑
t=bnr1c+1

Xtψτ (εt )
��� = op (1) .

Recall e2 = (0, 1)>, then

sup
(r1,r2 )∈ω (0,1;η)

���√n {β̂1;bnr1c+1,bnr2c (τ) − β1} − 1
√
nf (Qτ (ε))

e>2 [Σ1 (r2) − Σ1 (r1) ]
−1

bnr2c∑
t=bnr1c+1

Xtψτ (εt )
��� = op (1) .

Then, we stack the above equation for each τ ∈ τM , since M is assumed to be finite, we can obtain

sup
(r1,r2 )∈ω (0,1;η)

���√n {β̂Mbnr1c+1,bnr2c − βM1 }
− 1
√
n

bnr2c∑
t=bnr1c+1

[e>2 [Σ1 (r2) − Σ1 (r1) ]
−1Xt ]υMt

��� = op (1),
with υMt = ( ψτ1 (εt )

f (Qτ1 (ε) )
, · · · , ψτM (εt )

f (QτM (ε) )
)>. Similar to Lemma 4 and Lemma 6 in Zhou and Shao (2013), we can show that

for all η ∈ (0, 1)

{ 1
√
n

bnr2c∑
t=bnr1c+1

[e>2 [Σ1 (r2) − Σ1 (r1) ]
−1Xt ]υMt

}
0≤r1≤r2−η≤1−η

⇒ΓM
{ ∫ r2

r1

[e>2 [Σ1 (r2) − Σ1 (r1) ]
−1X (s) ]dBM (s)

}
0≤r1≤r2−η≤1−η

where ΓM = lim
n→∞

Var
(
1√
n

∑n
t=1 υ

M
t

)
.

Hence,{
DMn (1, bnq c, n)

}
q∈(ε,1−ε)

⇒ ΓM
{
DM (q )

}
q∈(ε,1−ε)

,
{
VMn,δ (1, bnq c, n)

}
q∈(ε,1−ε)

⇒
{
ΓMVMδ (q )Γ

M
}
q∈(ε,1−ε)

,

the result follows by continuous mapping theorem.

Since ζn →∞ as n →∞, combined with results in (i) and (ii),

P (m̂ = 0) = P ( max
k=h,··· ,n−h

Tn,ε,δ (k ) < ζn ) → 1. (S8)

Case 2: Nowwe turn to the casewith change-points. For simplicity, we only show the consistency for GOALS. The
same argument applies to M-GOALS, as all SN-based test statistics involved in M-GOALS have the same stochastic
orders as their counterparts in GOALS. We first show the following two intermediate results:

(1) at change-point locations,

P (for all k i ,Tn,ε,δ (k i ) > ζn ) → 1; (S9)
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(2) at non-change-point locations, we show that for all η > 0,

P ( max
k ∈Mn,η

max
(t1,t2 )∈Gn (k )

Tn,ε,δ (k ) > ζn ) → 0, (S10)

where Mn,η = {k : |k − k i | > nη, [k i } ∩ {k : h ≤ k ≤ n − h }.

(1) At each change-point k i , we have

(nκ2)−1Tn,ε,δ (k i ) ≥ (nκ2)−1Dn (k i − h + 1, k i , k i + h)>V −1n,δ (k i − h + 1, k i , k i + h)Dn (k i − h + 1, k i , k i + h) . (S11)

Note that we assume that min1≤i≤m0+1 (k i − k i−1) > h, so there are no change-points between [k i − h, k i + h ] in the
sample. Hence, by Lemma 2,

Vn,δ (k i − h + 1, k i , k i + h) →D Γ2εVδ (qi − ε, qi , qi + ε),

and

Dn (k i − h + 1, k i , k i + h) =
h2

(2h)3/2
(β̂ki −h+1,ki − β

(i ) − β̂ki ,ki +h + β
(i+1) ) + h2

(2h)3/2
(β (i ) − β (i+1) ) .

Therefore, by Lemma 4, we obtain that

(
√
nκ)−1Dn (k i − h + 1, k i , k i + h) →p −

ε1/2
√
8
ci .

This implies that

(nκ2)−1Tn,δ (k i − h + 1, k i , k i + h) →D
εΓ−2ε
8

c>i V
−1
δ (qi − ε, qi , qi + ε)ci = Op (1), (S12)

i.e. Tn,δ (k i − h + 1, k i , k i + h) = Op (nκ2) .

Since the number of change-points m0 is finite, we have

P
( m0⋂
i=1

{Tn,ε,δ (k i ) > ζn }
)
→ 1,

i.e. (S9) holds.

(2) At non-change-point locations, we recall the definition of (6) and decompose Gε (u) as Gε (u) = G (1) (u) ∪
G (2) (u) , where

G (1) (u) ={(u1,u2) |\qi , qi ∈ (u1,u2) } ∩Gε (u), G (2) (u) = {(u1,u2) |[qi , qi ≤ u1 or qi ≥ u2) } ∩Gε (u) .

The above sets define the neighborhood grid that contain at least one change-point and contain no change-points,
respectively. Similarly, we define their rescaled counterparts,

G
(1)
n (k ) = {(t1, t2) |\k i , k i ∈ (t1, t2) } ∩Gn (k ), G

(2)
n (k ) = {(t1, t2) |[k i , k i ≤ t1 or k i ≥ t2) } ∩Gn (k ) .
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Then, for i = 1, 2 we denote

T
(i )
n,ε,δ
(k ) = max

(t1,t2 )∈G
(i )
n (k )

Dn (t1, k , t2)>Vn,δ (t1, k , t2)−1Dn (t1, k , t2) .

We only need to considerT (1)
n,ε,δ
(k ) since by similar arguments used in the case (i) with no change-point, we can show

that

P ( max
k ∈Mn,η

T
(2)
n,ε,δ
(k ) < ζn ) → 1. (S13)

By Lemma 5 and we note that u1 and u2 are linear functions of q if (u1,u2) ∈ Gε (q ) , hence{
κ−1 (β̂bnu1c,bnqc − β

(1) )
}
q∈(ε,1−ε) ,(u1,u2 )∈G (1) (q )

⇒
{
c(u1, q )

}
q∈(ε,1−ε) ,(u1,u2 )∈G (1) (q )

,{
κ−1 (β̂bnqc+1,bnu2c − β

(1) )
}
q∈(ε,1−ε) ,(u1,u2 )∈G (1) (q )

⇒
{
c(q ,u2)

}
q∈(ε,1−ε) ,(u1,u2 )∈G (1) (q )

,

which implies that {
n−1/2κ−1Dn ( bnu1 c, bnq c, bnu2 c)

}
q∈(ε,1−ε) ,(u1,u2 )∈G (1) (q )

⇒
{ (q − u1) (u2 − q )
(u2 − u1)3/2

(c(u1, q ) − c(q ,u2))
}
q∈(ε,1−ε) ,(u1,u2 )∈G (1) (q )

,
(S14)

where c(u1, q ) and c(q ,u2) are defined in Lemma 5.
Next, we analyze the behavior ofV −1

n,δ
(t1, k , t2) . Note that when k ∈ Mn,η , and (t1, t2) ∈ G (1)n (k ) , we must have

(t1, k ) or (k , t2) contains at least one change-point (notice that k is not a change-point). Without loss of generality,
we assume (t1, k ) contains at least one change-point and let Mη = {q : |q − qi | > η, [qi } ∩ (ε, 1 − ε) .

Recall that

Ln,δ (t1, k , t2) =
k−bnδc∑

i=t1+bnδc+1

(i − t1)2 (k − i )2

(t2 − t1 + 1)2 (k − t1 + 1)2
(β̂t1,i − β̂i+1,k )

⊗2 .

By Lemma 5, we obtain that{
(nκ2)−1Ln,δ ( bnu1 c, bnq c, bnu2 c)

}
q∈(ε,1−ε) ,(u1,u2 )∈G (1) (q )

⇒
{
Lδ (u1, q ,u2)

}
q∈(ε,1−ε) ,(u1,u2 )∈G (1) (q )

,

where

Lδ (u1, q ,u2) =
∫ q−δ

u1+δ

(r − u1)2 (q − r )2

(u2 − u1)2 (q − u1)2
(c(u1, r ) − c(r , q ))⊗2dr , (S15)

with c(u1, r ) and c(r , q ) defined in Lemma 5.
Therefore, since Lδ (u1, q ,u2) is invertible by similar arguments in Lemma 10 when q ∈ Mη , (u1,u2) ∈ G (1) (q ) ,

then using the fact thatVn,δ (t1, k , t2)−1 − Ln,δ (t1, k , t2)−1 ≤ 0, we have

max
k ∈Mn,η

T
(1)
n,ε,δ
(k )
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≤ max
k ∈Mn,η

max
(t1,t2 )∈G (1) (k )

(nκ2)−1/2Dn (t1, k , t2)> [ (nκ2)−1Ln,δ (t1, k , t2) ]−1 (nκ2)−1/2Dn (t1, k , t2)

⇒ sup
q∈Mη

max
(u1,u2 )∈G (1) (q )

{ q2 (1 − q )2
(u2 − u1)3

(
c(u1, q ) − c(q ,u2)

)>
Lδ (u1, q ,u2)−1

(
c(u1, q ) − c(q ,u2)

)}
< ∞,

i.e.

P ( max
k ∈Mn,η

T
(1)
n,ε,δ
(k ) < ζn ) → 1.

This and (S13) complete the proof for (S10).

To finish the proof, note that by (S10), the points above the threshold ζn can only be in the neighborhood of
change-point locations with probability tending to 1, i.e., [η > 0,

P ( {k : Tn,ε,δ (k ) > ζn } ⊂ M c
n,η ) → 1. (S16)

On one hand, for each change-point location k i , since the algorithm only allows for one change-point k i itself in
the interval (k i − h, k i + h) , by choosing η < (εo − ε)/2, we can ensure that P ( {k : Tn,ε,δ (k ) > ζn } ∩ (k i − h, k i + h) ⊂
{k : |k − k i | < nη }) → 1. That is to say, if some points in the interval (k i − h, k i + h) are above the threshold ζn ,
they have to be very close to k i , i.e., they are all in the neighborhood {k : |k − k i | < nη }. By (S9), these points are
nonempty. Therefore, the local maximizer, say k̂ i in (k i − h, k i + h) should also be in the {k : |k − k i | < nη } such that
Tn,ε,δ (k̂ i ) ≥ Tn,ε,δ (k i ) > ζn . Clearly, we have |q̂i − qi | = | k̂in −

ki
n | < η.

On the other hand, for any estimated change-point location q̂i ∈ q̂, by (S16), it has to be in the neighborhood of a
true change-point. That is, there is at least one true change-point, say k i in (k̂ i −nη, k̂ i +nη) . Note that by assumption,
there could only be one-change-point in such neighborhood as the length of this interval is 2nη < bnεo c, hence such
change-point is unique.

Therefore, we have established one-to-one mapping of q̂ and q. The consistency follows by the assumption that
the number of change-points is finite.

S3 | AUXILIARY LEMMAS AND PROOFS

Proof of Lemma 3: Before the change-point location, by Lemma 2 (i), we obtain that for all η ∈ (0, q1)

sup
(r1,r2 )∈ω (0,q1 ;η)

���√n (β̂br1nc+1,bnr2c − β (1) ) − 1
√
n
[Σ1 (r2) − Σ1 (r1) ]−1f (0)−1

br2nc∑
t=br1nc+1

Xtψτ (εt )
��� = op (1) .

By Lemma 2 (ii) and Lemma 6 in Zhou and Shao (2013),

{ 1
√
n
[Σ1 (r2) − Σ1 (r1) ]−1f (0)−1

br2nc∑
t=br1nc+1

Xtψτ (εt )
}
0≤r1≤r2−η≤q1−η

⇒Γε
{
[Σ1 (r2) − Σ1 (r1) ]−1

∫ r2

r1

X (s)dB (s)
}
0≤r1≤r2−η≤q1−η

.
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Therefore, by continuous mapping theorem, we obtain{√
n (β̂1,bnr c − β̂bnr c+1,bnq1c )

}
r ∈(δ,q1−δ )

⇒ Γε
{
Σ1 (r )−1BX (r ) − [Σ1 (q1) − Σ1 (r ) ]−1 [BX (q1) − BX (r ) ]

}
r ∈(δ,q1−δ )

.

Similarly, after the change-point location, we also have{√
n (β̂bnr c+1,n − β̂bnq1c+1,bnr c )

}
r ∈(q1+δ,1−δ )

⇒Γε
{
[Σ2 (1) − Σ2 (r ) ]−1 [BX (1) − BX (r ) ] − [Σ2 (r ) − Σ2 (q1) ]−1 [BX (r ) − BX (q1) ]

}
r ∈(q1+δ,1−δ )

.

Then the continuous mapping theorem indicates that

Ln,δ (1, k1, n) →D Γ
2
ε

∫ q1−δ

δ

r 2 (q1 − r )2

q21

{
Λ1 (0, r ) − Λ1 (r , q1)

}⊗2
dr = Γ2ε Lδ (q1),

Rn,δ (1, k1, n) →D Γ
2
ε

∫ 1−δ

q1+δ

(r − q1)2 (1 − r )2

(1 − q1)2
{
Λ2 (r , 1) − Λ2 (q1, r )

}⊗2
dr = Γ2ε Rδ (q1) .

In addition, we have that

Dn (1, k1, n) =
k1 (n − k1)

n2

√
n (β̂1,k1 − β̂k1+1,n ),

where it is not hard to see that

√
n
[
(β̂1,k1 − β̂k1+1,n ) + b

]
⇒ ΓεΛ1 (0, q1) − ΓεΛ2 (q1, 1),

hence we can see that

n−1/2κ−1Dn (1, k1, n) = (q1) (1 − q1) (−κ−1b) +Op (n−1/2κ−1) .

Then the continuous mapping theorem indicates that (S1) holds.

Proof of Lemma 4: Note that Lemma 6 shows that Zn (c, (a, b)) converges in probability to Z∞ (c, (a, b)) ∈ Ò,
which then implies the finite dimensional convergence in probability, i.e.(

Zn (c, (a1, b1)), Zn (c, (a2, b2)), · · · , Zn (c, (ak , bk ))
)
→p

(
Z∞ (c, (a1, b1)), Z∞ (c, (a2, b2)), · · · , Z∞ (c, (ak , bk ))

)
.

Further, Lemma 7 implies the stochastic equicontinuity of Zn (c, ·) . Therefore, we have shown that

Zn (c, ·) ⇒ (or →p )Z∞ (c, ·) . (S17)

Since Z∞ (c, ·) ∈ C (T) is a nonrandom function, and the convergence is in probability, hence we have(
Zn (c1, ·), Zn (c2, ·), · · · , Zn (ck , ·)

)
⇒

(
Z∞ (c1, ·), Z∞ (c2, ·), · · · , Z∞ (ck , ·)

)
. (S18)
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Finally, the result of Lemma 4will follow by Theorem 1 in Kato (2009) once the following three conditions are satisfied:
(i) Zn (c, r) and Z∞ (c, r) are convex in c for each r and continuous in r for each c;
(ii) c(r) is the unique minimum point of Z∞ (c, r) for each r;
(iii) ĉn (r) ∈ l∞ (T) is bounded.
It suffices to consider (iii). In fact, by (S17) and detailed investigation of proof in Theorem 1 in Kato (2009), it can

be shown that there exists a sequence of bounded stochastic processes ĉn ( ·) uniformly converging in probability to
c( ·) such that with probability approaching one (see discussions after the proof of Theorem 1 in Kato (2009)).

Lemma 6 Under the conditions of Lemma 4, for any fixed (a, b) ∈ T,

Zn (c, (a, b)) →p Z∞ (c, (a, b)) . (S19)

Proof of Lemma 6: By the identity in Knight (1998), i.e. ρτ (u −v ) − ρτ (u) = −vψτ (u) +
∫ v
0
[1(u ≤ s) − 1(u ≤ 0) ]ds , we

have

Zn (c, (a, b))

=
1

nκ2

k1∑
t=bnac+1

[ρτ (ϕt − κX>t c) − ρτ (ϕt ) ] +
1

nκ2

bnbc∑
t=k1+1

[ρτ (ϕt − κX>t (c −α)) − ρτ (ϕt ) ]

+
(nb − bnb c)

nκ2
g bnbc+1 (β) +

( bna c + 1 − na)
nκ2

g bnac (β)

=
1

nκ

k1∑
t=bnac+1

−X>t cψτ (ϕt ) +
1

nκ2

k1∑
t=bnac+1

∫ κX>t c

0
[1(ϕt ≤ s) − 1(ϕt ≤ 0) ]ds

+
1

nκ

bnbc∑
t=k1+1

−X>t (c −α)ψτ (ϕt ) +
1

nκ2

k1∑
t=bnac+1

∫ κX>t (c−α)

0
[1(ϕt ≤ s) − 1(ϕt ≤ 0) ]ds

+
(nb − bnb c)

nκ2
g bnbc+1 (β) +

( bna c + 1 − na)
nκ2

g bnac (β)

=:
6∑
i=1

Zni (c, (a, b)) .

Since nκ2 → ∞ as n → ∞, it is easy to see that Zn5 (c, (a, b)) + Zn6 (c, (a, b)) = op (1) . Under Assumptions 1-3
and the fact that nκ2 →∞, from Lemma 8 (i), it follows that Zn1 (c, (a, b)) + Zn3 (c, (a, b)) = op (1) .

By a change-of-variable, we get

Zn2 (c, (a, b)) =
1

n1/2κ

1
√
n

k1∑
t=bnac+1

∫ X>t c

0
[1(ϕt ≤ κs) − 1(ϕt ≤ 0) ]ds .

Then, by Lemma 8 (ii), we have Var(Zn2 (c, (a, b))) = o (1) and similarly Var(Zn4 (c, (a, b))) = o (1) . Hence, by Cheby-
shev’s inequality, we have

Zn (c, (a, b)) = E Zn2 (c, (a, b)) + E Zn4 (c, (a, b)) + op (1) .

Note that P (ϕt ≤ s) = P (εt ≤ [X>t γt ]−1s) , then by change-of-variable, the fact that |X>t c | ≤ ‖c‖2, X>t γt > 0
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and mean value theorem, we have

E Zn2 (c, (a, b)) =
1

nκ2

k1∑
t=bnac

∫ κX>t c

0
[F ( [X>t γt ]−1s) − F (0) ]ds =

1

nκ

k1∑
t=bnac

∫ X>t c

0
[F ( [X>t γt ]−1κs) − F (0) ]ds

=
1

n

k1∑
t=bnac

∫ X>t c

0

(
[X>t γt ]−1f (0)s + o (1)

)
ds =

f (0)
2n

k1∑
t=bnac

[X>t c]2

[X>t γ (1) ]
+ o (1) .

(S20)

Similarly, we have

E Zn4 (c, (a, b)) =
f (0)
2n

bnbc∑
t=k1+1

[X>t (c −α) ]2

[X>t γ (2) ]
+ o (1) .

Hence,

Zn (c, (a, b)) =E Zn2 (c, (a, b)) + E Zn4 (c, (a, b)) + op (1)

=
f (0)
2

{ ∫ q1

a

[ (1, x )c]2
(1, x )γ (1)

dx +

∫ b

q1

[ (1, x ) (c −α) ]2
(1, x )γ (2)

dx
}
+ op (1),

i.e. (S19) is proved.

Lemma 7 Under conditions of Lemma 4, for any x > 0, and (a1, b1), (a2, b2) ∈ T,

lim
∆↓0

lim sup
n→∞

P ( sup
|a1−a2 |≤∆,|b1−b2 |≤∆

|Zn (c, (a1, b1)) − Zn (c, (a2, b2)) | > x ) = 0. (S21)

Proof of Lemma 7: It suffices to show that for [η > 0 and [x > 0, there exists a ∆ > 0 such that for n large enough,

P ( sup
|a1−a2 |≤∆,|b1−b2 |≤∆

|Zn (c, (a1, b1)) − Zn (c, (a2, b2)) | > x ) < η. (S22)

Note that max{a1, a2 } < min{b1, b2 }, there are only four types of configurations for (a1, a2, b1, b2) . We only consider
the case a1 < a2 < b1 < b2 since other cases are similar.

Let Tn (c, (a, b)) = 1
nκ2

∑k1
t=bnac+1 [ρτ (ϕt − κX

>
t c) − ρτ (ϕt ) ] + 1

nκ2

∑bnbc
t=k1+1

[ρτ (ϕt − κX>t (c −α)) − ρτ (ϕt ) ]. Using
the boundedness of ρτ ( ·) , it is easy to see that

sup
|a1−a2 |≤∆,|b1−b2 |≤∆

|Zn (c, (a1, b1)) − Zn (c, (a2, b2)) |

≤ sup
|a1−a2 |≤∆,|b1−b2 |≤∆

|Tn (c, (a1, b1)) −Tn (c, (a2, b2)) | +
4

nκ2

≤ sup
|a1−a2 |≤∆,b1

|Tn (c, (a1, b1)) −Tn (c, (a2, b1)) | + sup
|b1−b2 |≤∆,a2

|Tn (c, (a2, b1)) −Tn (c, (a2, b2)) | +
4

nκ2

= sup
|a1−a2 |≤∆

|Tn (c, (a1, q1)) −Tn (c, (a2, q1)) | + sup
|b1−b2 |≤∆

|Tn (c, (q1, b1)) −Tn (c, (q1, b2)) | +
4

nκ2
.

Note that (nκ2)−1 → 0, hence it suffices to show the tightness ofTn (c, ( ·, q1)) andTn (c, (q1, ·)) . Since they are similar,
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we only prove it forTn (c, (q1, ·)) .
DenoteT ∗n (c, (q1, b1) = Tn (c, (q1, b1)) − ETn (c, (q1, b1)) as the demeaned version. Then

sup
|b2−b1 |≤∆

|Tn (c, (q1, b1)) −Tn (c, (q1, b2) |

≤ sup
|b2−b1 |≤∆

|ETn (c, (q1, b1)) − ETn (c, (q1, b2) | + sup
|b2−b1 |≤∆

|T ∗n (c, (q1, b1)) −T ∗n (c, (q1, b2) |.

First, using Knight’s identity, and the fact that
∫ x
0
F (cs) − F (0)ds ≥ 0 for all x and c > 0, we obtain

sup
|b2−b1 |≤∆

|ETn (c, (q1, b1)) − ETn (c, (q1, b2) | ≤ sup
b1

1

nκ2

bn (b1+∆)c∑
t=bnb1c+1

∫ κX>t (c−α)

0
[F ( [X>t γt ]−1s) − F (0) ]ds ≤ C∆

by similar arguments used in (S20).
Second, denote ht (c) = [ρt (ϕt −κX>t (c−α)) −ρτ (ϕt ) ] − [Eρt (ϕt −κX>t (c−α)) −Eρτ (ϕt ) ]. For any q1 < s1 < s2,

using Knight’s identity and Lemma 8, we have

E [T ∗n (c, (q1, s1)) −T ∗n (c, (q1, s2)) ]2 =
1

n2κ4
E

{ bns2c∑
t=bns1c+1

ht (c)
}2

≤ 2

n2κ2
E

{ bns2c∑
t=bns1c+1

X>t (c −α)ψτ (ϕt )
}2

+
2

n2κ2
E

{ bns2c∑
t=bns1c+1

∫ κX>t (c−α)

0
[1(ϕt ≤ s) − 1(ϕt ≤ 0) ] − [F ( [X>t γt ]−1s) − F (0) ]ds

}2
≤ C (s2 − s1)

nκ2
.

(S23)

Then, we see that

P ( sup
q1<min{b1,b2},|b2−b1 |≤∆

|T ∗n (c, (q1, b1)) −T ∗n (c, (q1, b2) | > x )

≤
b∆−1 (1−q1 )c∑

i=0

P ( sup
q1+i∆≤s≤q1+(i+1)∆

|T ∗n (c, (q1, s)) −T ∗n (c, (q1, q1 + i∆)) | >
x

3
)

≤x−2C
b∆−1 (1−q1 )c∑

i=0

E
{

sup
q1+i∆≤s≤q1+(i+1)∆

|T ∗n (c, (q1, s)) −T ∗n (c, (q1, q1 + i∆)) |
}2

=x−2C
b∆−1 (1−q1 )c∑

i=0

E
{

max
1≤j≤bn∆c

| 1
nκ2

j+bn (q1+i∆)c∑
t=bn (q1+i∆)c

ht (c) |
}2

≤x−2C∆−1 (1 − q1) [log2 (4n∆) ]2
∆

nκ2
= C

log2 (n)
nκ2

→ 0.

In the above expressions, the first inequality holds by equation (8.6) in the proof of Theorem 8.3 in Billingsley (1968),
the second by Chebyshev’s inequality and the last by Proposition 1 in Wu (2007) and (S23).

Lemma 8 Under Assumptions 1-3, for any 0 ≤ r1 < r2 ≤ 1 and for any c ∈ Ò2, we have for some constant C > 0,
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(i)

Var
( 1
√
n

bnr2c∑
t=bnr1c+1

X>t cψτ (ϕt )
)
≤ C (r2 − r1) .

(ii)

Var
( 1
√
n

bnr2c∑
t=bnr1c+1

∫ X>t c

0
[1(ϕt ≤ s) − 1(ϕt ≤ 0) ]ds

)
≤ C (r2 − r1) .

Proof of Lemma 8 (i) Observe that ψτ (ϕt ) = τ − 1(ϕt < 0) = τ − 1( [X>t γt ]εt < 0) . Note that X>t γt > 0, hence we
obtain ψτ (ϕt ) = ψτ (εt ) . Then

Var
( 1
√
n

bnr2c∑
t=bnr1c+1

X>t cψτ (ϕt )
)
=Var

( 1
√
n

bnr2c∑
t=bnr1c+1

X>t cψτ (εt )
)

≤ 1
n

bnr2c∑
t ,t ′=bnr1c+1

X>t cX>t ′ cCov(ψτ (εt ),ψτ (εt ′ ))

≤
‖c‖22
n

bnr2c∑
t ,t ′=bnr1c+1

���Cov(1(εt ≤ 0), 1(εt ′ ≤ 0)) ���.
By Lemma 9, we obtain that

Var
( 1
√
n

bnr2c∑
t=bnr1c+1

X>t cψτ (εt )
)
≤ 1

n

bnr2c∑
t=bnr1c+1

∞∑
j=0

Cδ∗G (j , p)
p/(2p+2) .

Note that by Assumption 3, we have δG (k , 4) decays with rate faster than O (k −4) , hence δ∗
G
(k , 4) decays with rate

faster than O (k −3) . Then choosing p = 4 implies ∑∞
j=0 δ

∗
G
(j , p)p/(2p+2) < ∞, hence (i) follows.

(ii) Similar to (i), we have that

Var
( 1
√
n

bnr2c∑
t=bnr1c+1

∫ X>t c

0
[1(ϕt ≤ s) − 1(ϕt ≤ 0) ]ds

)
=Var

( 1
√
n

bnr2c∑
t=bnr1c+1

∫ X>t c

0
[1(εt ≤ [X>t γt ]−1s) − 1(εt ≤ 0) ]ds

)
≤ 1
n

bnr2c∑
t ,t ′=bnr1c+1

∫ X>t c

0

∫ X>
t ′ c

0
|Cov(dεt ( [X>t γt ]−1s), dεt ′ ( [X

>
t ′ γt ′ ]

−1s′)) |dsds′,

where dεt (s) = [1(εt ≤ s) − 1(εt ≤ 0) ].

Note that X>t γt is a bounded sequence, and

Cov(dεt (s), dεt ′ (s
′)) =Cov(1(εt ≤ s), 1(εt ′ ≤ s′)) + Cov(1(εt ≤ 0), 1(εt ′ ≤ 0))

− Cov(1(εt ≤ s), 1(εt ′ ≤ 0)) − Cov(1(εt ≤ 0), 1(εt ′ ≤ s′)),
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hence by Lemma 9, (ii) can be proved based on a similar argument used in (i).

Lemma 9 For any s, s′ ∈ Ò,

|Cov(1(ε0 ≤ s), 1(εt ≤ s′)) | ≤ Cδ∗G (t , p)
p/(2p+2)

for some constant C > 0 independent of s and s′.

Proof of Lemma 9 Note that for any s, s′ ∈ Ò,

Cov(1(ε0 ≤ s), 1(εt ≤ s′)) =E [1(ε0 ≤ s)1(εt ≤ s′) ] − E [1(ε0 ≤ s) ]E [1(εt ≤ s′) ]

=E { [1(εt ≤ s′) − 1(ε∗t ≤ s′) ]1(ε0 ≤ s) },

where we use the fact that ε∗t = G (F∗i ) is independent of ε0. Then, by the Cauchy-Schwarz inequality, we obtain that
|Cov(1(ε0 ≤ s), 1(εt ≤ s′)) | ≤ ‖1(εt ≤ s′) − 1(ε∗t ≤ s′) ] ‖2.

Furthermore, we can show that for any s ∈ R and any η > 0,

E | [1(εt ≤ s′) − 1(ε∗t ≤ s′) ]1( |εt − ε∗t | ≤ η) |2

=P (εt ≤ s, ε∗t > s, |εt − ε∗t | ≤ η) + P (εt > s, ε∗t ≤ s, |εt − ε∗t | ≤ η) ≤ 2P (s < εt ≤ s + η) ≤ 2Cη,

by Assumption 1. For some p ≥ 1

E | [1(εt ≤ s′) − 1(ε∗t ≤ s′) ]1( |εt − ε∗t | > η) |2 ≤ P ( |εt − ε∗t | > η) ≤ η−pE |εt − ε∗t |p = δ∗G (t , p) .

By choosing η = [δ∗
G
(t , p)p/(2C ) ]1/(p+1) , we obtain ‖1(εt ≤ s′) − 1(ε∗t ≤ s′) ‖2 ≤ 2(2C )p/(p+1) δ∗G (t , p)

p/(2p+2) .

Lemma 10 R δ,2 (q ) defined in (S7) is invertible for q < q1 when ‖α‖ , 0.

Proof of Lemma 10: Recall that for q < q1 < r , we have c(q , r ) = [Σ1 (q1) − Σ1 (q ) + Σ2 (r ) − Σ2 (q1) ]−1 [Σ2 (r ) −
Σ2 (q1) ]α. Therefore,

R δ,2 (q ) =
∫ 1−δ

q1+δ

(r − q )2 (1 − r )2

(1 − q )2
{
[Σ1 (q1) − Σ1 (q ) + Σ2 (r ) − Σ2 (q1) ]−1 [Σ1 (q1) − Σ1 (q ) ]α

}⊗2
dr .

Denote

(r − q ) (1 − r )
(1 − q )

{
[Σ1 (q1) − Σ1 (q ) + Σ2 (r ) − Σ2 (q1) ]−1 [Σ1 (q1) − Σ1 (q ) ]α

}
:=

(
g1 (r ), g2 (r )

)>
,

then the invertibility of R δ,2 (q ) is equivalent to det(R δ,2 (q )) > 0 since R δ,2 (q ) is semi-positive definite, i.e.

∫ 1−δ

q1+δ
g1 (r )2dr

∫ 1−δ

q1+δ
g2 (r )2dr − [

∫ 1−δ

q1+δ
g1 (r )g2 (r )dr ]2 > 0.
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Then, by Cauchy-Schwarz inequality for integrals, the invertibility of R δ,2 (q ) is equivalent to the following statement:

g1 (r , q , q1, δ, α1, α2)
g2 (r , q , q1, δ, α1, α2)

, c for any constant c uniformly in r ∈ (q1 + δ, 1 − δ) .

Wewill prove by contradiction. Denote [Σ1 (q1) −Σ1 (q ) −Σ2 (q1) ] = {Ai j }i ,j=1,2, [Σ1 (q1) −Σ1 (q ) ]α := (w1,w2)>,
then notice that when γ (i )0 , 0, we have

Σ2 (r ) =
( [ln |γ (2)

0
+γ
(2)
1

r |−ln |γ (2)
0
| ]

γ
(2)
1

γ
(2)
1

r−γ (2)
0
[ln |γ (2)

0
+γ
(2)
1

r |−ln |γ (2)
0
| ]

γ
(2)2
1

γ
(2)
1

r−γ (2)
0
[ln |γ (2)

0
+γ
(2)
1

r |−ln |γ (2)
0
| ]

γ
(2)2
1

γ
(2)2
0
[ln |γ (2)

0
+γ
(2)
1

r |−ln |γ (2)
0
| ]−γ (2)

1
γ
(2)
0

r

γ
(2)3
1

+ r 2

2γ
(2)
1

)
:= {Bi j (r ) }i ,j=1,2

Now, suppose g1 (r )
g2 (r )

= c for some constant c uniformly in r , note that (g1, g2)> = [A + B (r ) ]−1 (w1,w2)>, we have

[B22 (r ) + A22 ]w1 − [B12 (r ) + A12 ]w2
−[B21 (r ) + A21 ]w1 − [B11 (r ) + A11 ]w2

= c .

When we compare the coefficients of r 2 in both denominator and numerator of the above equation, we can conclude
the w1B22 (r ) = 0, i.e. w1 = 0. Then we compare the coefficients of r and determine that w2 = 0. This implies that
α1 = α2 = 0, which contradicts the model setting.

Proposition 11 SupposeX = (X1, · · · ,Xd )> ∈ Òd follows an elliptical distribution, i.e. there exist a vector µ = (µ1, · · · , µd )> ∈
Òd , a positive semi-definite matrix M and a function Ψ : Ò+ → Ò such that the characteristic function ϕX−µ (t ) of X − µ
takes the form ϕX−µ (t ) = Ψ(t>Mt ), t ∈ Òd . For τ ∈ (0.5, 1) , we have Qτ (

∑d
i=1 Xi ) ≤

∑d
i=1 Qτ (Xi ) , and for τ ∈ (0, 0.5) ,

we have Qτ (
∑d
i=1 Xi ) ≥

∑d
i=1 Qτ (Xi ) .

Proof of Proposition 11: Let e i ∈ Òd be the vector with i -th entry 0 and other entries 1, then by the definition of
X , we have for any t ∈ Ò

E
(
exp(i tM −1/2

i i
e>i [X − µ ]))

)
= Ψ(t 2M −1i i e

>
i Me i ) = Ψ(t

2)

where Mi j denotes the (i , j )th entry of M . That is,

M
−1/2
i i

e>i (X − µ) =
Xi − µi√
Mi i

d
= Z

where Z is a random variable with the characteristic function ϕZ (t ) = Ψ(t 2) . Hence, we obtain that Qτ (Xi ) =
µi +M

1/2
i i
Qτ (Z ) .

In addition, since

E
(
exp(i t [

d∑
i=1

e i ]> [X − µ ])
)
= Ψ(t 2

d∑
i=1

d∑
j=1

Mi j ),
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we obtain that

Qτ (
d∑
i=1

Xi ) =
d∑
i=1

µi +
( d∑
i=1

d∑
j=1

Mi j

)1/2
Qτ (Z ) .

Note that Qτ (Z ) < 0 for τ ∈ (0, 0.5) and Qτ (Z ) > 0 for τ ∈ (0.5, 1) since it is straightforward to see that Z is
symmetric around 0. The result follows by observing that |Mi j | ≤ M 1/2

i i
M
1/2
j j

when M is positive semi-definite.

S4 | MULTI-SCANNING (M-)GOALS

As discussed in Section 2 of the main text, in practice, the optimal choice of (ε, δ) for (M-)GOALS may depend on
the specific real data application, and different choices of (ε, δ) could lead to different segmentation results by (M-
)GOALS. Thus, it is desirable to have a fully data-driven procedure that automatically selects a suitable (ε, δ) based
on the observations.

To this end, we propose multi-scanning (M-)GOALS, which further augments (M-)GOALS with a model selection
based post-processing step and automatically consolidates estimated change-points from (M-)GOALS with different
trimming parameters (ε, δ) via minimizing a quantile regression BIC function. To conserve space, we focus on the
presentation of multi-scanning M-GOALS. The procedure for multi-scanning GOALS can be derived accordingly in a
straightforward manner.

The key idea of multi-scanning M-GOALS is a post-processing procedure based on a modified quantile regression
BIC. Denote k̂ = (k̂1, · · · , k̂m̂ ) as the estimated change-points based on {Yt }nt=1, and further define k̂0 := 0 and
k̂m̂+1 := n . Given the multiple quantile levels τM = (τ1, · · · , τM ) of interest, the modified quantile regression BIC
function is defined as

BIC(k̂, τM ) =
M∑
j=1

log
©«
m̂∑
i=0

k̂i+1∑
t=k̂i +1

ρτj

(
Yt − X>t β̂k̂i +1,k̂i+1 (τj )

)ª®®¬ + (3m̂ + 2) log n
2n

 , (S24)

where ρτ (u) = u (τ − É(u < 0)) is the check loss at quantile level τ , Xt = (1, t/n) is the deterministic regressor
and β̂

k̂i +1,k̂i+1
(τj ) = (β̂0;k̂i +1,k̂i+1 (τj ), β̂1;k̂i +1,k̂i+1 (τj ))

> is the estimated linear trend parameters based on the (i + 1)th

estimated segment {Yt }k̂i+1
t=k̂i +1

via quantile regression at the quantile level τj , for j = 1, · · · ,M and i = 0, 1, · · · , m̂. The
factor 3m̂ + 2 is used to account for the number of parameters in the m̂ + 1 quantile regressions and m̂ change-point
locations.

The quantile regression BIC is originally proposed in Lee et al. (2014) for i.i.d. data. The modified quantile regres-
sion BIC proposed in (S24) is adapted from equation (2.3) in Lee et al. (2014) to handle the piecewise linear quantile
trend model. In the literature, another commonly used quantile regression BIC is based on the sum of check losses
without the logarithm function (seeWu and Zen, 1999), which is later adopted in the quantile regression change-point
literature by Oka and Qu (2011) and Aue et al. (2014). However, as argued by Lee et al. (2014), the BIC in (S24) is
preferable as it is invariant to the scale of {Yt }nt=1. We refer to Section 2.1 of Lee et al. (2014) for more discussions.

We proceed by introducing notations necessary for the presentation of multi-scanning M-GOALS. Given a signif-
icance level α ∈ (0, 1) , denote k̂(ε, δ) as the set of change-points estimated by M-GOALS with trimming parameters
(ε, δ) and threshold ζMn (ε, δ) , where ζMn (ε, δ) is the (1−α)×100%quantile of the pivotal limiting distribution TM (ε, δ)
in Theorem 1. Denote C as the set of all specifications of (ε, δ) . Note that C should cover a reasonably wide range
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of (ε, δ) . In numerical studies, we set C as
{(0.06, 0.01), (0.08, 0.01), (0.08, 0.02), (0.1, 0.01), (0.1, 0.02), (0.12, 0.01), (0.12, 0.02), (0.15, 0.01), (0.15, 0.02) }.

As discussed above, M-GOALS based on different trimming parameters (ε, δ) ∈ C could potentially return differ-
ent estimated change-points k̂(ε, δ) . A natural solution is to select the change-point estimate (and thus the trimming
parameter) that minimizes the modified quantile regression BIC in (S24). In other words, define

(ε∗, δ∗) = argmin
(ε,δ )∈C

BIC(k̂(ε, δ), τM ), (S25)

we set the final change-point estimator as k̂(ε∗, δ∗) and refer it as the best individual M-GOALS by BIC. Simulation
studies in Section S5 indicate that k̂(ε∗, δ∗) performs well in practice.

One potential drawback of k̂(ε∗, δ∗) is that it treats estimation results from different trimming parameters sepa-
rately and chooses a single (ε∗, δ∗) for M-GOALS. However, when there are multiple change-points, there could be
cases where the best estimator for different true change-point is given by M-GOALS with different trimming param-
eters. Intuitively, if we can consolidate the estimated change-points across M-GOALS with different (ε, δ) ∈ C in a
sensible way, the final estimate can be improved. This motivates the development of multi-scanning M-GOALS.

Denote K̂ =
⋃
(ε,δ )∈C k̂(ε, δ) as the collection of estimated change-points pooled from M-GOALS with different

(ε, δ) in C. Multi-scanning M-GOALS consolidates K̂ by searching through all subsets of K̂ and defines the final
change-point estimate as

k̂∗ = argmin
k̂⊂K̂

BIC(k̂, τM ) . (S26)

Unlike k̂(ε∗, δ∗) , the estimated change-points in k̂∗ can come from M-GOALS with different trimming parameters,
and it is easy to see that BIC(k̂∗, τM ) ≤ BIC(k̂(ε∗, δ∗), τM ) . Thus, via the quantile regression BIC, multi-scanning M-
GOALS implicitly integrates different change-point estimates from different (ε, δ) . The optimization of (S26) can be
done via exhaustive search, as the cardinality of K̂ is typically small (less than 10 in the numerical studies), otherwise,
a forward selection procedure can be used for heuristic optimization. In Section S5, multi-scanning M-GOALS is seen
to provide the most favorable performance in the simulation studies.

Remark 2: Multi-scanning M-GOALS is a hybrid of M-GOALS and the model selection based approach. The
estimated change-points by M-GOALS with different (ε, δ) create a promising candidate pool K̂ of potential change-
points, which is then refined by the quantile regression BIC in (S26) to form the final change-point estimate k̂∗. Multi-
scanning M-GOALS capitalizes on both steps, where the candidate pool generated by M-GOALS provides robustness
to serial dependence and heteroscedasticity thanks to the use of SN, and the model selection step helps implicitly
select the best trimming parameter and consolidates the change-point estimation by integrating results obtained
across M-GOALS with different (ε, δ) . Similar hybrid strategies are previously investigated in Niu and Zhang (2012)
and Yau and Zhao (2016) under the context of change-point estimation in univariate mean and autoregressive models,
respectively.

Remark 3: It is natural to consider a fully model selection based approach, where we estimate change-points by
directly minimizing (S26) without the M-GOALS step. In other words, we set K̂ = {1, 2, · · · , n } in (S26). However,
there are several drawbacks for such an approach. First, an exact optimization of (S26) is impossible as the search
space is of cardinality 2n and it is easy to see that dynamic programming cannot be used to optimize (S26). Second
and more importantly, without the pre-screening from M-GOALS, the estimation can be more sensitive to unknown
serial dependence and heteroscedasticity, as the modified quantile regression BIC in (S26) does not explicitly account
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for such effects.

S5 | SIMULATION STUDIES

In this section, we conduct numerical experiments to investigate the finite sample performance of GOALS, M-GOALS
and multi-scanning M-GOALS for multiple change-point detection, and further compare with Oka and Qu (2011).
Section S5.1 focuses on GOALS and M-GOALS, and Section S5.2 examines multi-scanning M-GOALS and further
conducts a sensitivity analysis.

We consider the following three data-generating processes (DGPs) with n = 210, which is the average length of
the COVID-19 infection curves across the 35 countries used in real data analysis.

DGP1: Yt =



5.8 + 26(t/n) +ϕt , 1 ≤ t ≤b0.1 ∗ n c,

8.4 + 2(t/n − 0.1) +ϕt , b0.1 ∗ n c + 1 ≤ t ≤b0.3 ∗ n c,

8.8 − 7(t/n − 0.3) +ϕt , b0.3 ∗ n c + 1 ≤ t ≤b0.55 ∗ n c,

7.05 + 4(t/n − 0.55) +ϕt , b0.55 ∗ n c + 1 ≤ t ≤b0.8 ∗ n c,

8.05 + 11(t/n − 0.8) +ϕt , b0.8 ∗ n c + 1 ≤ t ≤n .

DGP2: Yt =



5.5 + 45(t/n) +ϕt , 1 ≤ t ≤b0.1 ∗ n c,

10 − 1.3(t/n − 0.1) +ϕt , b0.1 ∗ n c + 1 ≤ t ≤b0.4 ∗ n c,

9.61 + 7.5(t/n − 0.4) +ϕt , b0.4 ∗ n c + 1 ≤ t ≤b0.6 ∗ n c,

11.11 − 4(t/n − 0.6) +ϕt , b0.6 ∗ n c + 1 ≤ t ≤b0.8 ∗ n c,

10.31 + 6(t/n − 0.8) +ϕt , b0.8 ∗ n c + 1 ≤ t ≤n .

DGP3: Yt =



6 − 23(t/n) +ϕt , 1 ≤ t ≤b0.15 ∗ n c,

2.55 − 3(t/n − 0.1) +ϕt , b0.1 ∗ n c + 1 ≤ t ≤b0.35 ∗ n c,

1.8 + 19(t/n − 0.35) +ϕt , b0.35 ∗ n c + 1 ≤ t ≤b0.6 ∗ n c,

6.55 − 14(t/n − 0.6) +ϕt , b0.6 ∗ n c + 1 ≤ t ≤b0.8 ∗ n c,

3.75 − 3(t/n − 0.8) +ϕt , b0.8 ∗ n c + 1 ≤ t ≤n

The error process {ϕt } takes the form ϕt = [1 + γ1 (t/n) ]εt and εt is generated via an AR(1) process where εt =
ρεt−1 + e t , e t i .i .d .∼ N(0, (1 − ρ2)σ2) . The DGP 1-3 are designed to mimic the trajectory of daily coronavirus new
cases (in log scale) in the U.K, the U.S. and Australia respectively, see Figure S1 for typical realizations of the three
DGPs with ρ = 0.3, γ1 = 0.3 and σ = 0.2.

We vary ρ to control the temporal dependence of the error process and vary σ to control the variance of the error
process. Furthermore, we set γ1 = 0 to generate homogeneous errors and set γ1 = 0.3 to generate heteroscedastic
errors. For each simulation setting considered in the following, we repeat the experiments 500 times.

For comparison, we consider themultiple change-point estimation procedure for regression quantiles proposed in
Oka and Qu (2011). The estimation method proposed in Aue et al. (2014) shares similar ideas with Oka and Qu (2011)
by minimizing anMDL-based objective function but can only perform change-point detection at a single quantile level.
Thus, we focus on the comparison with Oka and Qu (2011) (hereafter, OQ).

To assess the accuracy of change-point estimation, we use the Hausdorff distance between two sets. Denote the
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F IGURE S1 Typical realizations of DGP 1-3 with ρ = 0.3, γ1 = 0.3 and σ = 0.2. Vertical lines mark the true
change-points.
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set of true change-points as q0 and the set of estimated change-points as q̂, we define d1 (q0, q̂) = maxq1∈q̂minq2∈q0 |q1−
q2 | and d2 (q0, q̂) = maxq1∈q0 minq2∈q̂ |q1 − q2 |, where d1 measures the over-segmentation error while d2 measures
the under-segmentation error of q̂. In addition, we report the adjusted Rand index (ARI) which measures the similarity
between two partitions of the same observations. Higher ARI (with the maximum value of 1) corresponds to more
accurate change-point estimation. For the definition and detailed discussions of ARI, we refer to Hubert and Arabie
(1985).

S5.1 | GOALS and M-GOALS

In this section, we conduct extensive numerical experiments to examine the performance of GOALS and M-GOALS
across various simulation settings of DGP 1-3. Specifically, we vary ρ = 0,±0.3,±0.5 to generate a wide range of
temporal dependence and varyσ = 0.1, 0.2 to generate low and high volatility. We set γ1 = 0 to generate homogeneous
errors and set γ1 = 0.3 to generate heteroscedastic errors.

For each simulated time series {Yt }nt=1, GOALS and OQ are employed for change-point detection at a single
quantile level τ with τ = 0.5 or 0.9, and M-GOALS and OQ are employed for change-point detection across multiple
quantile levels with τM = (0.1, 0.5, 0.9) . In this subsection, we fix the trimming parameters for GOALS and M-GOALS
at (ε, δ) = (0.1, 0.02) , which is the same as the one used in real data analysis in Section 4 of the main text. Both
(M-)GOALS and OQ require a significance level α in their implementation, and we set α = 0.1 for both methods, same
as in Section 4 of the main text.

Table S1 (homogeneous case) and Table S2 (heteroscedastic case) summarize the performance of GOALS and
OQ for change-point detection at a single quantile τ = 0.5 or 0.9, where we report the average ARI, the number of
estimated change-point m̂ , and Hausdorff distances (d1, d2) across the 500 experiments. It can be seen that both
methods deliver accurate change-point estimation for the quantile level τ = 0.5. In particular, GOALS tends to have
better ARI and smaller d2, while OQ tends to have smaller d1. However, for the quantile level τ = 0.9, OQ severely
underestimates the number of change-points in DGP1 and DGP2, especially under high variance (σ = 0.2). In compar-
ison, GOALS remains effective under all settings. This suggests that GOALS is more robust when applied to detecting
changes in extreme quantiles.

Table S3 summarizes the performance of M-GOALS and OQ for change-point detection across multiple quantile
levels τM = (0.1, 0.5, 0.9) . Compared with the results based on a single quantile level, it can be seen that the per-
formance of both methods improves when multiple quantile levels are used simultaneously. The two methods have
similar performance under lower variance (σ = 0.1) and homogeneous (γ1 = 0) errors. However, M-GOALS performs
more favorably under high volatility (σ = 0.2) and heterogeneous (γ1 = 0.3) errors, especially in terms of ARI.

For both change-point estimation at a single quantile level and across multiple quantile levels, we find that increas-
ing ρ (temporal dependence) or σ (variance) negatively affects the accuracy of change-point estimation for both meth-
ods. In addition, estimation is more accurate in the homogeneous case (γ1 = 0) than in heterogeneous case (γ1 = 0.3).
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TABLE S1 Change-point estimation at a single quantile level τ = 0.5 or 0.9 (homogeneous case)

GOALS OQ

τ = 0.5 τ = 0.9 τ = 0.5 τ = 0.9

σ ρ ARI m̂ d1/d2(%) ARI m̂ d1/d2(%) ARI m̂ d1/d2(%) ARI m̂ d1/d2(%)

DGP 1

0.1

-0.5 0.913 4.00 1.72 /1.74 0.876 4.02 2.60 /2.67 0.898 4.00 1.90 /1.90 0.731 3.24 12.02 /3.63

-0.3 0.911 4.00 1.80 /1.80 0.874 4.01 2.67 /2.62 0.895 4.00 1.99 /1.99 0.723 3.24 11.91 /3.82

0 0.902 4.00 1.99 /2.01 0.870 4.02 2.76 /2.79 0.887 4.00 2.21 /2.22 0.712 3.20 12.00 /3.98

0.3 0.890 4.01 2.34 /2.38 0.863 4.03 2.93 /3.05 0.873 4.02 2.55 /2.64 0.701 3.16 12.94 /4.15

0.5 0.875 4.01 2.78 /2.73 0.849 4.04 3.34 /3.46 0.856 4.10 2.87 /3.31 0.683 3.14 13.44 /4.50

0.2

-0.5 0.861 4.01 2.89 /2.85 0.784 3.88 7.06 /4.23 0.821 3.96 3.84 /3.34 0.472 2.14 24.41 /6.29

-0.3 0.851 4.00 3.39 /3.11 0.775 3.90 7.11 /4.45 0.815 3.98 3.94 /3.60 0.471 2.13 25.20 /6.10

0 0.837 3.99 3.95 /3.37 0.755 3.83 8.72 /4.59 0.796 3.97 4.45 /4.04 0.483 2.18 23.31 /6.09

0.3 0.797 3.93 6.18 /4.11 0.726 3.73 10.07 /4.93 0.772 3.99 5.14 /4.74 0.483 2.20 23.24 /6.11

0.5 0.759 3.86 8.08 /4.82 0.708 3.71 10.91 /5.31 0.746 4.04 5.78 /5.44 0.499 2.30 23.04 /6.28

DGP 2

0.1

-0.5 0.930 4.00 1.42 /1.47 0.899 4.03 1.98 /2.35 0.915 4.00 1.71 /1.71 0.582 2.54 26.03 /4.14

-0.3 0.927 4.01 1.48 /1.57 0.897 4.03 2.04 /2.33 0.913 4.00 1.76 /1.76 0.569 2.49 26.75 /4.37

0 0.920 4.01 1.71 /1.85 0.894 4.03 2.14 /2.44 0.907 4.00 1.95 /1.95 0.564 2.50 26.62 /4.49

0.3 0.906 4.02 2.01 /2.20 0.887 4.04 2.40 /2.70 0.891 4.03 2.29 /2.43 0.567 2.51 25.95 /4.58

0.5 0.892 4.05 2.28 /2.78 0.877 4.03 2.71 /2.94 0.878 4.08 2.58 /3.02 0.566 2.54 25.65 /4.65

0.2

-0.5 0.887 4.01 2.51 /2.53 0.809 3.89 6.29 /3.99 0.830 3.90 4.18 /3.44 0.280 1.40 42.35 /4.32

-0.3 0.881 4.01 2.78 /2.75 0.797 3.82 7.32 /4.05 0.827 3.90 4.40 /3.54 0.278 1.37 41.83 /4.45

0 0.863 3.98 3.67 /3.11 0.787 3.79 7.73 /4.00 0.821 3.95 4.11 /3.81 0.290 1.42 38.95 /4.97

0.3 0.821 3.91 5.78 /3.90 0.756 3.68 9.87 /4.24 0.794 3.94 5.09 /4.60 0.302 1.47 36.26 /5.22

0.5 0.776 3.80 8.28 /4.42 0.734 3.66 10.60 /4.72 0.779 3.99 5.27 /5.18 0.312 1.53 35.06 /5.46

DGP 3

0.1

-0.5 0.936 4.00 1.21 /1.21 0.914 4.00 1.56 /1.57 0.935 4.00 1.27 /1.30 0.877 3.80 4.64 /1.93

-0.3 0.933 4.00 1.26 /1.26 0.910 4.00 1.65 /1.65 0.933 4.00 1.33 /1.33 0.880 3.84 4.19 /2.00

0 0.932 4.00 1.32 /1.32 0.905 4.00 1.80 /1.81 0.931 4.00 1.38 /1.40 0.866 3.82 4.84 /2.21

0.3 0.923 4.00 1.57 /1.53 0.901 4.00 1.91 /1.94 0.921 4.05 1.55 /1.80 0.861 3.86 4.90 /2.43

0.5 0.914 4.00 1.68 /1.70 0.898 4.00 2.01 /2.01 0.910 4.11 1.80 /2.36 0.871 3.89 4.17 /2.38

0.2

-0.5 0.905 4.00 1.94 /1.91 0.861 3.93 4.00 /2.54 0.888 4.00 2.22 /2.22 0.774 3.51 9.47 /3.06

-0.3 0.903 3.99 2.18 /1.91 0.853 3.90 4.48 /2.64 0.884 4.00 2.35 /2.35 0.768 3.49 9.76 /3.10

0 0.892 3.97 2.68 /2.16 0.842 3.87 5.30 /2.75 0.874 4.00 2.56 /2.58 0.758 3.46 9.92 /3.28

0.3 0.865 3.91 4.28 /2.51 0.826 3.81 6.33 /2.92 0.856 4.02 3.01 /3.05 0.747 3.47 10.10 /3.59

0.5 0.839 3.87 5.61 /3.00 0.820 3.85 6.18 /3.27 0.843 4.07 3.37 /3.63 0.737 3.52 10.49 /3.99
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TABLE S2 Change-point estimation at a single quantile level τ = 0.5 or 0.9 (heteroscedastic case)

GOALS OQ

τ = 0.5 τ = 0.9 τ = 0.5 τ = 0.9

σ ρ ARI m̂ d1/d2(%) ARI m̂ d1/d2(%) ARI m̂ d1/d2(%) ARI m̂ d1/d2(%)

DGP 1

0.1

-0.5 0.904 4.00 1.95/1.97 0.905 4.00 1.83/1.81 0.885 4.00 2.21/2.21 0.853 3.74 13.01 /4.25

-0.3 0.900 4.00 2.06/2.06 0.903 4.00 1.86/1.86 0.881 4.00 2.31/2.31 0.846 3.72 12.15 /4.17

0 0.892 4.00 2.25/2.26 0.898 4.00 2.06/1.95 0.871 4.00 2.57/2.57 0.845 3.76 13.18 /4.57

0.3 0.877 4.00 2.71/2.70 0.892 4.00 2.26/2.20 0.858 4.02 2.91/2.99 0.846 3.79 13.74 /4.67

0.5 0.859 4.01 3.23/3.13 0.885 4.01 2.40/2.35 0.837 4.11 3.31/3.70 0.843 3.88 13.83 /4.92

0.2

-0.5 0.841 3.97 4.02/3.24 0.832 3.81 6.30/2.74 0.770 3.78 7.02/4.01 0.737 3.30 26.09 /6.10

-0.3 0.830 3.96 4.48/3.43 0.820 3.77 7.13/2.82 0.763 3.83 6.62/4.37 0.739 3.36 27.00 /6.08

0 0.809 3.92 5.77/3.74 0.810 3.74 7.88/3.00 0.753 3.85 6.83/4.72 0.718 3.25 26.44 /6.03

0.3 0.764 3.82 8.53/4.47 0.793 3.67 8.84/3.14 0.728 3.85 7.82/5.37 0.702 3.28 26.74 /6.27

0.5 0.721 3.70 10.63/5.14 0.788 3.71 8.73/3.53 0.705 3.89 8.35/6.10 0.715 3.33 26.47 /6.07

DGP 2

0.1

-0.5 0.923 4.01 1.61/1.67 0.887 4.03 2.36/2.71 0.903 4.00 1.98/1.98 0.532 2.35 29.20 /4.46

-0.3 0.918 4.00 1.77/1.79 0.886 4.04 2.35/2.72 0.902 4.00 2.01/2.01 0.534 2.36 28.56 /4.69

0 0.913 4.02 1.88/2.04 0.880 4.02 2.64/2.75 0.894 4.00 2.24/2.24 0.528 2.34 28.32 /4.66

0.3 0.893 4.02 2.41/2.57 0.872 4.04 2.92/3.14 0.879 4.01 2.63/2.70 0.517 2.28 29.00 /4.77

0.5 0.879 4.05 2.68/3.08 0.856 4.04 3.41/3.55 0.862 4.08 2.93/3.34 0.502 2.27 28.72 /4.81

0.2

-0.5 0.864 3.95 3.88/2.85 0.751 3.61 10.63/4.07 0.747 3.55 9.52/4.48 0.180 0.95 46.97 /3.84

-0.3 0.849 3.92 4.87/3.21 0.738 3.57 11.55/4.21 0.768 3.69 7.24/4.62 0.187 0.96 48.43 /3.65

0 0.823 3.85 6.37/3.52 0.710 3.44 13.38/4.14 0.754 3.70 7.90/4.87 0.190 0.98 45.00 /4.23

0.3 0.770 3.69 9.42/4.08 0.680 3.35 15.35/4.47 0.735 3.67 8.59/5.46 0.215 1.05 41.06 /4.88

0.5 0.726 3.56 12.03/4.52 0.673 3.38 14.84/4.89 0.727 3.80 8.10/6.05 0.248 1.21 35.42 /5.73

DGP 3

0.1

-0.5 0.931 4.00 1.31/1.31 0.861 4.02 3.17/3.10 0.928 4.00 1.44/1.44 0.674 3.07 5.88 /2.23

-0.3 0.929 4.00 1.35/1.35 0.860 4.02 3.15/3.05 0.925 4.00 1.49/1.51 0.687 3.15 6.30 /2.34

0 0.925 4.00 1.48/1.46 0.854 4.02 3.27/3.24 0.921 4.00 1.64/1.64 0.663 3.06 5.93 /2.50

0.3 0.913 3.99 1.89/1.76 0.842 4.04 3.77/3.57 0.910 4.03 1.92/2.06 0.654 3.04 5.80 /2.57

0.5 0.905 4.00 2.01/1.93 0.827 4.05 4.32/4.08 0.902 4.08 2.03/2.46 0.648 3.03 5.44 /2.78

0.2

-0.5 0.887 3.95 3.18/2.07 0.748 3.75 9.50/4.46 0.873 4.00 2.56/2.58 0.455 2.01 11.60 /3.26

-0.3 0.880 3.93 3.60/2.27 0.731 3.70 10.33/4.70 0.870 4.00 2.69/2.65 0.445 1.93 11.59 /3.29

0 0.862 3.87 4.90/2.38 0.707 3.63 12.13/4.86 0.857 4.01 3.08/3.06 0.453 1.96 12.46 /3.60

0.3 0.830 3.76 7.12/2.65 0.687 3.56 12.99/5.29 0.840 4.02 3.48/3.51 0.450 1.99 12.61 /4.00

0.5 0.809 3.74 7.99/3.14 0.673 3.56 13.07/5.58 0.823 4.06 4.01/4.09 0.465 2.05 12.21 /3.95
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TABLE S3 Change-point estimation across multiple quantile levels τM = (0.1, 0.5, 0.9)

Homogeneous case Heterogeneous case

M-GOALS OQ M-GOALS OQ

σ ρ ARI m̂ d1/d2(%) ARI m̂ d1/d2(%) ARI m̂ d1/d2(%) ARI m̂ d1/d2(%)

DGP 1

0.1

-0.5 0.924 4.00 1.47/1.49 0.912 4.00 1.66/1.66 0.917 4.00 1.64/1.66 0.902 4.00 1.86/1.86

-0.3 0.919 4.00 1.61/1.64 0.905 4.00 1.82/1.82 0.909 4.01 1.84/1.92 0.894 4.00 2.06/2.06

0 0.904 4.01 2.06/2.04 0.890 4.00 2.19/2.19 0.894 4.01 2.26/2.30 0.877 4.00 2.48/2.49

0.3 0.876 4.02 2.85/2.76 0.875 4.02 2.53/2.65 0.857 4.00 3.66/3.18 0.860 4.03 2.89/3.04

0.5 0.847 4.05 3.94/3.78 0.858 4.10 2.84/3.29 0.826 4.06 4.81/4.21 0.839 4.11 3.33/3.74

0.2

-0.5 0.875 4.02 2.52/2.64 0.848 3.98 3.16/2.94 0.858 4.02 3.25/3.05 0.792 3.79 6.58/3.55

-0.3 0.861 4.02 3.01/3.04 0.835 3.98 3.52/3.23 0.840 4.01 4.33/3.54 0.785 3.82 6.40/3.86

0 0.828 3.98 4.72/3.69 0.808 3.97 4.33/3.92 0.795 3.91 7.06/4.07 0.764 3.85 6.74/4.56

0.3 0.783 3.97 6.94/4.67 0.778 4.00 4.96/4.63 0.749 3.88 9.04/5.19 0.733 3.87 7.46/5.25

0.5 0.738 3.98 8.54/5.74 0.749 4.06 5.59/5.43 0.706 3.94 10.11/6.28 0.711 3.92 7.79/5.98

DGP 2

0.1

-0.5 0.937 4.04 1.18/1.62 0.924 4.00 1.53/1.53 0.931 4.05 1.29/1.85 0.915 4.00 1.73/1.73

-0.3 0.935 4.04 1.25/1.66 0.918 4.00 1.68/1.70 0.928 4.04 1.41/1.86 0.909 4.00 1.89/1.89

0 0.921 4.05 1.54/2.12 0.909 4.00 1.88/1.88 0.914 4.05 1.72/2.27 0.897 4.00 2.20/2.20

0.3 0.902 4.03 2.19/2.44 0.894 4.02 2.26/2.40 0.892 4.04 2.42/2.70 0.879 4.01 2.65/2.73

0.5 0.879 4.04 2.97/3.03 0.878 4.09 2.56/3.02 0.864 4.01 3.74/3.32 0.862 4.07 2.98/3.32

0.2

-0.5 0.905 4.06 1.91/2.54 0.851 3.91 3.74/3.04 0.895 4.06 2.20/2.84 0.767 3.56 8.88/4.14

-0.3 0.897 4.07 2.09/2.72 0.842 3.91 4.03/3.24 0.883 4.08 2.50/3.17 0.783 3.70 7.05/4.35

0 0.872 4.04 3.04/3.22 0.830 3.95 3.96/3.71 0.850 4.03 3.94/3.75 0.762 3.70 7.80/4.70

0.3 0.821 4.06 4.98/4.63 0.797 3.95 5.04/4.53 0.795 4.01 6.28/5.09 0.739 3.69 8.32/5.35

0.5 0.776 4.00 6.83/5.46 0.778 4.00 5.25/5.21 0.748 3.92 8.33/5.71 0.725 3.80 8.18/6.16

DGP3

0.1

-0.5 0.939 4.01 1.12/1.25 0.940 4.00 1.17/1.19 0.935 4.01 1.21/1.31 0.934 4.00 1.30/1.32

-0.3 0.936 4.00 1.20/1.24 0.936 4.00 1.25/1.25 0.933 4.01 1.26/1.32 0.929 4.00 1.42/1.44

0 0.928 4.01 1.36/1.44 0.931 4.00 1.39/1.41 0.923 4.01 1.44/1.56 0.922 4.00 1.60/1.60

0.3 0.917 4.00 1.70/1.67 0.922 4.04 1.58/1.83 0.908 3.99 2.15/1.88 0.911 4.03 1.86/2.02

0.5 0.908 4.00 2.08/1.94 0.912 4.11 1.75/2.36 0.893 3.98 2.85/2.25 0.899 4.12 2.06/2.63

0.2

-0.5 0.916 4.00 1.63/1.65 0.902 4.00 1.90/1.90 0.910 4.00 1.76/1.78 0.888 4.00 2.23/2.25

-0.3 0.913 4.00 1.75/1.79 0.892 4.00 2.18/2.18 0.901 4.01 2.08/2.10 0.878 4.00 2.55/2.50

0 0.896 4.00 2.20/2.15 0.875 4.00 2.54/2.55 0.881 3.98 3.01/2.41 0.861 4.01 2.93/2.96

0.3 0.866 4.00 3.36/2.90 0.857 4.02 2.97/3.11 0.852 3.96 4.14/3.05 0.841 4.01 3.48/3.50

0.5 0.846 3.98 4.42/3.26 0.843 4.08 3.32/3.65 0.824 3.93 5.52/3.58 0.823 4.07 3.97/4.10
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S5.2 | Multi-scanning M-GOALS and sensitivity analysis

In this section, we examine the finite sample performance of the multi-scanning M-GOALS proposed in Section S4,
which is a hybrid of M-GOALS and the modified quantile regression BIC. We consider change-point estimation for
DGP 1-3 and vary σ = 0.1, 0.2 to generate low and high volatility. We set γ1 = 0 to generate homogeneous errors and
set γ1 = 0.3 to generate heteroscedastic errors. To conserve space, we present the result with temporal dependence
ρ = 0.3, which is most relevant to real data analysis of COVID-19 infection curves. Results for ρ = 0,−0.3,±0.5 are
similar and thus omitted.

For each simulated time series {Yt }nt=1, we consider change-point detection across multiple quantile levels with
τM = (0.1, 0.5, 0.9) using four different methods: OQ, M-GOALS, best individual M-GOALS by BIC (BI-GOALS) in
(S25) and multi-scanning M-GOALS (MS-GOALS) in (S26).

For OQ and M-GOALS, their implementation is the same as in Section S5.1. Recall for M-GOALS, we fix its
trimming parameter at (ε, δ) = (0.1, 0.02) . For BI-GOALS and MS-GOALS, we fix the set C as

{(0.06, 0.01), (0.08, 0.01), (0.08, 0.02), (0.1, 0.01), (0.1, 0.02), (0.12, 0.01), (0.12, 0.02), (0.15, 0.01), (0.15, 0.02) },

which covers a wide range of trimming parameters (ε, δ) . All four methods require a significance level α in their
implementation, and we vary α = 0.1, 0.05 to examine the sensitivity of the estimation results w.r.t. the significance
level.

Table S4 summarizes the performance of the four methods, where we report the average ARI, the number of
estimated change-point m̂ , and Hausdorff distances (d1, d2) across the 500 experiments. As can be seen clearly,
across all simulation settings, BI-GOALS and MS-GOALS deliver more favorable performance than M-GOALS, which
suggests the benefit of combining estimation acrossM-GOALSwith different trimming parameters, compared to using
a single trimming parameter. The improvement is more notable under the case of low signal-to-noise ratio (SNR),
where the error exhibits high variance (σ = 0.2) and heterogeneity (γ1 = 0.3). Overall, MS-GOALS gives the best
performance, BI-GOALS comes second, and then M-GOALS and OQ, though the performance difference is minimal
under the high SNR scenario with low variance and homogeneous error. As for the sensitivity w.r.t. the significance
level α , all methods are quite robust to the choice of α = 0.1 and 0.05, though M-GOALS and OQ seem to be slightly
more sensitive compared to MS-GOALS.

Table S5 further reports the performance of M-GOALS with different trimming parameters (ε, δ) ∈ C, together
with the performance of MS-GOALS. To conserve space, we only report the result for the significance level α = 0.1,
as the result for α = 0.05 is essentially the same. Note that for DGP1 and DGP2, the minimum spacing between
change-points is 0.1 and for DGP3, it is 0.15. Thus, by Theorem 1, we know that M-GOALS with ε > 0.1 may not
work well for DGPs 1 and 2.

As can be seen from Table S5, under the case of high SNR with low variance and homogeneous error, M-GOALS
delivers accurate and robust performance across ε ∈ {0.08, 0.10, 0.12}, and its performance is further robust to the lo-
cal trimming parameter δ ∈ {0.01, 0.02}. However, visible variations of the performance can be seen under weak SNR
with high variance and heterogeneous error. M-GOALS with ε = 0.06 suffers from over-estimation (false positives) as
the estimation error of the subsample SN is difficult to control for very small ε with the moderate sample size n = 210,
while M-GOALS with ε = 0.15 suffers from under-estimation for DGP 1 and 2 as ε exceeds the minimum spacing 0.1
by a large margin. Across all simulation settings, M-GOALSwith (ε, δ) = (0.1, 0.02) and (0.1, 0.01) seem to provide the
best performance, which is then further improved by multi-scanning M-GOALS, which combines estimation results
given by different M-GOALS with (ε, δ) ∈ C.
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TABLE S4 Change-point estimation across multiple quantile levels τM = (0.1, 0.5, 0.9) . BI-GOALS stands for best
individual M-GOALS by BIC (i.e. k̂(ε∗, δ∗) in (S25)). MS-GOALS stands for multi-scanning M-GOALS (i.e. k̂∗ in (S26)).

Homogeneous case Heterogeneous case

σ = 0.1 σ = 0.2 σ = 0.1 σ = 0.2

α Model ARI m̂ d1/d2 (%) ARI m̂ d1/d2 (%) ARI m̂ d1/d2 (%) ARI m̂ d1/d2 (%)

DGP 1

0.1

OQ 0.875 4.02 2.53/2.65 0.778 4.00 4.96/4.63 0.860 4.03 2.89/3.04 0.733 3.87 7.46/5.25

M-GOALS 0.876 4.02 2.85/2.76 0.783 3.97 6.94/4.67 0.857 4.00 3.66/3.18 0.749 3.88 9.04/5.19

BI-GOALS 0.888 4.08 2.14/2.70 0.803 4.19 3.90/4.71 0.872 4.10 2.45/3.08 0.773 4.21 5.13/5.55

MS-GOALS 0.889 4.05 2.23/2.47 0.812 4.06 3.92/4.15 0.874 4.05 2.58/2.85 0.791 4.05 4.80/4.67

0.05

OQ 0.876 4.01 2.53/2.59 0.767 3.92 5.74/4.69 0.863 4.01 2.88/2.92 0.714 3.73 8.93/5.33

M-GOALS 0.878 4.02 2.72/2.73 0.771 3.89 8.01/4.62 0.858 4.02 3.53/3.21 0.732 3.75 11.04/4.96

BI-GOALS 0.888 4.08 2.13/2.69 0.800 4.20 4.05/4.72 0.872 4.10 2.46/3.08 0.773 4.21 5.13/5.55

MS-GOALS 0.889 4.05 2.23/2.46 0.811 4.06 4.00/4.21 0.874 4.05 2.57/2.85 0.791 4.05 4.80/4.67

DGP 2

0.1

OQ 0.894 4.02 2.26/2.40 0.797 3.95 5.04/4.53 0.879 4.01 2.65/2.73 0.739 3.69 8.32/5.35

M-GOALS 0.902 4.03 2.19/2.44 0.821 4.06 4.98/4.63 0.892 4.04 2.42/2.70 0.795 4.01 6.28/5.09

BI-GOALS 0.908 4.08 1.77/2.40 0.839 4.20 3.22/4.48 0.898 4.08 2.00/2.68 0.815 4.23 3.85/5.19

MS-GOALS 0.909 4.04 1.92/2.22 0.849 4.05 3.39/3.62 0.899 4.04 2.16/2.41 0.833 4.05 3.84/4.01

0.05

OQ 0.896 4.00 2.26/2.26 0.779 3.82 6.58/4.64 0.879 4.00 2.68/2.67 0.683 3.40 13.01/5.45

M-GOALS 0.905 4.05 2.06/2.43 0.819 4.02 5.28/4.42 0.893 4.04 2.35/2.67 0.781 3.89 7.64/4.78

BI-GOALS 0.908 4.08 1.77/2.40 0.838 4.19 3.25/4.51 0.898 4.08 2.01/2.69 0.810 4.25 4.01/5.36

MS-GOALS 0.909 4.04 1.92/2.23 0.848 4.06 3.39/3.67 0.899 4.04 2.17/2.41 0.831 4.05 3.86/4.03

DGP 3

0.1

OQ 0.922 4.04 1.58/1.83 0.857 4.02 2.97/3.11 0.911 4.03 1.86/2.02 0.841 4.01 3.48/3.50

M-GOALS 0.917 4.00 1.70/1.67 0.866 4.00 3.36/2.90 0.908 3.99 2.15/1.88 0.852 3.96 4.14/3.05

BI-GOALS 0.929 4.02 1.39/1.53 0.882 4.04 2.38/2.60 0.920 4.02 1.59/1.78 0.869 4.05 2.65/2.89

MS-GOALS 0.928 4.02 1.50/1.59 0.879 4.03 2.52/2.67 0.920 4.02 1.68/1.80 0.870 4.02 2.71/2.83

0.05

OQ 0.924 4.01 1.57/1.64 0.859 4.01 2.96/3.00 0.913 4.01 1.87/1.93 0.841 4.00 3.54/3.44

M-GOALS 0.918 4.01 1.67/1.68 0.868 3.98 3.45/2.73 0.910 4.00 1.98/1.88 0.848 3.92 4.67/2.92

BI-GOALS 0.929 4.02 1.39/1.52 0.882 4.04 2.38/2.59 0.920 4.02 1.58/1.78 0.868 4.05 2.70/2.91

MS-GOALS 0.928 4.02 1.50/1.59 0.879 4.03 2.52/2.67 0.920 4.02 1.68/1.80 0.869 4.02 2.78/2.86
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TABLE S5 Change-point estimation across multiple quantile levels τM = (0.1, 0.5, 0.9) by M-GOALS with
different trimming parameters (ε, δ) ∈ C and by MS-GOALS.

Homogeneous case Heterogeneous case

σ = 0.1 σ = 0.2 σ = 0.1 σ = 0.2

(ε, δ) ARI m̂ d1/d2 (%) ARI m̂ d1/d2 (%) ARI m̂ d1/d2 (%) ARI m̂ d1/d2 (%)

DGP 1

MS-GOALS 0.889 4.05 2.23/2.47 0.812 4.06 3.92/4.15 0.874 4.05 2.58/2.85 0.791 4.05 4.80/4.67

(0.06,0.01) 0.739 5.86 2.70/10.24 0.652 5.86 6.31/10.12 0.726 5.84 3.39/10.11 0.633 5.81 7.30/10.13

(0.08,0.01) 0.844 4.41 2.64/5.63 0.732 4.17 8.69/6.35 0.828 4.35 3.43/5.51 0.695 4.02 11.36/6.57

(0.08,0.02) 0.794 4.77 3.33/7.49 0.696 5.06 5.92/9.00 0.774 4.84 3.83/7.88 0.678 5.09 6.47/9.21

(0.10,0.01) 0.868 3.99 3.74/3.01 0.747 3.76 10.03/4.83 0.845 3.96 4.78/3.39 0.715 3.70 11.78/5.32

(0.10,0.02) 0.876 4.02 2.85/2.76 0.783 3.97 6.94/4.67 0.857 4.00 3.66/3.18 0.749 3.88 9.04/5.19

(0.12,0.01) 0.782 3.41 12.04/3.72 0.685 3.36 13.67/4.40 0.758 3.40 12.00/4.04 0.657 3.29 14.81/4.73

(0.12,0.02) 0.821 3.71 7.72/3.23 0.737 3.65 9.63/4.19 0.807 3.73 7.48/3.43 0.704 3.52 12.06/4.37

(0.15,0.01) 0.727 2.88 18.69/3.62 0.589 2.52 19.80/5.57 0.687 2.75 19.41/4.02 0.559 2.41 20.27/5.89

(0.15,0.02) 0.761 2.98 18.75/3.05 0.646 2.75 18.85/4.86 0.735 2.92 19.00/3.38 0.617 2.64 19.38/5.15

DGP 2

MS-GOALS 0.909 4.04 1.92/2.22 0.849 4.05 3.39/3.62 0.899 4.04 2.16/2.41 0.833 4.05 3.84/4.01

(0.06,0.01) 0.722 5.98 2.44/10.85 0.638 6.16 5.41/11.89 0.706 6.04 2.85/10.87 0.617 6.00 6.76/11.83

(0.08,0.01) 0.835 4.37 2.77/6.03 0.728 4.48 6.52/9.36 0.814 4.41 3.26/6.69 0.694 4.37 8.82/9.58

(0.08,0.02) 0.811 4.62 2.99/7.33 0.706 5.06 5.40/9.95 0.791 4.69 3.48/7.86 0.690 5.06 6.06/10.05

(0.10,0.01) 0.909 4.09 2.01/2.78 0.800 3.97 6.67/4.71 0.895 4.07 2.65/2.95 0.770 3.89 8.21/5.14

(0.10,0.02) 0.902 4.03 2.19/2.44 0.821 4.06 4.98/4.63 0.892 4.04 2.42/2.70 0.795 4.01 6.28/5.09

(0.12,0.01) 0.765 3.99 6.54/6.08 0.698 3.63 10.99/5.45 0.749 3.94 7.28/6.13 0.682 3.50 12.21/5.28

(0.12,0.02) 0.808 4.06 4.31/4.82 0.745 3.83 7.85/5.01 0.795 4.06 4.59/5.03 0.722 3.70 9.55/4.98

(0.15,0.01) 0.735 3.76 10.29/7.32 0.595 3.12 16.31/6.84 0.710 3.65 11.38/7.30 0.559 2.95 17.93/6.75

(0.15,0.02) 0.753 3.87 9.12/7.37 0.637 3.31 14.5/6.78 0.736 3.80 9.75/7.35 0.608 3.18 15.74/6.74

DGP 3

MS-GOALS 0.928 4.02 1.50/1.59 0.879 4.03 2.52/2.67 0.920 4.02 1.68/1.80 0.870 4.02 2.71/2.83

(0.06,0.01) 0.780 5.83 1.79/9.96 0.744 5.68 3.70/9.70 0.775 5.79 2.05/9.90 0.734 5.57 4.65/9.49

(0.08,0.01) 0.877 4.43 1.91/5.32 0.832 4.26 4.17/5.07 0.864 4.40 2.51/5.34 0.809 4.12 6.08/4.92

(0.08,0.02) 0.864 4.41 2.28/5.34 0.804 4.62 3.65/6.74 0.853 4.45 2.53/5.56 0.788 4.64 4.25/6.98

(0.10,0.01) 0.927 4.02 1.62/1.67 0.871 3.90 4.25/2.32 0.917 4.01 2.13/1.91 0.848 3.85 5.54/2.58

(0.10,0.02) 0.917 4.00 1.70/1.67 0.866 4.00 3.36/2.90 0.908 3.99 2.15/1.88 0.852 3.96 4.14/3.05

(0.12,0.01) 0.866 3.76 6.31/1.74 0.795 3.56 10.26/2.51 0.850 3.71 7.34/1.89 0.783 3.54 10.83/2.67

(0.12,0.02) 0.897 3.93 3.01/1.72 0.837 3.82 5.94/2.60 0.882 3.89 3.93/1.92 0.819 3.76 7.12/2.79

(0.15,0.01) 0.896 3.81 4.90/1.33 0.770 3.23 13.74/1.84 0.870 3.69 7.23/1.37 0.737 3.09 15.79/2.01

(0.15,0.02) 0.905 3.89 3.49/1.47 0.816 3.51 9.75/1.92 0.889 3.83 4.70/1.54 0.785 3.37 11.89/2.05
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S6 | ADDITIONAL RESULTS FOR REAL DATA ANALYSIS

This section provides additional results for real data analysis. Table S6 provides detailed information of the 35 countries
analyzed in the real data analysis. Table S7 and Table S8 provide the detailed results of the one-week (5-day) and two-
week (12-day) ahead forecasts given by M-GOALS and CDC Ensemble.

TABLE S6 Detailed information on 35 major countries used in the real data analysis

Full name Abbreviation Start date n Full name Abbreviation Start date n

United States USA Mar-11 242 Iraq IRQ Apr-07 211

India IND Mar-30 223 Ukraine UKR Apr-04 210

Brazil BRA Mar-22 229 Indonesia IDN Mar-28 225

Russia RUS Mar-28 225 Bangladesh BGD Apr-15 207

France FRA Mar-09 227 Czech Republic CZE Mar-23 230

Spain ESP Mar-08 206 Netherlands NLD Mar-16 237

Argentina ARG Apr-02 208 Philippines PHL Mar-29 219

United Kingdom GBR Mar-13 240 Turkey TUR Mar-23 230

Colombia COL Apr-02 219 Saudi Arabia SAU Mar-27 225

Mexico MEX Mar-24 218 Pakistan PAK Mar-26 216

Peru PER Apr-01 251 Israel ISR Mar-23 228

Italy ITA Mar-01 251 Romania ROU Mar-27 225

South Africa ZAF Mar-28 224 Australia AUS Mar-22 230

Iran IRN Mar-03 247 Canada CAN Mar-22 227

Germany DEU Mar-10 243 China CHN Jan-25 285

Chile CHL Mar-26 227 Japan JPN Mar-21 226

Belgium BEL Mar-13 240 South Korea KOR Feb-26 250

Poland POL Mar-26 226

Figure S2 and Figure S3 plot the estimated piecewise linear quantile trend models based on M-GOALS and the
corresponding SN test statistics {T M

n,ε,δ
(k ) }n

k=1 for nine representative countries, including United States (1st globally/
1st North America), India (2nd globally/ 1st Asia), Brazil (3rd globally/ 1st South America), France (4th globally), Russia
(5th globally), Spain (6th globally), United Kingdom (7th globally), South Africa (1st Africa) and Australia (1st Oceania).
For comparison, Figure S4 plots the estimated quantile curves across τM = (0.1, 0.5, 0.9) by the L1 quantile trend
filtering (TF) in Brantley et al. (2020), which performs notably worse than M-GOALS, especially for U.S., France and
South Africa.

Figure S5 visualizes the dissimilarity matrix D calculated at the quantile level τ = 0.1 and τ = 0.9 based on M-
GOALS, which are consistent with the pattern exhibited by the dissimilarity matrix D at τ = 0.5 in Figure 2 of the
main text. Figure S6 plots the clustering results based on multi-scanning M-GOALS, which closely matches patterns
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in Figure 2 and Figure S5, where continental European countries form a cluster and developing countries in Asia and
Latin America tend to cluster together. This result helps further confirm the robustness of our analysis in the main
text.

Figure S7 visualizes theM-GOALS based two-stage forecast scheme at four representative dates. For comparison,
we further mark the in-sample change-points estimated by both M-GOALS and multi-scanning M-GOALS in Figure
S7. The quantile regression BIC selects quadratic trend extrapolation on Nov-09 and Sep-21 and selects linear trend
extrapolation on Oct-26 and Oct-05. A notable phenomenon in Figure S7 is the robustness of the estimated change-
points by M-GOALS. For example, the change-points around Apr-04, Jun-16, Jul-20 and Sep-05 are consistently
detected by both M-GOALS and multi-scanning M-GOALS even though the data lengths vary significantly across the
four plots.

Figure S8 visualizes the forecast results given by multi-scanning M-GOALS and CDC Ensemble from Aug-03 to
Nov-09. Note that the forecasts and prediction intervals given by multi-scanning M-GOALS are almost identical as
the ones reported in Figure 3 by M-GOALS, and can be seen as further support for the robustness of our forecast
analysis.
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TABLE S7 One-week ahead forecast results by M-GOALS and CDC Ensemble

Date Target True M -G50% M -G10% M -G90% Covered CDC CDC2.5% CDC97.5% Covered

Nov-09 Nov-14 1000069 871137 842248 995037 0 790658 638931 947117 0

-12.89% -20.94%

Nov-02 Nov-07 692118 583181 524650 641921 0 568680 493193 703080 1

-15.74% -17.83%

Oct-26 Oct-31 553758 484375 424909 542660 0 472736 388545 544569 0

-12.53% -14.63%

Oct-19 Oct-24 443528 406576 340737 487420 1 388452 312392 431219 0

-8.33% -12.42%

Oct-12 Oct-17 385465 348801 327500 388603 1 328053 270335 380219 0

-9.51% -14.89%

Oct-05 Oct-10 332391 324114 273873 375097 1 292071 232163 349045 1

-2.49% -12.13%

Sep-28 Oct-03 298855 328112 274198 372623 1 302407 236640 335481 1

9.79% 1.19%

Sep-21 Sep-26 308763 280495 211615 336088 1 265469 210378 319854 1

-9.16% -14.02%

Sep-14 Sep-19 279379 238552 196152 277262 0 240244 196505 292978 1

-14.61% -14.01%

Sep-07 Sep-12 243562 254203 221821 293040 1 272867 227553 330970 1

4.37% 12.03%

Aug-31 Sep-05 284287 274667 252220 314902 1 273327 223480 334145 1

-3.38% -3.86%

Aug-24 Aug-29 293712 285282 243747 311345 1 276838 237779 342803 1

-2.87% -5.75%

Aug-17 Aug-22 310647 317664 295344 341963 1 333170 298148 405935 1

2.26% 7.25%

Aug-10 Aug-15 371284 372175 300024 406560 1 375174 308971 461211 1

0.24% 1.05%

Aug-03 Aug-08 379759 396751 330540 475710 1 434142 367977 528801 1

4.47% 14.32%
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TABLE S8 Two-week ahead forecast results by M-GOALS and CDC Ensemble

Date Target True M -G50% M -G10% M -G90% Covered CDC CDC2.5% CDC97.5% Covered

Nov-09 Nov-21 2174399 2019046 1973337 2354446 1 1710205 1245752 2153942 0

-7.14% -21.35%

Nov-02 Nov-14 1692187 1241133 1105565 1373880 0 1182692 975098 1479338 0

-26.66% -30.11%

Oct-26 Nov-07 1245876 1005683 861745 1140638 0 980921 751895 1143782 0

-19.28% -21.27%

Oct-19 Oct-31 997286 885732 715127 1098614 1 777290 591161 906026 0

-11.19% -22.06%

Oct-12 Oct-24 828993 719134 684153 805284 0 662367 513274 775630 0

-13.25% -20.1%

Oct-05 Oct-17 717856 680019 561827 793689 1 586936 444293 710447 0

-5.27% -18.24%

Sep-28 Oct-10 631246 718933 578490 805452 1 599714 444284 679848 1

13.89% -5%

Sep-21 Oct-03 607618 566564 393321 707163 1 525370 384559 667686 1

-6.76% -13.54%

Sep-14 Sep-26 588142 452071 351938 543236 0 477286 372333 602009 1

-23.14% -18.85%

Sep-07 Sep-19 522941 488394 412815 579727 1 549325 423477 672472 1

-6.61% 5.05%

Aug-31 Sep-12 527849 528992 479230 623420 1 540705 418297 680673 1

0.22% 2.44%

Aug-24 Sep-05 577999 551185 454447 610436 1 525749 437125 699347 1

-4.64% -9.04%

Aug-17 Aug-29 604359 610720 568088 664063 1 635506 549572 821836 1

1.05% 5.15%

Aug-10 Aug-22 681931 730587 546471 809676 1 737726 577902 945571 1

7.14% 8.18%

Aug-03 Aug-15 751043 786146 611605 987338 1 843348 702270 1075070 1

4.67% 12.29%
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F IGURE S2 Estimated piecewise linear quantile trend models by M-GOALS for nine representative countries.
The estimated change-points are marked by solid vertical lines.
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F IGURE S3 The computed SN test statistics {T M
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k=1 for nine representative countries. Vertical solid lines
mark the h-local maximizer and horizontal dotted lines mark the threshold ζMn of M-GOALS.
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F IGURE S4 Estimated quantile curves at τM = (0.1, 0.5, 0.9) by the L1 quantile trend filtering in Brantley et al.
(2020) for nine representative countries.
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F IGURE S5 Visualization of the dissimilarity matrix D for τ = 0.1 and τ = 0.9 via the Sammon MDS.
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F IGURE S6 Boxplot of the current growth rate at τ = 0.5 across four groups of countries, and visualization of
the dissimilarity matrix D for τ = 0.1, 0.5, 0.9 via the Sammon MDS. The result is based on multi-scanning M-GOALS.
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F IGURE S7 Out-of-sample forecasts for U.S. cumulative new cases on Sep-21, Oct-09, Oct-26 and Nov-09.
Solid vertical lines mark the end of in-sample data used for prediction. Dotted vertical lines mark the one-week
(5-day) and two-week (12-day) ahead target dates. The dashed lines mark the extrapolation function (estimated on
last segment) selected by quantile regression BIC. Blue (black) triangles mark the in-sample change-points estimated
by M-GOALS (multi-scanning M-GOALS).
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F IGURE S8 Forecast results for one-week and two-week ahead cumulative new cases from Aug-03 to Nov-09.
The result is based on multi-scanning M-GOALS.
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