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Abstract

We provide a novel characterization of augmented balancing weights, also known as automatic debi-
ased machine learning (AutoDML). These popular doubly robust or de-biased machine learning estimators
combine outcome modeling with balancing weights — weights that achieve covariate balance directly in
lieu of estimating and inverting the propensity score. When the outcome and weighting models are both
linear in some (possibly infinite) basis, we show that the augmented estimator is equivalent to a single
linear model with coefficients that combine the coefficients from the original outcome model coefficients
and coefficients from an unpenalized ordinary least squares (OLS) fit on the same data. We see that,
under certain choices of regularization parameters, the augmented estimator often collapses to the OLS
estimator alone; this occurs for example in a re-analysis of the LaLonde (1986) dataset. We then extend
these results to specific choices of outcome and weighting models. We first show that the augmented
estimator that uses (kernel) ridge regression for both outcome and weighting models is equivalent to a
single, undersmoothed (kernel) ridge regression. This holds numerically in finite samples and lays the
groundwork for a novel analysis of undersmoothing and asymptotic rates of convergence. When the
weighting model is instead lasso-penalized regression, we give closed-form expressions for special cases
and demonstrate a “double selection” property. Our framework opens the black box on this increasingly
popular class of estimators, bridges the gap between existing results on the semiparametric efficiency
of undersmoothed and doubly robust estimators, and provides new insights into the performance of
augmented balancing weights.
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[To be read before The Royal Statistical Society at the Discussion Meeting on ‘Augmented balancing weights
as linear regression’ to be held at the Society’s 2025 annual conference in Edinburgh on Tuesday, 2 September
2025, the President, Sir John Aston, in the Chair]

1 Introduction

Combining outcome modeling and weighting, as in augmented inverse propensity score weighting (AIPW)
and other doubly robust (DR) or double machine learning (DML) estimators, is a core strategy for estimating
causal effects using observational data. A growing body of literature finds weights by solving a “balancing
weights” optimization problem to estimate weights directly, rather than by first estimating the propensity
score and then inverting. DR versions of these estimators are referred to by a number of terms, including
augmented balancing weights (Athey et al., 2018; Hirshberg and Wager, 2021), automatic debiased machine
learning (AutoDML; Chernozhukov et al., 2022d), and generalized regression estimators (GREG; Deville
and Särndal, 1992); see Ben-Michael et al. (2021b) for a review. Moreover, this strategy has been applied
to a wide range of linear estimands via the Riesz representation theorem (e.g., Hirshberg and Wager, 2021;
Chernozhukov et al., 2022e). In this paper, we consider augmented balancing weights in which the estimators
for both the outcome model and the balancing weights are based on penalized linear regressions in some
possibly infinite basis; in addition to all high-dimensional linear models, this broad class includes popular
nonparametric models such as kernel regression and certain forms of random forests and neural networks.

We first show that, somewhat surprisingly, augmenting any regularized linear outcome regression (the “base
learner”) with linear balancing weights is numerically equivalent to a single linear outcome regression applied
to the target covariate profile. The resulting coefficients are an affine (and often convex) combination of the
base learner model coefficients and unregularized OLS coefficients; the hyperparameter for the balancing
weights estimator directly controls the regularization path defining the affine combination. In the extreme
case where the weighting hyperparameter is set to zero — which we show can occur in practice — the entire
procedure is equivalent to estimating a single, unregularized OLS regression.

We specialize these results to ridge and lasso regularization (`2 and `∞ balancing, respectively) and show
that augmenting an outcome regression estimator with balancing weights generally corresponds to a form of
undersmoothing. Most notably, we show that an augmented balancing weight estimator that uses (kernel)
ridge regression for both outcome and weighting models — which we refer to as “double ridge” — collapses
to a single, undersmoothed (kernel) ridge regression estimator.

We leverage these results to prove novel statistical results for double ridge estimators and to make progress
towards practical hyperparameter tuning, which remains an open problem in this area. We first make explicit
the connection between asymptotic results for double kernel ridge estimators (e.g., Singh, 2024) and prior
results on optimal undersmoothing for a single kernel ridge outcome model (e.g., Mou et al., 2023), showing
that the latter is also semiparametrically efficient. This generalizes the argument in Robins et al. (2007)
that “OLS is doubly robust” to a much broader class of penalized parametric and non-parametric regression
estimators. As a complementary analysis, we next adapt existing finite sample error analysis results for
single ridge regression (Dobriban and Wager, 2018) to derive the finite-sample-exact bias and variance of
double ridge estimators. Using these expressions, we can compute oracle hyperparameters for any given
data-generating process.

Finally, we illustrate our results with several numerical examples. We first explore hyperparameter tuning
for double ridge regression in an extensive simulation study on 36 data-generating processes, and compare
three practical methods to the optimal hyperparameter computed using our finite sample analysis. Both
asymptotic theory and our simulation results suggest equating the hyperparameters for the outcome and
weighting models. We further caution against the naive application of hyperparameter tuning based solely
on cross-validating the weighting model, forms of which have been suggested previously. This approach can
lead to setting the weighting hyperparameter to exactly zero — and therefore recovering standard OLS —
even in scenarios where OLS is far from optimal. We emphasize this point by applying our results to the
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canonical LaLonde (1986) study, highlighting that researchers can inadvertently recover OLS in practice.

Broadly, our results provide important insights into the nexus of causal inference and machine learning. First,
these results open the black box on the growing number of methods based on augmented balancing weights
and AutoDML — methods that can sometimes be difficult to taxonomize or understand. We show that, under
linearity, these estimators all share an underlying and very simple structure. Our results further highlight that
estimation choices for augmented balancing weights can lead to potentially unexpected behavior. At a high
level, as causal inference moves towards incorporating machine learning and automation, our work highlights
how the traditional lines between weighting and regression-based approaches are becoming increasingly
blurred.

Second, our results connect two approaches to “automate” semiparametric causal inference. AutoDML and
related methods exploit the fact that we can estimate a Riesz representer without a closed form expression for
a wide class of functionals. The estimated Riesz representer then augments a base learner by bias correcting
a plug-in estimator of the functional. Older approaches, such as undersmoothing (Goldstein and Messer,
1992; Newey et al., 1998), twicing kernels (Newey et al., 2004), and sieve estimation (Newey, 1994; Shen,
1997), avoid estimation of the Riesz representer altogether, instead tuning the base learner regression fit such
that an additional bias correction is not required. Achieving this optimal tuning in practice has long been
a hurdle for the implementation of these methods. Subject to certain conditions, both approaches can yield
estimators that are asymptotically efficient. We show that if all required tuning parameters are defined in
terms of an `2-norm constraint, then these approaches can be numerically identical even in finite samples.
We use these equivalences to make progress toward practical hyperparameter selection and find promising
directions for new theoretical analysis.

In Section 2 we introduce the problem setup, identification assumptions, and common estimation methods;
we also review balancing weights and previous results linking balancing weights to outcome regression models.
In Section 3 we present our new numerical results, and in Sections 4 and 5 we cache out the implications
for `2 and `∞ balancing weights specifically. Building on our numerical results, Section 6 explores both
asymptotic and finite sample statistical results for kernel ridge regression. Section 7 illustrates our results
with a simulation study and application to canonical data sets. Section 8 offers some other directions for
future research. The appendix includes extensive additional technical discussion and extensions.

1.1 Related work

Balancing weights and AutoDML. With deep roots in survey calibration methods and the generalized
regression estimator (GREG; see Deville and Särndal, 1992; Lumley et al., 2011; Gao et al., 2022), a large and
growing causal inference literature uses balancing weights estimation in place of traditional inverse propensity
score weighting (IPW). Ben-Michael et al. (2021b) provide a recent review; we discuss specific examples at
length in Section 2.3 below. This approach typically balances features of the covariate distributions in the
different treatment groups, with the aim of minimising the maximal design-conditional mean squared error
of the treatment effect estimator. Of particular interest here are augmented balancing weights estimators
that combine balancing weights with outcome regression; see, for example, Athey et al. (2018); Hirshberg
and Wager (2021); Ben-Michael et al. (2021c).

A parallel literature in econometrics instead focuses on so-called automatic estimation of the Riesz repre-
senter, of which IPW is a special case, where “automatic” refers to the fact that we can estimate the Riesz
representer without obtaining a closed form expression. Estimating the Riesz representer directly, under
the assumption that it is linear in some basis, dates back at least to Robins et al. (2008); see also Robins
et al. (2007). The corresponding augmented estimation framework has more recently come to be known
as Automatic Debiased Machine Learning, or AutoDML; see, among others, Chernozhukov et al. (2022a),
Chernozhukov et al. (2022b), Chernozhukov et al. (2022d), and Chernozhukov et al. (2022e). This approach
has also been applied in a range of settings, including to corrupted data (Agarwal and Singh, 2021), to
dynamic treatment regimes (Chernozhukov et al., 2022c), and to address noncompliance (Singh et al., 2022).
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As we discuss in Appendix C.3, the AutoDML approach nearly always employs cross-fitting and is typically
motivated by asymptotic properties rather than achieving minimax design-conditional mean squared error.

Numerical equivalences for balancing weights. Many seminal papers highlight connections between
weighting approaches, such as balancing weights and IPW, and outcome modeling; see Bruns-Smith and
Feller (2022) for discussion. Most relevant are a series of papers that show numerical equivalences between
linear regression and (exact) balancing weights, especially Robins et al. (2007); Kline (2011); Chattopadhyay
and Zubizarreta (2021), and between kernel ridge regression and forms of kernel weighting (Kallus, 2020;
Hirshberg et al., 2019). We discuss these equivalences at length in Appendix A.5. Finally, as we discuss in
Appendix D, there are close connections between balancing weights and Empirical Likelihood (Hellerstein
and Imbens, 1999; Newey and Smith, 2004).

2 Problem setup and background

2.1 Setup and motivation

The core results in our paper are numeric equivalences for existing estimation procedures, and as such
these results hold absent any causal assumptions or statistical model. Nonetheless, a primary motivation
for this work is the task of estimating unobserved counterfactual means in causal inference, as well as
estimating the broad class of linear functionals described in Chernozhukov et al. (2018b). We briefly review
the corresponding setup, emphasizing that this is purely for interpretation.

2.1.1 Example: Estimating counterfactual means

Let X,Y, Z be random variables defined on X ,R,Z with joint probability distribution p. To begin, consider
the example of a binary treatment, Z = {0, 1} and covariates X. Define potential or counterfactual outcomes
Y (1) and Y (0) under assignment to treatment and control, respectively. Under SUTVA (Rubin, 1980), we
observe outcomes Y = ZY (1) + (1 − Z)Y (0). To estimate the average treatment effect, E[Y (1) − Y (0)],
we first estimate the means of the partially observed potential outcomes. We initially focus on estimating
E[Y (1)]; a symmetric argument holds for E[Y (0)].

Let m(x, z) := E[Y | X = x, Z = z] be the outcome model, e(x) := P[Z = 1 | X = x] be the propensity score,
and α(x, z) = z/e(x) be the inverse propensity score weights (IPW). Under the additional assumptions of
conditional ignorability, Y (1) ⊥⊥ Z | X, and overlap, E[α(X,Z)2] <∞, E[Y (1)] is identified by E[m(X, 1)], a
linear functional of the observed data distribution.

There are three broad strategies for estimating E[Y (1)]. First, the identifying functional above suggests
estimating the outcome model, m(x, 1) among those units with Z = 1, and plugging this into the regression
functional, E[m(X, 1)]. Second, the equality E[m(X, 1)] = E[Z/e(X)Y ] = E[α(X,Z)Y ] suggests estimating
the inverse propensity score weights, α(x, z) = z/e(x), and plugging these into the weighting functional.
Finally, we can combine these two via the doubly robust functional (Robins et al., 1994):

E[m(X, 1) + α(X,Z)(Y −m(X, 1))].

This functional has the attractive property of being equal to E[m(X, 1)] even if either one of α or m is
replaced with an arbitrary function of X and Z, hence the term “doubly robust.” Doubly robust estimators
have been studied extensively in semiparametric theory; note that m(X, 1) +α(X,Z)(Y −m(X,Z))−ψ(m)
coincides with the efficient influence function for ψ(m) under a nonparametric model. See Chernozhukov
et al. (2018a) and Kennedy (2022) for overviews of the active literature in causal inference and machine
learning focused on estimating versions of this functional.
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2.1.2 General class of functionals via the Riesz representer

Our results apply well beyond the example above. In particular, they apply to any functional of the form

ψ(m) = E[h(X,Z,m)], (1)

where Z a random variable with support Z; and h is a real-valued, mean-squared continuous linear functional
of m (Chernozhukov et al., 2018b; Hirshberg and Wager, 2021; Chernozhukov et al., 2022d). Following
Chernozhukov et al. (2022d,e), we can generalize the weighting functional to this general class of estimands
via the Riesz representer, which is a function α(X,Z) ∈ L2(p) such that, for all square-integrable functions
f ∈ L2(p):

E[h(X,Z, f)] = E[α(X,Z)f(X,Z)]. (2)

As in the counterfactual mean example, we can identify the more general target functional in (2) via the
outcome regression functional in (1), via the Riesz representer functional in (2) with f = m, or via the
doubly robust functional

E[h(X,Z,m) + α(X,Z)(Y −m(X,Z))]. (3)

Estimators of this DR functional are augmented in the sense that they augment the “plug-in,” “outcome re-
gression,” or “base learner” estimator of E[h(X,Z,m)] with appropriately weighted residuals; or, equivalently,
augment the weighting estimator with an appropriate outcome regression. This is the class of estimators to
which our results apply. As before, h(X,Z,m) + α(X,Z)(Y −m(X,Z))− ψ(m) coincides with the efficient
influence function for ψ(m) under a nonparametric model. In future work we will explore whether we can
extend our results to a different class of functionals that admit DR functional forms, first introduced by
Robins et al. (2008), and to the superset of such functionals characterized by Rotnitzky et al. (2021).

2.2 Balancing weights: Background and general form

The core idea behind balancing weights is to estimate the Riesz representer directly — rather than via an
analytic functional form (e.g., by estimating the propensity score and inverting it). As a result, balancing
weights do not require a known analytic form for the Riesz representer (Chernozhukov et al., 2022e), are
often more stable (Zubizarreta, 2015), and can offer improved control of finite sample covariate imbalance
(Zhao, 2019). We briefly describe two primary motivations for this approach.

First, a central property of the Riesz representer is that the corresponding weights, w(X,Z) = α(X,Z),
are the unique weights that satisfy the population balance property property in Equation (2) for all square-
integrable functions f ∈ L2(p). For our target estimand ψ(m) we only need to satisfy the condition in
Equation (2) for the special case of f = m. If we are willing to assume that m lies in a model class
F ⊂ L2(p), then it suffices to balance functions in that class. This is achieved by minimizing the imbalance
over F :

ImbalanceF (w) := sup
f∈F

{
E[w(X,Z)f(X,Z)]− E[h(X,Z, f)]

}
. (4)

As we discuss next, balancing weights minimize a (penalized) sample analog of Equation (4).

Alternatively, Chernozhukov et al. (2022d) consider finding weights f that minimize the mean-squared error
for α(X,Z):

min
f∈F

{
E
[
(f(X,Z)− α(X,Z))

2
]}

. (5)

Automatic estimation of the Riesz representer, also known as Riesz regression (Chernozhukov et al., 2024),
minimizes a sample analog of Equation (5). When F is convex, then up to choice of hyperparameters (see
(6) below), the solutions to Equations (4) and (5) are equivalent.
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2.3 Linear balancing weights

In this paper, we consider the special case in which outcome models are linear in some basis expansion of
X and Z. This is an extremely broad class that encompasses linear and polynomial models of arbitrary
functions of X and Z and with dimension possibly larger than the sample size, as well as non-parametric
models such as reproducing kernel Hilbert spaces (RKHSs; Gretton et al., 2012), the Highly-Adaptive Lasso
(Benkeser and Van Der Laan, 2016), the neural tangent kernel space of infinite-width neural networks (Jacot
et al., 2018), and “honest” random forests (Agarwal et al., 2022). However, this class excludes models
for m that are fundamentally non-linear in their parameters, like general neural networks or generalized
linear models with a non-linear link function. We sketch a preliminary extension of our results to arbitrary
nonlinear balancing weights in Appendix D.

Under linearity, the imbalance over all f ∈ F has a simple closed form. Because our results concern
numeric equivalences, we will focus on the finite sample version of the linear balancing weights problem.
Let F = {f(x, z) = θ>φ(x, z) : ‖θ‖ ≤ 1} where ‖ · ‖ can be any norm on Rd. The general setup constrains
‖θ‖ ≤ r; we set r = 1 without loss of generality, which simplifies exposition below. Let ‖ · ‖∗ be the dual
norm of ‖ · ‖; that is, ‖v‖∗ := sup‖u‖≤1 u

>v. Many common vector norms have familiar, closed-form, dual
norms, e.g., the dual norm of the `2-norm is the `2-norm; and the dual norm of the `1-norm is the `∞-norm.
Let Xp, Yp, Zp be n i.i.d. samples from the distribution p of the observed data. Define the feature map
φ : X ×Z → Rd and let φj : X ×Z → R denote the mapping for the jth feature. Define Φp := φ(Xp, Zp) and

let Φq := h(Xp, Zp, φ) denote the target features. We will write Ê for sample averages; define Φp := Ê[Φp]

and Φq := Ê[Φq]. For exposition, we assume that d < n and that Φp has rank d. We emphasize that this is
not necessary for our results — one can replace Rd with an infinite-dimensional Hilbert space H and relax
the rank restriction. See Appendix B for a formal presentation of the high-dimensional (d > n) setting.

In what follows we write w for the 1× n vector w(Φp), to highlight the fact that we will estimate w directly
rather than as an explicit function of X or Φp. Using the derivation above, we can directly calculate the
finite sample imbalance as:

̂ImbalanceF (w) = ‖ 1
nwΦp − Φ̄q‖∗.

Now we can write the penalized sample analog of balancing weights optimization problem in (4) equivalently
as either:

Penalized form: min
w∈Rn

{
‖ 1
nwΦp − Φ̄q‖2∗ + δ1‖w‖22

}
Constrained form: min

w∈Rn
‖w‖22

such that ‖ 1
nwΦp − Φ̄q‖∗ ≤ δ2.

Furthermore, we can write the equivalent problem in (5) as:

Riesz regression form: min
θ∈Rd

{
1
nθ
>(Φ>p Φp)θ − 1

n2θ>Φ̄q + δ3‖θ‖
}
, (6)

where we use the terminology “Riesz regression” from Chernozhukov et al. (2024). For any parameter δ2 > 0

and corresponding constrained problem solution ŵ, there exists a parameter δ3 > 0 such that ŵ = δ3Φpθ̂,

where θ̂ is the solution to the Riesz regression form. As a result, for any norm ‖ · ‖, the penalized and
constrained forms will always produce weights that are linear in Φp (see Ben-Michael et al., 2021b, Section 9).
Therefore, since the three problems are equivalent, we typically use a generic δ to denote the regularization
parameter, and will specify the particular form only if necessary. In Appendix A.2 we illustrate several
concrete examples for this problem and in Appendix D we consider alternative dispersion parameters and
discuss popular forms of balancing that constrain the weights to be non-negative.

5



Remark 1 (Intercept). An important constraint in practice is to normalize the weights, 1
n

∑n
i=1 wi = 1.

This corresponds to replacing Φp and Φq with their centered versions, Φp − Φ̄p and Φq − Φ̄p, in the dual
form of the balancing weights problem. This is also equivalent to adding a column of 1s to Φp. Appropriately
accounting for this normalization, however, unnecessarily complicates the notation. Therefore, without loss
of generality, we will assume that the features are centered throughout, that is, Φ̄p = 0.

Remark 2 (Equivalence with kernel ridge regression). For the special case of `2 balancing (as in Appendix
A.2) the balancing weights problem is numerically equivalent to directly estimating the conditional expectation
E[Yp|Φp] via (kernel) ridge regression and applying the estimated coefficients to Φq. Moreover, the solution
to the balancing weights problem has a closed form that is always linear in Φq; we provide further details
in Appendix A.5. For exact balance with δ = 0, the balancing weights problem is equivalent to fitting
unregularized OLS; see, for example, Robins et al. (2007), Kline (2011), and Chattopadhyay et al. (2020).

3 Novel equivalence results for (augmented) balancing weights
and outcome regression models

Our first main result demonstrates that any linear balancing weights estimator is equivalent to applying OLS
to the re-weighted features. Our second result provides a novel analysis of augmented balancing weights,
demonstrating that augmenting any linear balancing weights estimator with a linear outcome regression
estimator is equivalent to a plug-in estimator of a new linear model with coefficients that are a weighted
combination of estimated OLS coefficients and the coefficients of the original linear outcome model.

3.1 Weighting alone

Our first result is that estimating the target estimand ψ(m) with any linear balancing weights is equivalent
to fitting OLS for the regression of Yp on Φp and then applying those coefficients to the re-weighted target
feature profile. The key idea for this result begins with the simple unregularized regression prediction for
ψ(m), Φqβ̂ols.

Proposition 3.1. Let ŵδ := θ̂δΦ>p , θ̂δ ∈ Rd, be any linear balancing weights, with corresponding weighted

features Φ̂δq := 1
n ŵ

δΦp. Let β̂ols = (Φ>p Φp)
†Φ>p Yp be the OLS coefficients of the regression of Yp on Φp. Then:

Ê
[
ŵδ ◦ Yp

]
= Φ̂δqβ̂ols

=
(

Φ̄p + ∆̂δ
)
β̂ols,

where ∆̂δ = Φ̂δq − Φ̄p is the mean feature shift implied by the balancing weights and where superscript δ

indicates possible dependence on a hyperparameter. We have assumed without loss of generality that Φ̄p = 0,

but we sometimes use ∆̂ notation to demonstrate the role of mean feature shift in various expressions. We
use the symbol ◦ to denote element-wise multiplication.

Note that here we have written the OLS coefficients using the pseudo-inverse †. For clarity in the main text,
we focus on the full rank setting, where (Φ>p Φp)

† = (Φ>p Φp)
−1; we provide a proof for the general setting in

Appendix B.3. In Appendix D, we extend Proposition 3.1 to non-linear balancing weights, including those
with a non-negativity constraint.

We can interpret this result via a contrast with standard regularization. Regularized regression models
navigate a bias-variance trade-off by regularizing estimated coefficients β̂reg relative to β̂ols, leading to Φqβ̂reg.

The balancing weights approach instead keeps β̂ols fixed and regularizes the target feature distribution by
penalizing the implied feature shift, ∆̂δ = Φ̂δq − Φp.

We emphasize that this is a new and quite general result. As we discuss in Appendix A.5, it has been shown
previously that for exact balancing weights, Ê[ŵexactYp] = Φqβ̂ols. However, Proposition 3.1 holds for any
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weights of the form w = θΦ>p with arbitrary θ ∈ Rd. In Sections 4 and 5, we consider the particular form of

Φ̂δq for `2 and `∞ balancing, respectively.

3.2 Augmented balancing weights

We can immediately extend this to augmented balancing weights, which regularize both the coefficients and
the feature shift. Let β̂λreg be the coefficients of any regularized linear model for the relationship between
Yp and Φp, where the superscript λ indicates dependence on a hyperparameter (e.g., estimated by regu-

larized least squares). We consider augmenting Ê
[
ŵδ ◦ Yp

]
with β̂λreg using the doubly robust functional

representation in Equation (3). The augmented estimator is:

Ê[Φqβ̂
λ
reg] + Ê[ŵδ ◦ (Yp − Φpβ̂

λ
reg)] = Ê[ŵδ ◦ Yp] + Ê

[(
Φq − Φ̂δq

)
β̂λreg

]
. (7)

Many recently proposed estimators have this form; see e.g., Athey et al. (2018); Ben-Michael et al. (2021b).
If the weighting model and outcome model have different bases, our result applies to a shared basis by either
combining the dictionaries as in Chernozhukov et al. (2022d) or by applying an appropriate projection as in
Hirshberg and Wager (2021).

We apply Proposition 3.1 to the first term of the right-hand side of (7) to yield the following result. As this

result is purely numerical, it applies to arbitrary vectors β̂λreg ∈ Rd, but substantively we think of β̂λreg as the
estimated coefficients from an outcome model.

Proposition 3.2. For any β̂λreg ∈ Rd, and any linear balancing weights estimator with estimated coefficients

θ̂δ ∈ Rd, and with ŵδ := θ̂δΦ>p and Φ̂δq := 1
n ŵ

δΦp, the resulting augmented estimator

Ê[ŵδ ◦ Yp] + Ê
[(

Φq − Φ̂δq

)
β̂λreg

]
= Ê

[
Φ̂δqβ̂ols +

(
Φq − Φ̂δq

)
β̂λreg

]
= Ê[Φqβ̂aug],

where the jth element of β̂aug is:

β̂aug,j :=
(
1− aδj

)
β̂λreg,j + aδj β̂ols,j

aδj :=
∆̂δ
j

∆j
,

where ∆j = Φq,j − Φp,j is the observed mean feature shift for feature j; and ∆̂δ
j = Φ̂δq,j − Φp,j is the feature

shift for feature j implied by the balancing weights model. Finally, aδ ∈ [0, 1]d when the covariance matrix is
diagonal, (Φ>p Φp) = diag(σ2

1 , σ
2
2 , ..., σ

2
d), with σ2

j > 0.

This is our central numerical result for augmented balancing weights: when both the outcome and weighting
models are linear, the augmented estimator is equivalent to a linear model applied to the target features
Φq, with coefficients that are element-wise affine combinations of the base learner coefficients, β̂λreg, and the

coefficients β̂ols from an OLS regression of Yp on Φp. (The coefficients are additionally convex combinations

of β̂λreg and β̂ols when the covariance matrix is diagonal.) In Sections 4 and 5 below, we analyze some of the
properties of the augmented estimator for `2 and `∞ balancing weights problems respectively.

The regularization parameter for the balancing weights problem, δ, parameterizes the path between β̂λreg and

β̂ols. To see this, consider the cases where δ → 0 and δ → ∞. As δ → 0 the balancing weights problem
prioritizes minimizing balance over controlling variance, and ∆̂δ

j → ∆j for all j. (Recall that we assume

Φp,j = 0 for all j. Thus, ∆j = Φq,j and ∆̂δ
j = Φ̂δq,j . So ∆̂δ

j → ∆j is equivalent to Φ̂δq → Φq,j .) In this case,
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aδj = ∆̂δ
j/∆j → 1, and the weights fully “de-bias” the original outcome model by recovering unregularized

regression, β̂aug → β̂ols. In Section 7.2, we will see that when chosen by cross-validation, δ sometimes

equals exactly 0 in applied problems; thus even when β̂λreg is a sophisticated regularized estimator, the final
augmented point estimate can nonetheless be numerically equivalent to the simple OLS plug-in estimate.
Conversely, as δ → ∞, the balancing weights problem prioritizes controlling variance, leading to uniform
weights and ∆̂j → 0. In this case, aδj = ∆̂δ

j/∆j → 0, the weighting model does very little, and β̂aug → β̂λreg.

It is also instructive to consider two other extremes: unregularized outcome model and unregularized balanc-
ing weights. First, consider the special case of fitting an unregularized linear regression outcome model, i.e.,
β̂λreg = β̂ols. Then Proposition 3.2 reproduces the result, originally due to Robins et al. (2007), that “OLS

is doubly robust” (see also Kline, 2011). This is because β̂aug = β̂ols for arbitrary linear weights θ̂δ ∈ Rd.
Thus, OLS augmented by any choice of linear balancing weights collapses to OLS alone. Equivalently, we
can view OLS alone as an augmented estimator that combines an OLS base learner with linear balancing
weights.

A similar result holds for unregularized balancing weights, i.e., exact balancing weights. Let ŵexact be the
solution to a balancing weights problem in Section 2.3 with hyperparameter δ = 0, and let β̂λreg ∈ Rd be

arbitrary coefficients. Then from the balance condition, Φ̂q = Φq, a
δ
j = 1 for all j, and we have that

β̂aug = β̂ols. Thus, the augmented exact balancing weights estimator also collapses to the OLS regression
estimator. Equivalently, the augmented exact balancing weights estimator collapses to the unaugmented
exact balancing weights estimator. Zhao and Percival (2017) use a very similar result to argue that entropy
balancing, a form of exact balancing weights, is doubly robust.

Finally, before we turn to new results for `2 and `∞ balancing, we briefly comment on several points that
are discussed in more detail in the Appendix.

Remark 3 (Sample splitting). Sample splitting is a common technique in the AutoDML literature especially,
in which we only apply the outcome and weighting models to data points not used for estimation; see, for
example, Newey and Robins (2018); Chernozhukov et al. (2022d). Since Proposition 3.2 holds for arbitrary

vectors β̂λreg and θ̂δ, the results still hold under cross-fitting. See Appendix C for an extended discussion.

Remark 4 (Infinite dimensional setting). While we emphasize the linear, low-dimensional setting where
Φ>p Φp is invertible, Proposition 3.2 holds far more broadly. The result remains true when the function class
F is a subset of any Hilbert space. This includes the high dimensional setting where d > n and the infinite
dimensional setting. See Appendix B for a formal statement.

Remark 5 (Nonlinear balancing weights). A rich tradition in survey statistics (e.g., Deville and Särndal,
1992), machine learning (e.g., Menon and Ong, 2016), and causal inference (e.g., Vermeulen and Vanstee-
landt, 2015; Zhao, 2019; Tan, 2020) focuses on non-linear balancing weights, such as when the weights

correspond to a specific link function g(·) applied to the linear predictor, ŵ = g(θ̂Φ>p ), or, equivalently, when
the balancing weights problem penalizes an alternative dispersion penalty. In Appendix D, we briefly con-
sider extending Proposition 3.1 to nonlinear weights and show that the nonlinearity introduces an additional
approximation error. A more thorough extension is a promising direction for future research.

Remark 6 (Non-negative weights). A common modification of the (minimum variance) balancing weights
problem is to constrain the estimated weights to be non-negative or on the simplex; examples include Stable
Balancing Weights (Zubizarreta, 2015) and the Synthetic Control Method (Abadie et al., 2010), as well as
their augmented analogues (Athey et al., 2018; Ben-Michael et al., 2021c). Such weights have a number
of attractive practical properties: they limit extrapolation; they ensure that the final weighting estimator
is sample bounded; and they are typically sparse, which can sometimes aid interpretability (Robins et al.,
2007). In Appendix D.2, we extend Proposition 3.1 and show that restricting weights to be non-negative is

equivalent to sample trimming. In particular, let ŵδ+ be the estimated non-negative weights and β̂+
ols be the

OLS coefficient of the regression of Yp on Φp, but restricted to units with positive weight. Then, Proposition
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3.1 continues to hold, but with β̂+
ols in place of the unrestricted β̂ols: Ê

[
ŵδ+ ◦ Yp

]
= Φ̂δqβ̂

+
ols. See Arbour and

Feller (2024) for additional discussion of the simplex constraint.

Remark 7 (Bilinear form). As pointed out by a reviewer, (many of) the functionals we consider can be
written as a bilinear form αTΣβ where β is the coefficient for the outcome model, α is the coefficient for the
Riesz representer and Σ is the some weighted population Gram matrix (Robins et al., 2008); for E[Y (1)], it
would be E[Zφ(X)φ(X)T ]. Proposition 3.2 suggests that β can be estimated using the methods we discuss
here, and moreover that the aggregation weights would then be entangled with Σ or α. Understanding whether
this could be used to then motivate new estimators is an interesting topic for future work.

4 Augmented `2 Balancing Weights

In this section, we study `2 balancing weights estimators, which are commonly used in the context of kernel
balancing (Gretton et al., 2012; Hirshberg et al., 2019; Kallus, 2020; Ben-Michael et al., 2021a) and for
panel data methods (Abadie et al., 2010; Ben-Michael et al., 2021c). We first show that the regularization
path aδj from Proposition 3.2 follows typical ridge regression shrinkage, with a smooth decay. Moreover,
augmenting with `2 balancing weights is equivalent to boosting with ridge regression, and always overfits
relative to the unaugmented outcome model alone. We then show that when the outcome model used to
augment `2 balancing weights is also a ridge regression (which we refer to as “double ridge”), the augmented
estimator is itself equivalent to a single, generalized ridge regression, albeit undersmoothed relative to the
base learner. These results extend immediately to the RKHS setting of “double kernel ridge” estimation,
combining kernel balancing weights and kernel ridge regression. In Section 6, we show the implications of
these numeric results for undersmoothing in the statistical sense.

While the following results hold for arbitrary covariance matrices, in the main text we simplify the presenta-
tion by assuming that Φ>p Φp is diagonal; that is, (Φ>p Φp) = diag(σ2

1 , σ
2
2 , ..., σ

2
d), with σ2

j > 0. We show that
this is without loss of generality for `2 balancing in Appendix E.

4.1 General linear outcome model

Following Remark 2 above, `2 balancing weights, including kernel balancing weights, have a closed form that
is always linear in Φq. Our next result applies this closed form to Proposition 3.2 to derive the regularization
path that results from augmenting an arbitrary linear outcome model with `2 balancing weights. Although
this is an immediate consequence of Proposition 3.2, the resulting form of the augmented estimator has
unique structure that warrants a new result.

Proposition 4.1. Let ŵδ`2 be (penalized) linear balancing weights with regularization parameter δ and F =

{f(x) = θ>φ(x) : ‖θ‖2 ≤ 1}. Then 1
n ŵ

δ
`2

= Φq(Φ
>
p Φp + δI)−1Φ>p . Therefore, the augmented `2 balancing

weights estimator with outcome model β̂λreg ∈ Rd has the form

Ê[Φqβ̂
λ
reg] + Ê[ŵδ`2(Yp − Φpβ̂

λ
reg)] = Ê[Φqβ̂`2 ],

where the jth coefficient of β̂`2 is given by

β̂`2,j :=
(
1− aδj

)
β̂λreg,j + aδj β̂ols,j (8)

aδj :=
σ2
j

σ2
j + δ

.

In this case, the aδj are exactly equal to the standard regularization path of ridge regression. To see this,
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Figure 1: Regularization paths for “double ridge” augmented `2 balancing weights. Panel (a) shows the

coefficients β̂λreg of a ridge regression of Yp on Φp with hyperparameter λ. The black dots on the left
are the OLS coefficients, with λ = 0. The red dots at λ = 2 illustrate the coefficients at a plausible
hyperparameter value, β̂2

reg. Panel (b) shows re-weighted covariates, Φ̂δq, for the `2 balancing weights problem
with hyperparameter δ; the black dots show exact balance, which corresponds to OLS. As δ increases, the
weights converge to uniform weights and Φ̂δq converges to Φp, which we have centered at zero. Panel (c)

shows the augmented coefficients, β̂`2 as a function of the weight regularization parameter δ. The black dots

on the left are the OLS coefficients. As δ → ∞, the coefficients converge to β̂2
reg. All three regularization

paths have essentially identical qualitative behavior.

recall that ridge regression with penalty δ shrinks the β̂ols coefficients as follows:

β̂δridge,j =

(
σ2
j

σ2
j + δ

)
β̂ols,j = aδj β̂ols,j . (9)

This is identical to the expression in (8) but with β̂λreg set to 0: Ridge regression shrinks β̂ols towards 0 with

regularization path aδj , while `2 augmenting shrinks β̂ols towards β̂λreg with the same regularization path.

As an illustration, the right panel of Figure 1 shows β̂`2 (on the y-axis) for ten covariates, with δ increasing

from 0 (on the x-axis). The dots on the left pick out β̂ols; when δ = 0, then a0
j = 1 and β̂`2 = β̂ols. The limit

on the right shows β̂λreg. The smooth regularization path is characteristic of ridge regression shrinkage.

We can also view β̂`2 as the output of a single iteration of a ridge boosting procedure, fit using Yp and Φp
alone. See Bühlmann and Yu (2003) and Park et al. (2009) for detailed discussion; Newey et al. (2004) make
a similar connection in the context of twicing kernels.

Proposition 4.2. Let Y̌p = Yp −Φpβ̂
λ
reg be the residuals from the base learner. Let β̂δboost be the coefficients

from the ridge regression of Y̌p on Φp with hyperparameter δ. Then, β̂`2 = β̂λreg + β̂δboost, and ‖Yp−Φpβ̂`2‖22 ≤
‖Yp − Φpβ̂

λ
reg‖22.

So for a fixed δ, the augmented `2 balancing estimator is equivalent to estimating a new outcome model
coefficient estimator β̂`2 that overfits relative to β̂λreg (in the sense of having smaller in-sample training error),
and then applying that model to Φq.

Surprisingly — and in contrast to the general result in Proposition 3.2 — the augmented coefficients β̂`2 are
the same for every target covariate profile Φq. To see this, note that Proposition 4.1 shows that `2 balancing
weights are always linear in Φq. Therefore, the corresponding regularization path aδj does not depend on

the target profile Φq; it depends only on δ and the source distribution variances σ2
j . This property is closely

related to universal adaptability in the computer science literature on multi-group fairness (Kim et al.,
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2022). The particular Φq may nonetheless impact the choice of δ in hyperparameter selection, e.g., via
cross-validating imbalance, which in turn influences the degree of overfitting; we do find this to be the case
theoretically in Section 6.2.

4.2 Ridge regression outcome model

Proposition 4.1 holds for arbitrary linear outcome model coefficient estimators β̂λreg ∈ Rd; we now state the
corresponding result for a “double ridge” estimator, where the base learner outcome model is itself fit via
ridge regression. The key takeaway is that the implied augmented coefficients are undersmoothed relative to
the base learner ridge coefficients.

For this section, we will consider the following generalized ridge regression, sometimes known as “adaptive”
ridge regression (Grandvalet, 1998). Let Λ ∈ Rd×d be a diagonal matrix with jth diagonal entry λj ≥ 0.
Then the generalized ridge coefficients are:

β̂Λ
ridge := argmin

β∈Rd

‖Φpβ − Yp‖22 + β>Λβ

= (Φ>p Φp + Λ)−1Φ>p Yp.

Standard ridge regression is the special case where the λj all take the same value and so Λ = λI. As above,
the generalized ridge coefficients can be rewritten as shrinking the OLS coefficients:

β̂Λ
ridge,j =

(
σ2
j

σ2
j + λj

)
β̂ols,j . (10)

We now demonstrate that the augmented `2 balancing weights estimator with base learner β̂Λ
ridge is equivalent

to a plug-in estimator using generalized ridge with smaller hyperparameters, β̂Γ
ridge, where Γ is a diagonal

matrix with jth diagonal entry γj ∈ [0, λj ].

Proposition 4.3. Let β̂Λ
ridge denote the coefficients of a generalized ridge regression of Yp on Φp with

hyperparameters Λ, and let ŵδ`2 denote `2 balancing weights with hyperparameter δ defined in Section 2.3.
Define the diagonal matrix Γ with jth diagonal entry:

γj :=
δλj

σ2
j + λj + δ

≤ λj .

Then:

Ê[Φqβ̂
Λ
ridge] + Ê[ŵδ`2(Yp − Φpβ̂

Λ
ridge)] = Ê[Φqβ̂

Γ
ridge].

Furthermore, β̂Γ
ridge are standard ridge regression coefficients (i.e., γj is a constant for all j) when λj = λ

and σj = σ for all j.

The same result holds for kernel ridge regression; see Appendix B.4.

In this setting, augmenting with balancing weights is equivalent to undersmoothing the original outcome
model fit. In particular, we can use the expansion in Equation (10) to see the undersmoothing in β̂Γ

ridge

explicitly:

σ2
j

σ2
j + γj

=

(
σ2
j

σ2
j + λj

)
︸ ︷︷ ︸
outcome model

(
σ2
j + λj + δ

σ2
j + δ

)
︸ ︷︷ ︸

augmentation

,

where the first term is the shrinkage from the original generalized ridge model alone, and the second term

is due to augmenting with `2 balancing weights. Importantly, the second term is in [1,
σ2
j +λj

σ2
j

] and therefore

partially reverses the shrinkage of the original estimate. In Section 6.1, we connect this to undersmoothing
in the statistical sense.
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5 Augmented `∞ balancing weights

In this section, we study `∞ balancing weights estimators, which are widely used in the balancing weights
literature (Zubizarreta, 2015; Athey et al., 2018) and in the AutoDML literature (Chernozhukov et al.,
2022d). In the main text, we consider the special case where the covariance matrix Φ>p Φp is diagonal; that

is, (Φ>p Φp) = diag(σ2
1 , σ

2
2 , ..., σ

2
d), with σ2

j > 0. Unlike with `2 balancing, this is no longer without loss of
generality. We discuss this general case in Appendix E.3.

For diagonal covariance, we first show that `∞ balancing has a closed form: it is equivalent to applying
a soft-thresholding operator to the feature shift from Φp to Φq. We then write the resulting augmented

estimator as applying coefficients β̂`∞ to Φq and show that β̂`∞ is a sparse, element-wise convex combination
of the base learner coefficients and OLS coefficients. When the outcome model is also fit via the lasso, we
use the resulting representation to demonstrate a familiar “double selection” phenomenon (Belloni et al.,

2014), where β̂`∞ inherits the non-zero coefficients of both the base learner and the weighting model. This

is a form of undersmoothing in the `0 “norm,” in the sense that β̂`∞ always has at least as many non-zero

coefficients as the base learner, β̂reg.

5.1 Weighting alone

We first define the soft-thresholding operator and show that the `∞ balancing problem has a closed form
solution.

Definition (Soft-thresholding operator). For t > 0, define the soft-thresholding operator,

Tt(z) :=


0 if |z| < t

z − t if z > t

z + t if z < −t
.

Proposition 5.1 (`∞ Balancing). If Φ>p Φp is diagonal, the solution wδ`∞ to the `∞ optimization problem
(3) is:

1
nw

δ
`∞ = Φp(Φ

>
p Φp)

−1
[
Φp + Tδ(Φq − Φp)

]
= Φp(Φ

>
p Φp)

−1
[
Φp + Tδ(∆)

]
where ∆ = Φq−Φp, where we include Φp (equal to 0 by assumption) to emphasize the dependence on feature

shift, and with corresponding reweighted features, Φ̂δq = Φp + Tδ(Φq − Φp).

For intuition, compare the (un-augmented) `∞ balancing weights estimator to the lasso-based coefficient
estimates (Hastie et al., 2009):

Ê[wδ`∞ ◦ Yp] = Tδ(Φq)>β̂ols

Ê[Φqβ̂
λ
lasso] = Φ>q Tλ(β̂ols),

where we simplify Φ̂δq here to emphasize the connections between the methods. Whereas lasso performs
soft-thresholding on the OLS coefficients (regularizing the outcome regression), `∞ balancing performs soft-
thresholding on the implied feature shift to the target features.

5.2 General linear outcome model

We can then plug the closed-form solution for the weights into Proposition 3.2.
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Proposition 5.2. Let ŵδ`∞ be defined as above. Then the augmented `∞ balancing weights estimator with

outcome model fit β̂λreg ∈ Rd has the form,

Ê[Φqβ̂
λ
reg] + Ê[ŵδ`∞(Yp − Φpβ̂

λ
reg)] = Ê[Φqβ̂`∞ ],

where the jth coefficient of β̂`∞ equals:

β̂`∞,j =

β̂
λ
reg,j if |∆j | < δ∣∣∣ δ∆j

∣∣∣ β̂λreg,j +
(

1−
∣∣∣ δ∆j

∣∣∣) β̂ols,j otherwise
,

where ∆j = Φq,j − Φp,j.

The augmented coefficients β̂`∞ are an element-wise convex combination of β̂λreg and β̂ols. For features where

the mean feature shift ∆j is small (relative to δ), β̂`∞ is equivalent to the base learner coefficient β̂λreg. The

remaining coefficients are interpolated linearly toward the β̂ols coefficients.

Figure 2 summarizes these results and their implications for the augmented estimator. As with Figure 1, we
generate simple simulated data with d = 10. In the left panel, we plot the coefficients from lasso regression
of Yp on Φp as a function of the lasso regularization parameter. The regularization path begins with the
black dots, which represent the OLS coefficients. Each lasso coefficient (represented by a colored line) then
shrinks linearly to exactly zero, due to the soft-thresholding operator. The middle panel plots the reweighted
covariates using `∞ balancing weights between Φp and Φq solved in the constrained form. The black dots
represent Φq, corresponding to exact balance. Then as the weight regularization parameter increases, the
reweighted covariates shrink linearly to exactly zero, just as in lasso. The right panel plots coefficients for
the augmented estimator that combines a baseline outcome model fit β̂λreg with `∞ balancing weights. The

lines correspond to β̂`∞ as defined in Proposition 5.2. The regularization path begins at the black dots,

where β̂`∞ = β̂ols, and eventually converges to β̂λreg, showing the usual soft-thresholding behavior. The order

at which the coefficients go to zero reflects the size of Φq, because the regularization path depends on the

weight coefficients from the middle panel. Thus, the augmented estimator shrinks β̂ols toward β̂λreg but via
a soft-thresholding operator applied to the feature shift, ∆j .

5.3 Lasso outcome model

In the case where β̂λreg is itself fit via lasso, as studied in Chernozhukov et al. (2022d), then we recover a
familiar double selection phenomenon (Belloni et al., 2014).

Proposition 5.3 (Double Selection). Let β̂λlasso denote the coefficients of lasso regression of Yp on Φp with
regularization parameter λ. Denote the indices of the non-zero coefficients as Iλ. Let ŵδ`∞ be `∞ balancing
weights with parameter δ as in Proposition 5.1. Let Iδ denote the non-zero entries of the reweighted covariates
Φ̂q. Assume that β̂ols is dense. Then the indices of the non-zero entries of the augmented coefficients β̂`∞
are Iaug = Iλ ∪ Iδ.

The lasso coefficients have a sparsity pattern generated by soft-thresholding the OLS coefficients. The
augmented estimator then shrinks from OLS toward β̂λreg by soft-thresholding the implied feature shift to the
target features. As a result, wherever the lasso coefficients are non-zero or the weight coefficients are non-
zero, the final augmented coefficients are also non-zero. The “included coefficients” for the final estimator are
then the union of the coefficients included in either individual model. Therefore, augmenting a lasso outcome
model with `∞ balancing also exhibits a form of undersmoothing in the `0 “norm”, ‖β̂`∞‖0, in the sense
that there are always at least as many non-zero coefficients as for the unaugmented lasso outcome model.
However, this will not correspond to undersmoothing the base learner in the traditional sense, because in
general there will not exist a lasso hyperparameter λ that will produce sparsity pattern Iaug.
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Figure 2: Regularization paths for “double lasso” augmented `∞ balancing weights. Panel (a) shows the

coefficients β̂λreg of a lasso regression of Yp on Φp with hyperparameter λ. The black dots on the left
are the OLS coefficients, with λ = 0. The red dots at λ = 0.5 illustrate the coefficients at a plausible
hyperparameter value, β̂0.5

reg. Panel (b) shows re-weighted covariates, Φ̂δq, for the `∞ balancing weights problem
with hyperparameter δ; the black dots show exact balance, which corresponds to OLS. As δ increases, the
weights converge to uniform weights and Φ̂δq converges to Φp, which we have centered at zero. Panel (c) shows

the augmented coefficients, β̂`∞ as a function of the weight regularization parameter δ. The black dots on

the left are the OLS coefficients. As δ →∞, the coefficients converge to β̂0.5
reg. All three regularization paths

show the typical lasso “soft thresholding” behavior. The regularization path for the augmented estimator
also shows “double selection” behavior.

As noted by, for example, Tang et al. (2023), the double selection estimator may suffer from imprecision due
to adjustment for covariates that are associated with treatment but not outcome. One could in principle
remove covariates that are only predictive of the treatment, but this can jeopardize statistical inference. See
Moosavi et al. (2023) for further discussion on this trade-off.

6 Kernel Ridge Regression: Asymptotic and Finite Sample Anal-
ysis

The results above are numerical : they hold without any statistical or causal assumptions. However, the con-
nection between augmented estimators and outcome models also presents statistical insights that we discuss
here. In particular, we leverage the numerical result that double (kernel) ridge regression — which uses ridge
regression for fitting both the outcome and weighting models — is equivalent to a single, undersmoothed
outcome ridge regression plug-in estimator.

First, we consider an asymptotic analysis in Section 6.1: we use this equivalence to make explicit the
connection between asymptotic results for augmented balancing weights with kernel ridge regression and prior
results on optimal undersmoothing of a kernel ridge plug-in estimator. As a result, optimally undersmoothed
kernel ridge regression inherits guarantees from augmented ridge regression. An implication is that we can
generalize the insight from Robins et al. (2007) that “OLS is doubly robust” to a wider class of non-
parametric estimators. This equivalence also suggests an appropriate hyperparameter scheme when the
outcome regression is an element of an RKHS.

Second, we consider a finite sample analysis in Section 6.2: we use this equivalence to derive the finite-sample
design-conditional mean squared error of augmented kernel ridge regression. We then use this expression to
characterize finite-sample-optimal hyperparameter tuning. We turn to hyperparameter tuning in practice in
the next section.
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6.1 Asymptotic Results

We now use our results in Proposition 4.3 to make explicit the connection between two otherwise distinct
sets of asymptotic results. First, Wong and Chan (2018) and Singh (2024) argue that double kernel ridge
regression can deliver

√
n-consistent estimation of functionals in certain scenarios. Wong and Chan (2018)

also proposes an optimally undersmoothed `2 balancing weights estimator. Separately, Hirshberg et al.
(2019) and Mou et al. (2023) propose optimally undersmoothed (single) kernel ridge outcome regression.
Since, as we have shown in Proposition 4.3 (see also Remark 2), these three procedures are equivalent, we
can connect these results and show that plug-in estimators based on optimally undersmoothed kernel ridge
regression or `2 balancing weights can be

√
n-consistent. Moveover, results on RKHSs suggest a simple

heuristic for hyperparameter choice. We give the high-level argument here and defer additional technical
details to Appendix L.

Assume that the outcome model, m(x, z) := E[Y | X = x, Z = z], belongs to an RKHS H with kernel k,
and that we observe n iid samples of (xi, yi, zi) from p. Define K ∈ Rn×n to be the kernel matrix with
i, j-th entry Kij = k((xi, zi), (xj , zj)). Let σ2

j denote the eigenvalues of K. We assume that σ2
j = σ2 > 0 is

constant for all j; we can relax this at the cost of additional complexity. The “single kernel ridge” regression
outcome regression estimator with parameter λ has coefficient estimates:

β̂λridge = (K + λI)−1y.

Applying Proposition 4.3, the augmented “double kernel ridge” estimator with hyperparameter δ is equivalent
to a plug-in estimate for a new kernel ridge model:

β̂aug = (K + γI)−1y, with γ =
λδ

σ2 + λ+ δ
.

We can now use modern rate results for kernel ridge regression to explicitly link double kernel ridge and
efficiently undersmoothed kernel ridge. First, if we choose hyperparameter schedule λn for kernel ridge
regression as in Fischer and Steinwart (2020), we obtain a corresponding convergence rate for the outcome
model (see Appendix L for specifics). Second, we can use the hyperparameter schedule δn and Theorem
1 from Singh (2024) to establish a convergence rate for the Riesz representer. Finally by Theorem 4.2
of Chernozhukov et al. (2022e), the augmented estimator that combines these two kernel ridge nuisance
estimates is

√
n-consistent. Note that while in this discussion we assume well-specification, i.e. m ∈ H, these

rates are model-agnostic; similar results hold when m /∈ H (see Singh, 2024).

Applying our numerical results, the augmented estimator is also a kernel ridge estimator with a new (under-
smoothed) hyperparameter schedule, γn. We will now show that γn recovers existing rates for undersmoothed
ridge estimators. In particular, we will consider the special case where the hyperparameter schedule δn = λn
satisfies the conditions for Theorem 1 and Assumption 2 of Singh (2024). This is a non-trivial assumption
— i.e. that the smoothness of the Riesz representer RKHS matches that of the outcome model — but the
idea is motivated by the concept of the “minimal” Riesz representer from Lemma S3.1 in Chernozhukov
et al. (2022a). For two functions of n, fn and gn, let fn � gn denote that fn = O(gn) and gn = O(fn). The
resulting augmented hyperparameter is then γn � λ2

n.

When the RKHS is finite dimensional, the choice λn = δn = n−1/2 is optimal for controlling the prediction
error for both the outcome and weighting models (Caponnetto and De Vito, 2007; Singh, 2024). The
augmented estimator is then equivalent to a single ridge regression with hyperparameter γn � n−1, which
recovers the rate of Hirshberg et al. (2019); Mou et al. (2023).

When the RKHS is infinite-dimensional, when λn = δn = n−1/2, then γn � n−1, again matching the rate
in Hirshberg et al. (2019); Mou et al. (2023). This provides further motivation to fix δn = λn. However,
depending on the smoothness and effective dimension of the RKHS, λn can take on a range of values, resulting
possibly faster or slower rates than n−1; we give concrete examples in the Appendix. This somewhat contrasts
with the results in Hirshberg et al. (2019); Mou et al. (2023), and might be an interesting direction for future
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analysis. Inspired by these results, in the next section, we will assess the performance of setting δ = λ
for hyperparameter tuning in practice. In fully generality, when λn and δn differ, we will end up with a
product rate, again contrasting with existing work. In this sense, Proposition 4.3 generalizes the standard
undersmoothing arguments, which typically change the regularization schedule from n−1/2 to n−1.

Remark 8 (Single-model double robustness). Another interesting implication of the equivalence of these
two procedures is that the single kernel ridge procedure is doubly robust, much the same way OLS is. Because
estimating the coefficients from an OLS regression of Y onto features of (Z,X) is equivalent to a balancing
weights or an IPW estimator based on a model for the inverse weights that is linear in the same features, this
procedure is consistent whenever either the weights or the outcome model is truly linear—that is, whenever
either of these two linear models is correctly specified (Robins et al., 2007). Similarly, the single kernel
ridge procedure is doubly robust in that it is consistent if either the true outcome regression or the inverse
propensity score is consistently estimated. However, valid inference in the case where the inverse weight
model but not the outcome model is truly linear will typically require different tuning parameter selection.

6.2 Finite Sample Mean-Squared Error

We now use our numerical equivalences to write out the exact finite-sample mean squared error of the
augmented kernel ridge estimator: by re-writing the augmented balancing weights estimator as a single
outcome model, we can immediately leverage existing results from Dobriban and Wager (2018).

Following their setup, we define the diagonal matrix Σ̂ := 1
nΦ>p Φp; if Σ̂ is not diagonal, we can apply

the rotation in Appendix E.2. We consider ridge regression with rescaled hyperparameter λ and solution
(Σ̂ + λI)−1ΦpYp/n; this is equivalent to standard ridge regression above with hyperparameter nλ, and also
accommodates kernel ridge regression with appropriate choice of Φp. Assume that Yp = Φpβ0 + ε with
β0 ∈ Rd, and where ε ∈ Rn are iid with mean zero and variance σ2. Then the exact, design-conditional,
squared bias and variance of the ridge regression prediction applied to a new iid sample (Φnew, Ynew) ∼ p
are:

B2
p(λ) = λ2β>0 (Σ̂ + λI)−1E[Φ>p Φp](Σ̂ + λI)−1β0

Vp(λ) =
σ2

n
tr
[
Σ̂(Σ̂ + λI)−1E[Φ>p Φp](Σ̂ + λI)−1

]
.

Applying Proposition 4.3, we can simlarly derive the squared bias and variance of an augmented ridge
estimator for our linear functional estimand; we denote these quantities B2

q and Vq respectively. We express
the bias and variance in terms of the two hyperparameters, λ and δ:

Proposition 6.1. Let σ2
j denote the eigenvalues of Σ̂ and define Γλ,δ to be the diagonal matrix with non-zero

entries γj := δλ
σ2
j +δ+λ

. Then,

B2
q (λ, δ) = β>0 (Σ̂ + Γλ,δ)

−1Γλ,δE[Φq]
>E[Φq]Γλ,δ(Σ̂ + Γλ,δ)

−1β0

Vq(λ, δ) =
σ2

n
tr
[
Σ̂(Σ̂ + Γλ,δ)

−1E[Φq]
>E[Φq](Σ̂ + Γλ,δ)

−1
]
.

In the next section, we compare — numerically and via simulation — existing hyperparameter selection
schemes to the optimal trade-off between B2

q and Vq. However, first we note that the analysis above opens
up exciting new avenues for both theoretical and methodological work. One could theoretically analyze
the mean squared error to understand how the optimal δ scales with the problem parameters; for example,
by using proportionate asymptotics from random matrix theory as in the high-dimensional ridge regression
literature (Hastie et al., 2022; Patil et al., 2024). Furthermore, while Proposition 6.1 requires the linear
model to be well-specified, in the mis-specified setting, we could adapt the model-agnostic decomposition
from Proposition 1 of Patil et al. (2024). Finally, our analysis here suggests a novel, hyperparameter selection
scheme based on plugging in the unknown quantities in Proposition 6.1. We leave this to future work.
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7 Numerical illustrations and hyperparameter tuning

This section illustrates our results in practice. We first explore hyperparameter tuning for double ridge
regression, comparing practical methods to the optimal hyperparameter computed using our results from
Proposition 6.1. Following our asymptotic results in Section 6.1, we recommend equating the weighting
and outcome model hyperparameters in practice. We then apply both double ridge and lasso-augmented
`∞-balancing to two versions of the canonical LaLonde (1986) application. An important theme throughout
is that some approaches for hyperparameter selection can choose δ = 0, which collapses the augmented
estimate to OLS alone — even in settings where this is far from optimal. Overall, we take this as a warning
that existing hyperparameter tuning schemes can be potentially misleading when applied naively.

7.1 Hyperparameter tuning for ridge-augmented `2 balancing

We begin with practical hyperparameter tuning for the special case of double ridge, building on the MSE
expression in Section 6.2. There is an active literature on selecting hyperparameters for augmented bal-
ancing weights estimators and double machine learning estimators more broadly (Kallus, 2020; Wang and
Zubizarreta, 2020; Ben-Michael et al., 2021b; Bach et al., 2024). We contribute to this literature by com-
paring practical hyperparameter tuning schemes with an oracle hyperparameter tuning scheme based on
Proposition 6.1.

Reflecting empirical practice, we focus here on choosing hyperparameters sequentially: we first select the
outcome model hyperparameter λ (e.g. by cross-validation) and then select the weighting model hyperpa-
rameter δ. Ultimately, we find strong performance for both CV imbalance and CV outcome hyperparameters,
as defined below. We especially recommend the latter as a reasonable starting point in practice. In addition
to theoretical support from our asymptotic analysis, the outcome model hyperparameter scheme does not
require any additional algorithm or code after having fit the initial outcome model.

7.1.1 Oracle and practical hyperparameter tuning

Oracle hyperparameter. To compute oracle hyperparameters, we first compute the prediction-MSE-
optimal λ using the standard ridge regression MSE expression, and then we use Proposition 6.1 to compute
the corresponding optimal δ for the linear functional estimand:

λ∗ := argmaxλ{B2
p(λ) + Vp(λ)}

δ∗ := argmaxδ{B2
q (λ∗, δ) + Vq(λ

∗, δ)}.

While there is not a closed form for δ∗, we can nonetheless directly compute this optimal hyperparameter
and characterize its behavior under a range of scenarios. We draw several conclusions about optimal δ∗ for
a wide range of DGPs of the form Yp = Φpβ0 + ε. First, δ∗ is generally increasing in the noise, σ2: larger σ2

typically implies larger δ∗. Second, δ∗ generally depends on the target mean, E[Φq]; that is, two DGPs that
are identical except for E[Φq] can have different values of δ∗. The optimal hyperparameter, however, does
not depend on the magnitude of the shift in the target mean: replacing E[Φq] with cE[Φq] for c 6= 0, scales
both the bias and variance by c2, leaving δ∗ unchanged.

Practical hyperparameter. We compare the oracle hyperparameter with three implementable practical
proposals. In all cases, we first pick λ by cross-validating the mean squared error of a ridge outcome model.

• CV imbalance. Choose δ by cross-validating the estimated imbalance, ‖ 1
n ŵΦp − Φ̄q‖22 , adapting a

proposal from Wang and Zubizarreta (2020).

• CV Riesz loss. Choose δ by cross-validating the Riesz loss in Equation (6), adapting a proposal from
Chernozhukov et al. (2022d); this is the dual form of cross-validating the estimated imbalance.

• CV outcome. Choose δ to be equal to the cross-validated ridge outcome λ, as inspired by the asymptotic
theory in Mou et al. (2023); Singh (2024).
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# of DGPs Relative MSE

Method Best Worst Median Best Worst Prop.(δ = 0)

CV Outcome 9 2 0.57 0.096 2× 105 0

CV Imbalance 27 2 0.41 0.043 2× 105 0

CV Riesz Loss 0 32 9,268 0.330 3× 107 0.56

Table 1: Mean-squared error (relative to the oracle) for three hyperparameter selection methods for double
ridge regression from a numerical investigation of 36 data generating processes (30 synthetic and 6 semi-
synthetic). The final column is the proportion of draws where the hyperparameter δ = 0.

Before presenting simulation results, we provide a preliminary analytic discussion, comparing these practical
schemes to the behavior of the oracle δ∗. For the first two proposals: just like the oracle, both depend
on the target mean E[Φq] and are invariant to re-scaling. However, these two approaches are mechanically
independent of the outcomes Yp, unlike the oracle δ∗ which, in general, depends on the variance of the
outcomes. By constrast, the last proposal depends on the outcomes Yp but is mechanically independent of
E[Φq].

This suggests that any one of these tuning parameter approaches cannot perform well across all DGPs.
In future work, if we pursue a theoretical analysis of the oracle hyperparameter, e.g. in a proportionate
asymptotics framework, we may be able predict when either the outcomes or the covariate shift is more
important. In this work we begin by demonstrating that no one tuning scheme does uniformly best in
simulations.

7.1.2 Simulation study

To assess the behavior of these hyperparameter tuning schemes, we conduct a simulation study using 36
distinct data-generating processes, 30 synthetic and 6 semi-synthetic; see Appendix H for a detailed discus-
sion. For each DGP, we directly compute the oracle hyperparameter using the results in Section 6.2. We
then compute values from the three practical hyperparameter tuning methods discussed above. The mean
squared error that we consider is design-conditional, and so we draw samples of the covariates for each DGP
only once.

Table 1 presents a summary of the MSE for the three methods across the 36 DGPs. Overall, we find that
the CV outcome approach of choosing δ = λ and the CV imbalance approach both perform well in practice:
one of these two achieves the lowest MSE all 36 DGPs, with CV imbalance performing slightly better on
average. By contrast, selecting δ via CV for the Riesz loss has numerical stability problems that compromises
performance. The performance for the outcome and balance approaches, on the other hand, seem to degrade
gracefully and rarely perform catastrophically. Taken together, these preliminary findings suggest researchers
should begin with these two tuning methods as defaults.

Recovering the OLS point estimate. As we discuss above (see, e.g., Figure 1), when δ = 0 the point
estimate for the augmented balancing weights estimator is numerically identical to the OLS point estimate.
Thus, when a hyperparameter tuning procedure chooses δ = 0 in practice, researchers are simply estimating
the equivalent of OLS — even if they are unaware they are doing so. This is especially problematic in settings
where OLS is far from optimal (though see Kobak et al., 2020; Hastie et al., 2022, for counterexamples).
In our synthetic and semi-synthetic DGPs, δ = 0 is never optimal, and is usually associated with a very
large error driven by extreme variance — see for example, Figure I.11 in the Appendix. Thus the fact that
hyperparameter tuning procedures can return δ = 0 in these DGPs represents a pathological case.

In our simulation study, we find that, when cross validating the Riesz loss, over half of all draws returned
δ = 0. By contrast, none of the other methods returned δ = 0 in the synthetic DGPs, though, as we
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discuss below, we do observe exact zeros for δ occasionally when cross-validating imbalance in the standard
LaLonde dataset. This highlights the potential numeric instability of hyperparameter tuning via CV for the
Riesz loss, at least in the settings we consider here. We further suggest that in these cases, practitioners
assess the sensitivity of the δ = 0 results to the particular tuning procedure used or to the random choice of
cross-validation splits.

7.2 Application to LaLonde (1986)

We now illustrate our equivalence and hyperparameter tuning results on real-world datasets. Following
Chernozhukov et al. (2022d), we focus on the canonical LaLonde (1986) data set evaluating a job training
program in the National Supported Work (NSW) Demonstration. The primary outcome of interest is annual
earnings in 1978 dollars.

For these illustrations, we estimate the Average Treatment Effect on the Treated (ATT), E[Y (1)−Y (0) | Z =
1]. We recover the missing conditional mean E[Y (0) | Z = 1] using the setup from Example 3 in Appendix
A, where the source and target populations are the control and treated units respectively. Thus Φp and Φq
correspond to the feature expansion φ(X) applied to the covariates in the control group and treated group
respectively. We consider two different features expansions of the original covariates: (1) a “short” set of 11
covariates used in Dehejia and Wahba (1999);1 and (2) an expanded, “long” set of 171 interacted features
used in Farrell (2015).

Our goal is to explicate how augmented estimators under different hyperparameter tuning schemes under-
smooth in practice in both low and high-dimensional settings. In some cases, the augmented estimator
collapses to exactly OLS as we document above. Appendix I contains extensive additional analyses, in-
cluding dataset summaries, additional results from the Infant Health Development Program (IHDP), and
sensitivity of these numerical results to cross-fitting.

7.2.1 High-dimensional setting

Following Chernozhukov et al. (2022d), we first consider the expanded set of 171 features for LaLonde (1986)
used in Farrell (2015). Figure 3 shows estimates for ridge-augmented `2 balancing (top row) and lasso-
augmented `∞ balancing (bottom row). We explicitly characterize these results in terms of undersmoothing
in Appendix I.4. The left two panels of each row show the cross-validation curves for the outcome regression
and balancing weights, respectively. The right panels show the point estimate as a function of the weighting
hyperparamter δ, holding the outcome model hyperparameter λ fixed; the black triangle represents the OLS
plug-in point estimate. For context, the corresponding experimental estimate is $1,794 (see Dehejia and
Wahba, 1999). The green and red dotted lines correspond to hyperparameters chosen by cross-validating

balance and the Riesz loss, respectively. For the double ridge estimate, the purple line corresponds to δ = λ̂,
the outcome hyperparameter selected via cross validation.

Figure 3 highlights that both the imbalance and the point estimate are highly nonlinear close to zero. Thus,
even small departures from OLS (at δ = 0) lead to large changes in the point estimate — in Appendix I.5
we give some suggestive evidence that the variance blows up relative to the bias in this range. We can also
assess the sensitivity of the point estimate to the hyperparameter selection scheme. In this case, choosing δ
via CV balance leads to meaningfully larger choices than via other methods.

Finally, the selected δ is always strictly greater than zero for this high-dimensional dataset. However, we
find this is sensitive to small perturbations in the problem parameters. For example, when we perturb E[Φq]
by adding a small value to all the even elements, then the cross-validated `2 Riesz loss chooses δ = 0 in 38%
of draws of the cross-validation splits. As suggested by Appendix I.5 and our simulation results, this is likely
to result in extremely large mean squared error.

1These are: age, years of education, Black indicator, Hispanic indicator, married indicator, 1974 earnings, 1975 earnings,
age squared, years of education squared, 1974 earnings squared, and 1975 earnings squared.

19



0 50 100 150 200 250 300
Ridge Hyperparameter

2.5

2.0

1.5

1.0

0.5

0.0

0.5
Cr

os
s-

Va
lid

at
io

n 
R

2

(a) Ridge outcome model

0 5 10 15 20
2-Balancing Hyperparameter

0

20

40

60

80

100

Cr
os

s-
Va

lid
at

io
n 

2-I
m

ba
la

nc
e

(b) `2 balancing

0 1 2 3 4
2-Balancing Hyperparameter

1400

1600

1800

2000

2200

Au
gm

en
te

d 
Po

in
t E

st
im

at
e

(c) Estimate from “double ridge”

200 400 600 800 1000 1200
Lasso Hyperparameter

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Cr
os

s-
Va

lid
at

io
n 

R
2

(d) Lasso outcome model

0 1 2 3 4 5
-Balancing Hyperparameter

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
Cr

os
s-

Va
lid

at
io

n 
 Im

ba
la

nc
e

(e) `∞ balancing

0.00 0.25 0.50 0.75 1.00 1.25 1.50
-Balancing Hyperparameter

1200
1400
1600
1800
2000
2200
2400
2600

Au
gm

en
te

d 
Po

in
t E

st
im

at
e

(f) Estimate from “double lasso”

Figure 3: Augmented balancing weights estimates for the LaLonde (1986) data set with the expanded set of
171 features used in Farrell (2015); the top row shows ridge-augmented `2 balancing, and the bottom row
shows lasso-augmented `∞ balancing. Panels (a) and (d) show the 3-fold cross-validated R2 for the ridge- and
lasso-penalized regression of Yp on Φp among control units across the hyperparameter λ; the purple dotted
lines show the CV-optimal value for each. Panel (b) and (e) show the 3-fold cross-validated imbalance for `2
and `∞ balancing weights across the hyperparameter δ; the green dotted lines show the CV-optimal value
for each. Panels (c) and (f) show the point estimates for the augmented estimators across the weighting
hyperparameter δ; the black triangles correspond to the OLS point estimate; the green and red dotted lines
correspond to the cross-validated balance and Riesz loss respectively; the purple line corresponds to the
cross-validated ridge hyperparameter (for δ = λ̂).

7.2.2 Low-dimensional setting: Recovering OLS

Finally, we apply double ridge to the “short” version of the LaLonde (1986) data set with 11 features. Figure 4
shows the cross-validation curves for the outcome and weighting models, as well as the point estimate as
a function of the balance hyperparameter, with the OLS estimate given by the black triangle. As above,
the green, red, and purple dotted lines correspond to hyperparameters chosen by cross-validating balance,
cross-validating the Riesz loss, and choosing δ = λ respectively.

Unlike for the “long” dataset in Figure 3, Figure 4 does not display as stark a nonlinearity around zero.
Importantly, however, setting δ by cross-validating imbalance can yield δ = 0, which reduces the augmented
estimator to exactly the estimate from a simple OLS regression — even though the base learner ridge outcome
model is heavily regularized. By contrast, our preferred hyperparameter tuning scheme of choosing δ = λ
results in an estimate that is roughly $400 dollars smaller than the OLS estimate. The choice of δ = 0
is sensitive to the specific cross-validation splits used, further emphasizing that this is likely anomalous
behavior. See Section 7.1.2 for further discussion.

20



0 50 100 150 200
Ridge Hyperparameter

0.36

0.37

0.38

0.39

0.40

0.41
Cr

os
s-

Va
lid

at
io

n 
R

2

(a) Ridge outcome model

0.00 0.02 0.04 0.06 0.08 0.10
2-Balancing Hyperparameter

0.24

0.26

0.28

0.30

0.32

Cr
os

s-
Va

lid
at

io
n 

2-I
m

ba
la

nc
e

(b) `2 balancing

0.0 0.2 0.4 0.6 0.8 1.0
2-Balancing Hyperparameter

1000

1200

1400

1600

1800

2000

Au
gm

en
te

d 
Po

in
t E

st
im

at
e
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Figure 4: Ridge-augmented `2 balancing weights (“double ridge”) for LaLonde (1986) with the original 11
covariates. Panel (a) shows the 3-fold cross-validated R2 for the Ridge-penalized regression of Yp on Φp
among control units across the hyperparameter λ; the purple dotted line shows the CV-optimal value, λ̂.
Panel (b) shows the 3-fold cross-validated imbalance for `2 balancing weights across the hyperparameter
δ; the green dotted line shows the CV-optimal value, which is δ = 0 or exact balance. Panel (c) shows
the point estimate for the augmented estimator across the weighting hyperparameter δ; the black triangle
corresponds to the OLS point estimate, the green dotted line corresponds to cross-validated balance, the red
dotted line corresponds to cross-validated Riesz loss, and the purple dotted line corresponds to the ridge
outcome hyperparameter.

8 Discussion

We have shown that augmenting a plug-in regression estimator with linear balancing weights results in a
new plug-in estimator with coefficients that are shrunk towards — in some cases all the way to — the
estimates from OLS fit on the same observations. We generalize this equivalence for different choices of
outcome and weighting regressions. In the asymptotic setting, we draw the explicit connection between
augmented estimators and undersmoothing for the special case of kernel ridge regression. Then we derive
the design-conditional finite sample MSE for the double ridge estimator, and use it to solve numerically for
oracle hyperparameters. We compare the oracle hyperparameters with three practical tuning schemes and
then illustrate our results on the canonical LaLonde (1986) data set. In the Appendix, we also explore many
extensions, including to nonlinear weights and to high-dimensional features.

There are many promising avenues for future research. The fundamental connection between doubly robust
estimation and undersmoothing opens up several theoretical directions. While we focus on the special case of
kernel ridge regression in Section 6.1, we anticipate that these connections will hold more broadly. Similarly,
while our focus in this paper has been on interpreting balancing weights as a form of linear regression, the
converse is also valid: we could instead focus on how many outcome regression-based plug-in estimators are,
in fact, a form of balancing weights; see Lin and Han (2022) for connections between outcome modeling and
density ratio estimation.

We also anticipate that the MSE we derive in Section 6.2 is a starting place for future theoretical analysis that
can inform practice. We demonstrate in our simulation study that existing hyperparameter selection methods
cannot perform uniformly well over all DGPs. We expect that analyzing the optimal hyperparameters —
e.g. in a proportionate asymptotics regime — can help devise new tuning schemes and inform which tuning
method will work best on the dataset at hand.

We further conjecture that these results may provide new insights into the estimation of causal effects in the
proximal causal inference framework (Tchetgen Tchetgen et al., 2020). This framework uses proxy variables
to identify causal effects in the presence of unmeasured confounding. Estimation has been complicated by the
fact that, in the absence of strong parametic assumptions, estimators of proximal causal effects are solutions
to ill-posed Fredholm integral equations. Ghassami et al. (2022) and Kallus et al. (2021) recently proposed
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tractable nonparametric estimators in this setting. They use an “adversarial” version of double kernel ridge
regression — allowing the weighting and outcome models to have different bases — to estimate the solution to
the required Fredholm integral equations. Our results apply immediately to standard augmented estimators
with different bases for the outcome and weighting models, either via a union basis (Chernozhukov et al.,
2022d) or by applying an appropriate projection as in Hirshberg and Wager (2021), and extending these
results to proximal causal effect estimators might help in constructing new proximal balancing weights,
matching, or regression estimators with attractive asymptotic properties.

Finally, many common panel data estimators are forms of augmented balancing weight estimation (Abadie
et al., 2010; Ben-Michael et al., 2021c; Arkhangelsky et al., 2021). We plan to use the numeric results here,
especially the results for simplex-constrained weights in Appendix D.2, to better understand connections
between methods and to inform inference.
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