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Summary. We investigate the changing nature of the frequency, magnitude, and spatial
extent of extreme temperatures in Ireland from 1942 to 2020. We develop an extreme
value model that captures spatial and temporal non-stationarity in extreme daily maximum
temperature data. We model the tails of the marginal variables using the generalised
Pareto distribution and the spatial dependence of extreme events by a semi-parametric
Brown-Resnick r-Pareto process, with parameters of each model allowed to change over
time. We use weather station observations for modelling extreme events since data from
climate models (not conditioned on observational data) can over-smooth these events and
have trends determined by the specific climate model configuration. However, climate
models do provide valuable information about the detailed physiography over Ireland and
the associated climate response. We propose novel methods which exploit the climate
model data to overcome issues linked to the sparse and biased sampling of the obser-
vations. Our analysis identifies a temporal change in the marginal behaviour of extreme
temperature events over the study domain, which is much larger than the change in mean
temperature levels over this time window. We illustrate how these characteristics result in
increased spatial coverage of the events that exceed critical temperatures.
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1. Introduction

The Intergovernmental Panel on Climate Change, IPCC (2021, Chapter 11), reports an
observable change in extreme weather and climate events since around 1950. Character-
isation of extreme temperature events is crucial for societal development, for estimating
risks, and to enable the mitigation of their effects for many sectors, e.g., healthcare, eco-
nomic growth, agricultural disruption, and infrastructure. Brown et al. (2008) observed
a warming of both maximum and minimum temperatures since 1950 for most regions
indicating an increasing number of warm days and longer heatwaves.

In Ireland, changing extreme temperature behaviour has also been observed. McEl-
wain & Sweeney (2007) found that a warming of both maximum and minimum temper-



ature observations occurred for all sites over 1961-2005. O’Sullivan et al. (2020) showed
that the frequency of extreme temperature events for County Dublin has increased over
the period 1981-2010. Both these approaches considered only the marginal behaviour
of extremes. To the best of our knowledge, the only modelling of spatial extreme tem-
perature events in Ireland is by Huser & Wadsworth (2022). They used a gridded Irish
temperature data set, which has the potential to be over-smooth relative to the observed
process, and fitted their model to these data under the assumption of stationarity over
time and space. Under similar stationarity assumptions, Fuentes et al. (2013) and Ce-
bridn et al. (2022) analyse extreme spatial temperatures for other locations.

We are interested in developing a model which captures the temporal evolution of spa-
tial extreme temperature events over Ireland. This involves modelling how the marginal
distributions vary over space, accounting for spatial dependence within extreme events,
and modelling how these two elements vary over time. Our focus is on modelling extreme
value data, however, for a spatial process, an extreme event can consist of abnormally
high values in part of the region and typical values elsewhere (Davison et al. 2012).

Observational extreme event data are sparse and so they need to be used efficiently.
The traditional statistical approach is to model these data with powerful probabilis-
tic characterisations from extreme value theory. This theory provides a parsimonious
asymptotic justification for extrapolation which enables us to describe the properties
and behaviour of events which are more extreme than those previously observed. The
theory by itself, however, will not provide information on how to spatially interpolate
over heterogeneous geography or how to account for when the characteristics of complex
spatial events change over time. Here we propose a novel approach to address these
issues which exploits the physical knowledge of the climate processes from information
given by fine-scale climate model data. We review existing extreme value methods for
spatial and temporal processes and outline our strategies for using climate model data.

The theory of univariate extreme values for stationary processes (Leadbetter et al.
1983), and the associated statistical models (Coles 2001), fully determine a simple para-
metric distributional family, namely the generalised Pareto distribution (GPD), as the
non-degenerate limit distribution for the normalised excesses of a threshold, as that
threshold tends to the upper endpoint of the marginal distribution. The GPD has
been very widely used in diverse applications since the exposition of Davison & Smith
(1990). To deal with non-stationarity, the GPD parameters have been allowed to change
smoothly with covariates, initially using fully parametric regression models and more
recently with a range of different non-parametric smoothing methods (Chavez-Demoulin
& Davison 2005, Youngman 2022). We model the upper tails of the marginal distribution
of the temperature process using the GPD, with covariates selected from space, time,
information from climate models, and established measures/causes of climate change.

The most established approach to spatial extreme modelling uses max-stable process
models (de Haan & Ferreira 2006). These processes are the class of non-degenerate
limiting distributions of linearly normalised site-wise maxima, typically fitted to annual
maxima data observed at each site in a set of locations over years. They are a natural
extension of univariate block maximum limit theory, and so have generalised extreme
value distributions for their margins. Brown & Resnick (1977) introduced a widely used
subclass of these models, derived from Gaussian random fields, known as Brown-Resnick



processes, with Davis et al. (2013) applying this model to spatio-temporal data.

The major problem with max-stable models is that they do not model, and so can-
not capture, spatial patterns of observed extreme events. Inference using these models
can lead to biased estimation of dependence (Huser & Wadsworth 2022). A recent de-
velopment in the modelling of spatial threshold exceedances is the generalised r-Pareto
process (Thibaud & Opitz 2015, de Fondeville & Davison 2018, 2022). Generalised -
Pareto processes, like max-stable processes, exhibit a strong form of dependence, known
as asymptotic dependence (defined in Section 4.2) between all sites. This implies that
for an event which is extreme at any location in space, there is a positive probability
that this event will be extreme everywhere else in the spatial domain. For processes
over spatial domains that are large relative to the scale of the spatial dependence of the
process, this is an unrealistic assumption. More flexible spatial models, building from
those in Wadsworth & Tawn (2022) are discussed in Healy et al. (2023, Section 7.1).

In Section 4 we define these extremal dependence properties precisely and provide ev-
idence that generalised r-Pareto processes are suitable for daily maximum temperatures
over Ireland. We identify extreme spatial fields, based on observations at d sites, as those
which exceed a sufficiently high threshold for a risk function 7 : R¢ — R,. We model
these fields as realisations of a Brown-Resnick Pareto process, which is closed under
marginalisation (Engelke & Hitz 2020), an important property given the time-varying
level of missing temperature data in our application.

We have observational daily maximum data for a network of 182 Irish temperature
stations, with only 38% of these having more than 30 years of data due to differential op-
erational periods and quality controls, which is further compounded by spatial selection
bias in the station locations. We also have a rich spatio-temporally complete data set
generated from a climate model, giving daily maximum temperatures over 56 years on
a fine grid over Ireland. These climate model data are not conditioned on the observed
weather, so their values on any given day have no correlation to the observed data, but
they have similar probability distributions to the observed data at the associated sites
and time of the year. The climate model data have no missing values or location bi-
ases; they are on a dense regular grid and incorporate the impact of known geophysical
structures on the temperature process.

Although it may be tempting to analyse the simpler climate model data than the
observed station data, climate models involve some abstraction of the physical processes
they model and so tend to under-predict extreme events in magnitude and to over-
estimate dependence owing to the climate model’s smoothness over space and time, see
Sections 3 and 4. So direct analysis of the climate data is not ideal but clearly, they offer
vital additional information to the observational data. Various attempts have been made
to downscale the climate model data to produce a proxy for the observed data which gives
a spatial and temporally complete data set, e.g., Maraun et al. (2017), with the focus to
date being on assessing marginal features. We prefer to let the observational data stand
for themselves, particularly in relation to the information they provide about temporal
non-stationarity as the climate model data have trends determined by the climate model
configuration that is an imperfect representation of the real-world processes.

The novelty of our paper is achieved through the use of state-of-the-art extreme value
methods for marginal distributions, spatial dependence, and temporal non-stationarity



which collectively exploit knowledge from climate science and through the use of ap-
propriate metrics for describing changes in spatial extreme events. Our use of climate
science relies heavily on how our inference for the observational temperature data lever-
ages core information from the climate model data, i.e., parameter estimates (within
sample quantiles and GPD parameters) over space, and through our careful assessment
of, and sensitivity to, the effects of the inclusion of various climate-based covariates.
The paper is organised as follows. Section 2 details the observational and climate
model data used. Sections 3 and 4 describe the marginal and dependence modelling of
the process respectively, in each case accounting for their changing behaviour over time.
In Section 5 we use the model to explore how the properties of spatial extreme events
have changed over time. Conclusions and a broader discussion are given in Sections 6
and 7. All our code and instructions on how to access the data are available on GitHubft.

2. Data

We start with a note on nomenclature since we use multiple data sets which differ in
their structure and use. We use the term ‘station data’ to refer to data taken directly
from weather stations. These are irregularly located and suffer from missing values.
The term ‘climate model data’ refers to physics-based simulations of the weather system
which are run on high-resolution grids and do not aim to match individual weather
events, rather they model the spatio-temporal dynamics of the weather system. Finally,
‘observation-based data products’ are gridded data sets which arise from some form of
statistical or physical interpolation of station data.

2.1. Station data

Our daily maximum temperature data comprise 182 Irish temperature stations compiled
from two sources, the locations of which are shown in Figure 1. For the Republic of
Ireland, data for 151 stations came from Met Eireann’s archivef. Data for 31 Northern
Ireland sites were obtained through the CEDA archive (Met Office 2012). Collectively,
these data have many missing values, with availability of data decreasing further back
in time. We have more than twice the data from the 1950s than the 1940s, with all
stations pre-1950 (except one) being coastal. We have 56% of daily values observed in
the last 30 years, and only 0.53% observed before 1942. No single day has data for every
station. The average span of data for each station is about 30 years, with observations
ranging from 1931 to 2022. The sites with the most data tend to be located near the
coast reflecting historical and present-day observational priorities.

Our interest is in extreme warm temperatures in Ireland, so we restrict our analysis to
data from the summer (JJA) and report findings for the years 1942-2020. This choice of
season is supported by the finding that 93% of all the days with temperatures above the
99% site-wise marginal quantile occur in summer, with this proportion increasing with
the level of marginal quantile. As exceedances are reasonably spread across the summer,

tgithub.com/dairer /Extreme-Irish-Summer-Temperatures.
1Copyright Met Eireann. Source: met.ie/climate/available-data/historical-data.
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we assume that within each summer the process is temporally stationary. Exploratory
analysis supporting both of these choices is reported in Healy et al. (2023, Section 2.3).

2.2. Climate model data

Climate models are mathematical representations of the physical processes driving weather
and climate and represent our best understanding of these natural phenomena (Giorgi
2019). Climate models are broadly run on two scales; large-scale global general circu-
lation models (GCMs) and finer-scale regional climate models (RCMs). An RCM is
informed by the GCM at its boundary. Crucially, climate model data do not correlate
with the observed time-evolution of weather, rather they have probabilistic structures
that reflect plausible weather sequences which could occur. They are typically designed
to investigate the effect of potential external forcing on the climate system by, e.g.,
increases in greenhouse gas concentrations arising from anthropogenic activities. We
identify and exploit physical and topographical features in the output of these models
and use them to adjust for spatial and temporal bias in the observed data set.

We use RCMs for their detailed topographical information and their physical de-
scription of temperature processes. When relying only on climate models to understand
extreme weather it is common to consider several GCM/RCM combinations, each with
different initial conditions and future climate scenarios. This choice will have limited
impact for us as we use station data to describe the magnitude and frequency of tem-
perature events, and the climate model data only to inform non-temporal features. We
use data from the CLMcom-CLM-CCLM4-8-17 RCM combined with the ICHEC-EC-
EARTH GCM. Specifically, we have daily maximum temperatures over a 56-year period
(created using the atmospheric climate drivers from 1950 to 2005) on a regular grid of
558 points over Ireland (corresponding to a 0.112 degree resolution). Figure 1 (right)
shows the values for the day with the largest average temperature over Ireland in this
data set. This plot illustrates two features which we exploit in Sections 3 and 4 respec-
tively. Firstly, the RCM provides much greater spatial coverage in the interior of Ireland
than the stations in Figure 1 (left). Secondly, extreme temperature events can be very
widely spread across Ireland, since even the sites with the lowest values on this day have
temperatures in their marginal distributions’ upper tails.

2.3. Covariates: Observation-based data products

To model temporal non-stationarity of extreme temperature data it is common to use
time as the sole covariate, although this will have severe limitations outside the range
of the data as potential emission scenarios diverge. Instead, we use the time-varying
covariates that climate scientists believe best represent changes in observed mean tem-
peratures. These are predictable into the future under different emission scenarios. We
use two covariates; smoothed monthly average temperature anomalies for the global
average M and for the grid box over Ireland M/, from the observation-based data
product HadCRUT5. See Healy et al. (2023, Section 2.1) for details and plots of the
covariates. Over 1942-2020, both covariates increase by approximately 1°C, with the
change accelerating.
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Fig. 1. Ireland data locations: (left) station data sites, with the amount of data indicated by
colour and size. Sites marked with an ‘X’ correspond to Malin Head (North), Roches Point
(South), Phoenix Park (East), Claremorris (West) and Mullingar (Centre); (right) climate model
data from MOHC-HadREM3-GA7-05 showing a generated extreme temperature event.

Our exploratory analysis, using spline-based models, identified that the shortest dis-
tance to the coast, for each site, was a potential descriptor of the change of temporal
trends. We define this covariate by C(s), for each site s. We consider the covariate of the
annual CO3 emissions (CO2 ) for Ireland; see Healy et al. (2023, Section 2.2). Since there
is strong collinearity present in the collective covariates z; := (t, MT, M}, COq,4, C(s))
we only use one of the time-varying covariates in each model.

3. Marginal models

3.1.  Overview and Strategy
Let X,(t, s) denote the observed station data comprising summer maximum daily tem-
perature at time ¢t and site s, and let X.(t, s) be the equivalent process from the climate
model data. We assume temporal stationarity within each year for each site and each
process. Here ¢ € N indexes summer days within and across years and s € S C R?,
where S denotes Ireland, with s corresponding to the vector of latitude and longitude.
We have data on the two processes at S, € S and S, C S and at times 7, and 7.
respectively. For 7T, we also have missing data for some of the stations as discussed in
Section 2. Throughout we use the subscripts to identify the type of process, though the
indexing is dropped when discussing methods which apply similarly to both processes.
In Section 3.2, we propose a spatial and temporal quantile regression model for the
data to derive an estimate of the distribution function of X (¢,s). As the tails of this
distribution are particularly important to model well, we introduce a threshold u(s)
which is fixed over time but varies in space, above which we replace the quantile model
with the generalised Pareto distribution (GPD) parametric model with temporal and
spatial covariates. The justification for our choice of a constant threshold over time is
discussed in Section 7.2. Novelty in our approach comes from using estimates from the
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X, process to infer features of the X, process, which is appealing as |S,| < |S.| and
|75 < |Te| for most sites. Given all these considerations, we need to estimate thresholds,
the temporally varying marginal distributions over S for below the thresholds, the GPD
parameters for above the thresholds, and to do this for both the X. and X, processes.

When analysing the climate model data we need to account for the following issues.
First, our use of these data is to improve our spatial mapping and to overcome issues of
missing data in the analysis of the observational data. Second, climate model data can
show different time dynamics from that of the observed process since they are based on
incomplete physics and forcing detail. We want our analysis to be robust to temporal
non-stationary aspects of the climate model data, so we assume that X.(t,s) are tem-
porally stationary in our analyses. As the trend in the climate model data is 4% of the
variation in the data at each site, this is not too restrictive an assumption.

3.2. Modelling the body of the distribution

Given the issues raised in Section 3.1 about X.(t,s), we take the following simple ap-
proach for the inference of its distribution. For site s we estimate the 7th quantile
of X. by using the empirical sample quantile for the climate model data at that site
alone; we denote this estimator by q((f)(s). We use this approach for all 7 over the range
[0.01,0.99]. This estimator is reliable as we have sufficient data (5152 days with none
missing) and, due to the climate model data being numerical model output, their spatial
variation is very smooth, so statistical spatial smoothing methods are more likely to
induce bias than to enhance the analysis through information sharing.

For the analysis of X, (¢, s), the issues of spatial sparsity of stations, limited data,
varying periods of records of stations, and the need to account for temporal variations,
lead to a different approach than for X (¢, s). We follow the approaches of Yu & Moyeed
(2001), Youngman (2019) and that of the R package evgam (Youngman 2022) by using
the asymmetric Laplacian distribution (ALD) for quantile regression to estimate a range

of spatially and temporally varying Tth quantiles, q((f)(t, s), for a grid of 7 € [0.01,0.99],
for all t € T and s € S. The density function of the ALD; is

fap, (i) =7(1 =) exp{—p; (y— @) '}, y R, (1)

where pr(z) = {7 — I(z < 0)}z is the check function, ¢ € R is a location parameter,
corresponding to the 7th quantile of interest, and ¢ > 0 is a scale parameter. We assume
that ¢ and v vary smoothly over S, and 7,.

For estimating q((f) (t,s) and log{w((f)} we consider not just ¢ and s as covariates
but also incorporate as potential covariates the associated quantile from the climate
model data qu)(s) and each of the climate-based covariates of Section 2.3. The former
provides richer spatial information that is not captured in the observational data set,
and the latter gives a causal set of time-varying covariates. Details of the analysis using
these models are presented in Section 3.5.

To provide estimates for all 7, we fit this model separately for a grid of 7 values and use
a cubic interpolation spline for each s to give a continuous estimate over 0.01 < 7 < 0.99

for cng) (t,s). We kept the grid of 7 values relatively coarse to avoid issues of quantile



estimates crossing. This gives us an estimate of the distribution function of X,(¢, s) as
Fors(@7(t,8)) == Pr{X,(t,s) < g7 (t,8)} ~ 7 for all 7, for all s € S. (2)

This model provides estimates for all quantiles for any s € S., not just S,, and at all
times where we have the covariates, e.g., not just for ¢ € 7,. At each site s, below the
threshold u(s) (defined in Section 3.3) we use this distributional model Fj,  s.

3.3. Modelling the tails of the distribution

It is well known that quantile regression, and hence the ALD model, is unreliable for
estimating quantiles in the tails of the distribution and provides no means to extrap-
olate beyond observed data. As the upper extremes of the distribution of X, (¢, s) are
important to us, we chose an alternative model based on extreme value methods. This
enabled us to produce a model that is continuous over all £ and s, with the extreme value
model being used above a high threshold, and the ALD model describing data below.

One option is to have a threshold, u(t, s), that varies over time and space computed
for a given quantile, e.g., u(t,s) = ¢(7(t,s), for a choice of 7. However, in extreme
value inference, it is well-known that it is difficult to objectively select a threshold or to
account for the uncertainty in that choice (Northrop et al. 2017). Here it is the temporal
change in extreme events which is of most interest, and this trend is small relative to
other sources of variations in the data. We do not select a time-varying threshold using
information from the body of the distribution, as this may bias results for the extremes.
Instead, we choose the threshold to be u(s), i.e., only varying over space.

To reduce subjectivity, for each site and for both X. and X, processes, we use a
common exceedance probability for the fixed-over-time threshold. Based on the use of
standard extreme value threshold selection methods for stationary processes (Coles 2001)
which we applied at each site/process separately, we identified that the 90% quantile was
suitable. For the reasons discussed in Sections 3.1 and 3.2, we use the site-specific 90%
empirical sample quantile for u.(s) but a model-based estimate for u,(s). Specifically,
we fit the model for density (1) with 7 = 0.9 with the location parameter structured
as uy(8) 1= qgo'g)(s) = fo + Pruc(s), with (8o, f1) parameters. Thus the climate model
data provides a means by which the spatially varying threshold u, for the observed data
X, can be estimated. This routine aims to overcome the data quality limitations and to
provide estimates for all s € S,.

For a given threshold there are two remaining elements required to model the ex-
tremes, namely the threshold exceedance probability A,(¢, s) and the distribution H of
the excesses of the threshold (Chavez-Demoulin & Davison 2005). We consider these in
turn. We estimate A\, (¢, s) from the model for the body of the distribution, using the set
of estimated distribution functions (2). Specifically,

Ao(t,8) =1—1y,(L,s),

where 7,,(t, s) is the value of 7, at time ¢, which makes (ng) (t,s) = uo(s). If there is
no temporal non-stationarity in X, (¢, s) then by construction of the threshold wu,(s), if
that was correct, we would have \,(t,s) =1 —7 =0.1 across t € T, and s € S,,.
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For each site s we assume that excesses of the threshold wu(s) follow a generalised
Pareto distribution (GPD); see Pickands (1975) and Davison & Smith (1990) for the
probabilistic justification and properties. The GPD(o, ) has distribution function

H(y;o,6) =1— (1+¢&y/o); /" (3)

for y > 0, with a shape parameter £ € R and a scale parameter o > 0, with the notation
x4+ = max(z,0), and £ = 0 is obtained by taking the limit as £ — 0. When X (¢, s) > u(s)
the threshold excess, Y (t,s) = X (t,s) — u(s), is taken to be distributed as

Y(t,s) ~ GPD(o(t, s),¢&), (4)

where we discuss the choice of models for o(t, s) below, and where the shape parameter
is taken to be constant over time and space. This choice of homogeneity for the shape
parameter for both X, and X, (i.e., values &, and &. respectively) is supported by
exploratory analysis in Healy et al. (2023, Section 3.2), but it is typical in GPD modelling
as there is limited evidence against this in almost all applications, and for the pragmatic
reason that even a homogeneous value is difficult to estimate well. Furthermore, this
choice reduces the risk of parameter identifiability problems (Davison et al. 2012).

Combining A,(¢,s) with the model for H gives our overall marginal distributional
model Fy s for the upper tail of X, (¢, s). Specifically for y > u,(s) we have

Fors(y) = 1= Ao(t,8)[1 = H(y — uo(s); 00(t; 8), &)]- ()

As with the estimation of the quantiles below w,(s) for X,, we use information from
X, to provide a spatial covariate for o,(t,s). As discussed in Section 3.1, we aim to
learn about temporal non-stationarity exclusively from the observational data, so only
information about the spatial variation of the marginal tail distribution is taken from
X.. We fit a model of the form

Yelt, 5) ~ GPD{o(s), &} (6)
for the excesses of u.(s) = qgo'g)(s) and we keep o, constant over t. When modelling
the climate model data we believe we have sufficient observations and spatial consis-
tency, from their generation, to treat o.(s) as site-specific, i.e., not imposing any spatial
smoothness on the GPD scale parameters over s € §. Clearly, it would be wrong to
smooth well-estimated parameters spatially if we want to capture the relevant geophys-
ical features of the climate system.

Full likelihood inference is not possible as any realistic model for the station data is
likely to be highly complex, requiring spatial and temporal dependence of the data to
be modelled. Instead, we use a pseudo-log-likelihood

oL, (O'C(S) 8 € Sc;fc) = Z Z log h(yc,t,s§00(3)7§c) ) (7)

seS,. LteT.

constructed under the false assumption of spatial and temporal independence, with h
being the density function of the GPD. This inference approach is commonly used, e.g.,



by Davison et al. (2012). The maximisation of this function can be broken down into a
series of 1-dimensional optimisations by alternating the maximisation over £, with the
scale parameters fixed, and then exploiting the partition of the function pf. with respect
to s when maximising over each o.(s) in turn whilst treating &. as constant. Iterating
in this way until convergence is achieved gives estimated values {6c(s}; s € S.} and €.

Next, we model the extreme observational data excess above the threshold, w,(s),
denoted by Y5 (¢, s). The generic form of each of the models we consider is

Yo(t, s) ~ GPD(0o{z¢t,5¢(8)}, &), (8)

where we model logo,{z,5.(s)} as either a parametric linear model of logd.(s) and
the covariates z; (defined in Section 2.3) or via a GAM formulation. We denote the
parameters of o, by 0. As with the inference for the climate model data we have to use
a pseudo-log-likelihood, constructed under the false assumption of spatial and temporal
independence. For the fully parametric model, the pseudo-log-likelihood is

pfo (0; gc) = Z Z IOg h(yo,t,s; Oo, go) 5 (9)

seS, LteT,

whereas in the GAM setting p¥, is adapted by incorporating an additive spline smoothing
penalty term (Wood 2006). Given the use of a pseudo-penalised likelihood, we cannot
use standard methods for the evaluation of parameter uncertainty and model selection.
Instead, the approaches we use are discussed in Section 3.4, with our marginal tail
inference for the data being presented in Section 3.5.

3.4. Model uncertainty quantification and selection

In cases where a pseudo-likelihood is used, as in Section 3.3, the most widely adopted
method for model selection is to adapt standard information criteria to account for
model/likelihood mis-specification to greater penalise complexity relative to a better
pseudo-likelihood fit. For spatial extremes, the composite likelihood information cri-
terion (CLIC, Davison et al. 2012) is used, which includes a first-order asymptotically
motivated additive adjustment factor. Despite being used in many pseudo-likelihood
approaches, we have chosen not to use CLIC for model selection. This is because the
likelihoods for extremes are far from the asymptotic elliptical forms around the mode,
yet CLIC relies on such asymptotic theory; CLIC measures only goodness of fit in the
sample yet we have rich enough data to exploit out-of-sample model assessment; and for
determining the parameter uncertainty we are not relying on asymptotic theory. Below
we outline the alternative approaches we use.

3.4.1. Bootstrap methods

For both model selection and parameter uncertainty evaluation we generate bootstrapped
samples X} of {X,(t,s) : t € To,s € Sy} for a given marginal distribution model. These
bootstrap samples need to preserve all spatial dependencies, short-range temporal de-
pendence consistent with the passage of weather systems, missing data patterns of the
observational data, and to exhibit the temporal non-stationarity of the fitted model.
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For a given marginal model, the bootstrap takes the set of transformed observed
data {zY(t,8) = Fors(20(t,8)) : t € To,8 € S,} where F, 5 is given by the two model
components of Sections 3.2 and 3.3. Assuming Fy; s is the correct marginal model, then
the 2¥(, s) values are realisations of Uniform(0, 1) random variables that are identically
distributed over time for each s € S,, but with the temporal and spatial dependence
structure of the X, (¢, s) process retained. To these data, we apply a vector temporal
block bootstrap, with details of block structure and adaptions to account for the missing
data described in Healy et al. (2023, Section 3.4). For each bootstrapped data set
XUx = [(XU*(t,s): t € Ty, € S,} we use the inverse of the distribution function Fotis
to create the bootstrapped sample X with elements

Xo(t.s) = Fo i {XJ"(t5)}. (10)

Applying this raw bootstrap method induces bias in parameter estimates, and hence in
sampling distribution estimates. The bias stems from ties in the extreme bootstrapped
data that this method produces. As the very largest observations in a dataset are
known to be the most influential on the GPD model fit (Davison & Smith 1990) this is
particularly problematic. There is negative bias in the estimate of the shape parameter
of the GPD. Since the shape and scale parameters are negatively correlated, there is
also a positive bias in the scale parameter estimator. To adjust for these biases we use
a bootstrap error correction, which we validate via assessing the coverage properties of
the resulting confidence intervals in a simulation study, see Healy et al. (2023, Sections
3.5-3.6). The bias-correction is a two-step procedure with an additive adjustment to the
bootstrapped shape parameter estimate, then the scale parameter is re-estimated after
fixing the adjusted shape parameter.

3.4.2.  Cross validation
For model fit diagnostics, we use two types of cross-validation (CV) to evaluate the
performance of our models on out-of-sample data (Hastie et al. 2001, Ch 7.). We use
standard 15-fold CV (15-CV) so that the data are divided into 15 groups (folds), where
each fold is removed in turn and the model is fitted to the remaining folds. Since standard
CV can perform poorly when the data have spatial or temporal correlation (Roberts
et al. 2017), we also use a spatio-temporal CV (ST-CV) with 15 folds, corresponding
to 5 spatial clusters of station data (i.e., divided spatially into 5 contiguous groups)
and 3 temporal folds. Each temporal fold consists of every third week in the summer
months, preserving long-term temporal non-stationarity. We choose 5 spatial partitions
of our 182 sites as being low enough to help account for, and reduce, bias introduced via
spatial auto-correlations as well as being sufficiently large that it reduces variance in our
performance metrics across folds (Schratz et al. 2019). We define the 15 ST-CV folds
as all combinations of spatial and temporal clusters, taking the intersection as a fold.
We also investigated higher number of spatial clusters (up to 30) and higher number of
random folds (up to 90) and found equivalent model rankings as those presented here.
For each left out fold, we compute two different goodness-of-fit measures to evaluate
out-of-sample performance, the root mean square error (RMSE) and the continuous
ranked probability score (CRPS, Gneiting & Katzfuss 2014). The RMSE evaluates the



Table 1. Cross validation (RMSE) on the quantile regres-
sion analysis for the body of the distribution.

Model structure for ¢\ (t,s) ST-CV 15-CV

57 1442 1.455
ﬂéT) +5§T)qgf)(s) 1.350 1.347
B+ 84{7 (s) + B ML(t) 1.322  1.319

general closeness between the empirically estimated and predicted quantiles, whilst the

CRPS aims to match both the calibration and the sharpness of these extremes quantiles

(Zamo & Naveau 2018). Here the empirical quantile, .TUS;T) (t,s) is evaluated using the

ordered data at site s and the year which contains time ¢, whereas the predicted quantiles

are estimated as £\ (t,s) = Foft{S(T) for quantile 7 from the appropriate model. The
()

. AN\T
comparisons between x, ' and x((, ), for the same ¢, s, and 7, are averaged across the

folds. Lower values of RMSE and CPRS generally indicate a superior fit.

3.5. Marginal Data Analysis

3.5.1. Body of distribution

Following exploratory analysis, we identified three potential models for the body of the
distribution, which we present in Table 1 along with their CV RMSE. The first model
serves as a base, in which the location parameter is constant over space and time for
each quantile 7. In the second model we allow the quantile regression to vary spatially
by using the corresponding climate model data quantiles qéT)(s) as a covariate. The
third model also includes the temporal Irish mean temperature covariate MZ(t). The
inclusion of the climate model covariate reduces the RMSE for both types of CV, whereas
M (t) improves the CV scores further, though not as much. We fitted a number of other
covariate combinations for z;, as well as using the principal components of z; to avoid
issues of collinearity. Overall, we found the third model provides the best balance of
simplicity and fit, so use this for subsequent analysis.

Healy et al. (2023, Section 3.1) provides estimates of Bgr), which show a slight de-

crease with 7 although the confidence intervals widen. For all T, Bg) = 1 appears
consistent with the data, indicating that mean summer temperatures in Ireland are a
good representation of the temporal change for all the body of the distribution. The

estimates of BY) (not plotted) decrease, approximately linearly, from 0.75 to around 0.65
with 0 < 7 < 1, showing that the climate model is not giving identical descriptions to
the station data, as the estimates differ from 1 significantly and change with 7.

3.5.2.  Tails of the distribution

For selecting the threshold u,(s), we use the second model in Table 1 with 7 = 0.9, pro-
viding a threshold that varies in space but not time. Figure 2 (left) shows the threshold
uo(8) over Ireland, with cooler temperature values on the west of Ireland and coastal re-
gions on the south and north coasts. For this u,(s) we estimate the threshold exceedance

probability A,(t, s) and its spatial average \,(t) = [ _g Ao(t, 5)ds/|S.|. Estimates of the
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Table 2. Models M, — M, for GPD log-scale parameter, log o,(t, s), along with cross-validation results
and estimated shape parameter, &,, with bootstrapped 95% confidence intervals. Numbers in bold font
show the lowest CV values.

ST-CV 15-CV o
RMSE CRPS RMSE CRPS
My  Bo+ Bilogoc(s) 0.945 0.895 0.928 0.882 —0.152(—0.237,—0.092)

M, Bo+fBilogou(s)+ BMI(t) 0938 0.894 0918  0.880 —0.156(—0.204,—0.110)
My Bo+Bilogoe(s)+B2logCs)+ 0.934 0.893 0.908 0.878 —0.158(—0.194, —0.110)
BsM'(t) + Balog C(s)M' (t)

latter are shown in (Healy et al. 2023, Figure 4). The A\,(t) estimates show an increas-
ing exceedance rate, with the average rate over time of 0.1 reflecting the choice of the
threshold. However, we find that from 1942-2020, \,(¢) increases by around 35% with
associated 95% confidence interval 28-44%. We see the same features at individual sites,
but with wider confidence intervals.

0.45
0.40
0.35
0.30

0.25

Fig. 2. Estimated values of threshold u,(s) (left), GPD scale parameter according to M5 in 2020,
(centre), and the estimated change in the scale parameter since 1942, Vo,(s) (right).

Table 2 presents a subset of the models that we explored for the GPD scale parameter
that incorporate climate model data via o (s), defined by expression (6), and the nearest
coastal distance C(s) from the site s. The models incorporate log o, being a constant
over time Mp; temporal non-stationarity via M?(t) with a spatially constant temporal
trend in M;; and with a spatial varying (with C(s)) temporal trend in Ma. Other models
were attempted with differing covariates and spline structures included but these failed
to improve over models My — Ms. However, over a range of spline models we noticed
that they were consistently suggesting evidence for different temporal trends on the coast
relative to inland, hence our introduction of the C(s) covariate.

Table 2 presents our model selection diagnostics based on CV metrics (CRPS and
RMSE). All four approaches favour model My, with My and M; having similar, slightly
inferior performance, and we find that My is too simplistic. Models My — My estimate
the coefficient of log o, as close to 1 in all cases, showing that the climate model provides
very helpful information as a spatial covariate. Estimates of the shape parameter &, are
also given in Table 2. As the GPD scale parameter model is made increasingly flexible
(from model My to My), the value of £, decreases, lightening the tail decay, indicating



that each model is progressively reducing sources of variation in the tail. Since there is
some uncertainty in the marginal model choice, we take My, M;, and My through the
spatial dependence analysis to assess the sensitivity of the risk measures, with details
for model M; reported here and for My and M; in Healy et al. (2023).

Model My gives that the most variable excess distribution is on the west coast (see
centre plot in Figure 2), with a decay in values from west to east, so almost the opposite of
the behaviour of u,(s). We also investigated the estimated change in the scale parameter
over the observation period, denoted Vo, (s) = 0,(2020,s) — 0,(1942, s), see Figure 2
(right), and found it to be largest in the centre of Ireland, with the change there being
close to double that on the coast. The scale parameter is increasing over time everywhere,
leading to warmer extreme temperatures.

The model selection diagnostics in Table 2 show the relative quality of the three model
fits. To assess the absolute quality of the fitted model Ms we use pooled QQ plots in
Figure 3, pooling over all sites and years. Due to the spatio-temporal non-stationarity
of the marginal model, we transform the data through our fitted model into a common
uniform scale and to a common exponential scale (for the conditional distribution of
threshold excesses). The choice of scales helps identify key departures of fit in the body
and tails of the distribution respectively. We see evidence of an exceptionally strong fit
in both components of the distribution, with values near the lines of equality, and in
the far upper tail, all values falling within the pointwise tolerance bounds which were
derived assuming independence of time and space (so are much narrower than necessary).
Similar site-specific QQ plots are shown in Healy et al. (2023, Figure 13) for the five
stations identified in Figure 1 and for five other randomly selected stations. These show
a slightly more varied quality of fit, with the least good fits occurring on the coastlines,
e.g., Malin Head, but with very good fits at most stations.

s
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Fig. 3. Spatially and temporally pooled QQ-plots for model M: (left) all data on uniform margins,
threshold shown as vertical line; (right) tail model (GPD) on exponential margins. The shaded
region shows pointwise 95% tolerance intervals. The lines of equality are in red.

4. Spatial models

4.1. Standardising data

When modelling dependence between variables with differing marginal distributions and
covariates, it is common to first standardise the marginal variables so that they have
an identical distribution over variables and covariates (Coles 2001, de Haan & Ferreira
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2006). Here we transform the data to (unit) Pareto distributions, X, XF, and X[

c

using the same subscript notation as in Section 3. The choice of Pareto marginal scale,
or the similar Fréchet scale, is ideal for studying asymptotically dependent variables, a
property defined in Section 4.2, such as r-Pareto processes (de Haan & Ferreira 2006), but
less ideal for asymptotically independent variables, where shorter-tailed Exponential or
Laplace distributions are favoured (Wadsworth & Tawn 2022). We use of the probability

integral transform, i.e.,
XP(t,8) =1/[1 — Fs{X(t,s)}], for all s € S and all t, (11)

where the marginal distribution function F; s takes a different estimated form below and
above u(s), see Sections 3.2 and 3.3. Thus, if the marginal model is perfectly estimated,
we have Pr(XF(t,s) > y) = y~! for all y > 1, t, and s. In our uncertainty assessment
in the subsequent inference, the marginal model uncertainty is accounted for through
our bootstrap procedures. To transform from standard Pareto margins to the original
distribution at s and t, the inverse of the transformation (11) is used.

4.2. Classification of extremal dependence type

We now explore the nature of the extremal spatial dependence structure in the processes
Xf and X f . To simplify notation we omit the temporal dimension of these spatial pro-
cesses but always consider the process on the same day at different locations. Following
Coles et al. (1999), we estimate the pairwise coefficient of asymptotic dependence, .
Specifically, for the process X* at sites s; and sj, X = x(si, 8j) is defined by

x(si,8;) = lim Pr(X*(s;) > v’XP(si) > v). (12)
V—>00
If x(s4,87) > 0 (or equals 0) then X is said to be asymptotically dependent (or asymp-
totically independent) respectively for these sites. The larger the value of y (0 < x < 1)
the stronger the asymptotic dependence.

The selection of the appropriate extremal dependence model for the data depends on
whether or not the process is better approximated as being asymptotically dependent
for all s;,s; € S or not. The base quantity that is typically used to identify asymptotic
dependence for a pair of sites is x(-, -; p), where

X(8i,85;p) = Pr(XP(sj) > vp‘XP(.si) > vp), (13)

with v, = 1/(1 — p) being the pth marginal quantile of X*. An empirical estimate
of x(si,s;;p) exploits the replication over ¢ by assuming spatial dependence does not
change with ¢. We denote this estimator by x(s;, s;;p). We expect approximate spatial
stationarity and isotropy of the spatial extreme process. Plotting (not shown) the cloud
of X(si,s;;p) against the Euclidean distance between the sites (h;; = ||s; — s;|), reveals
a decay with distance that is somewhat hidden by the sampling variation of the points,
with the variation depending on the overlap in time of samples at the pairs of sites.
A better empirical estimate of x(h;p), the pairwise extremal dependence at separation
distance h, exploits the property that it changes smoothly over h and that we can obtain
the sampling distribution of x(s;, sj;p) through the bootstrap. Together these enable us



to construct a weighted estimate x(h;p) from the cloud of points (using pairs with h;;
close to h) and obtain its sampling distribution. We used 500 bootstraps and 30 binned
distances, each with an equal number of pairs of sites.

Figure 4 shows the behaviour of Y(h;p), for both X and X} processes. It shows
estimates and intervals that account for 95% of the marginal estimation uncertainty,
which for X, we used model M. These estimates are shown for p € (0.8,0.85,0.9), the
latter corresponding to only 9 days per summer. Despite the climate model having a
much richer set of pairs of sites and longer simultaneous data, both processes provide
very similar qualitative findings. Naturally, x(h;p) decreases with distance but in all
cases, it is far from zero, even between the most distant pairs of sites. For short distances,
the estimates of x.(h;p) exhibit less variation than in the estimated values for x,(h;p).
We have that x,(h;p) < xc(h;p) for all distances, suggesting that the X. data are
overestimating the extremal dependence in X,. This difference is important when looking
at extreme events spatially, as it suggests using the climate model data alone (or when
down-scaled) will lead to an overestimate of the risk of widespread heatwaves in Ireland.

Most critical for our modelling of the observed process is to assess whether, as p
increases to 1, the x,(h; p) values decay to zero or stabilise at a non-zero limit indicating
asymptotic independence and asymptotic dependence respectively. There is a small
decline, at all distances, however, even when p = 0.9 these estimates are far from zero
for both X and XF. So we conclude that it seems reasonable that maximum daily
temperature data are consistent with asymptotic dependence over Ireland.
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Fig. 4. Empirical estimates x(h;p) plotted against inter-site distance h for the climate model
(xc) (orange) and station data (x,) (blue). Plots use the marginal model M, for p = 0.8,0.85
and 0.9 (left to right) with 95% confidence intervals shown as vertical lines.

4.3. r-Pareto Processes

We now jointly model the extreme values of the process X% (t,s) over s € S, with
unit Pareto distributed marginal variables. We look at spatial fields separately for each
t and simplify notation by dropping the argument ¢. First, we define what we mean
by a spatially extreme event as there is no natural ordering of multivariate or spatial
processes. Here the level of extremity of the stochastic process X¥ := {XF(s): s € S}
is determined by a risk function r(X*) € [0,00), where the only constraint on 7 is
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that it is homogeneous of order 1, i.e., r(cx) = cr(x) for any constant ¢ > 0 and with

min(x) > 0. de Fondeville & Davison (2018, 2022) suggest taking r as the magnitude

at one particular site, or the spatial mean, median, maximum, or minimum over S.
Under weak conditions on X' de Fondeville & Davison (2018) report that

Pr{[v'x"(s):seS] e |[r(X")>v} > Pr{[Y,\(s):s€S] e} (14)

as v — oo, where {Y,7(s): s € §} := V,” is marginally non-degenerate for all s € S,
with V¥ an r-Pareto process. Limit (14) implies that scaled events of the X process
with risk exceeding a threshold of v are increasingly well-approximated by an r-Pareto
process, as the risk threshold increases to infinity. The limit (14) is used for statistical
modelling by taking it as an equality for a suitably large value for v, denoted by v,
with v, > 1, then those spatial events with a risk function exceeding v, are treated as
realisations from an r-Pareto process. Specifically, taking a set B C {x : r(x) > 1} leads
to the modelling assumption that

Pr{X? ev,B|r(XF)>v}=Pr{Y} € B}. (15)

Hence defining the set A = v, B and un-doing the conditioning on the left-hand side of
equality (15), for any A C A, := {x : r(x) > v, } we obtain that

Pr{X? € A} =Pr{r(X") > v,} Pr{v, Y\ € 4} . (16)

The r-Pareto process exhibits properties which can be exploited for efficient evalua-
tion of Pr {X P e A}. Specifically, Y, decomposes into two independent components:

Y.P(s) = RW,(s) for all s € S, (17)

T

where R is unit Pareto distributed and is interpreted as the risk of the process, and
W, :={W,(s) : s € S} is a stochastic process which describes the spatial profile of the
extreme event, i.e., the proportion of the risk function r contributed by each site. The
limiting dependence structure of X* is entirely determined by the stochastic properties
of W,. By construction R = r(Y,”') and r(W,) = 1. A consequence of the limiting
approximation (15) holding above v, and R having a Pareto distribution is that expres-
sion (16) simplifies as we have Pr{r(X?) > v.} = ¢,v;! where ¢, € (0, 1] depends only
on the choice of risk functional and the dependence structure of Y,”. However, for our
choice of r, given by expression (20), ¢, = 1 always, see Coles & Tawn (1994).

The characterisation (17) is powerful for the extrapolation to larger events than those
observed due to R having a known distribution and the independence property ensuring
that the spatial profiles of larger events have exactly the same stochastic properties for
any event with a risk greater than 1. For any r-Pareto process and a set A C A,., there
exists a constant bs € [1,00) such that for any b € [1,b4] we have that

Pr {UT}/TP €A} = b Pr {berrP € A}. (18)

Although the two sides of this expression are equal, the two probabilities are not, with
Opitz et al. (2021) noting that the latter is much more efficient to estimate using Monte
Carlo methods. Taking b > b4 will give bias, as some smaller outcomes in A will be



missed by simulations of bv,Y,” while b < by leads to unnecessary variability in the
empirical estimator. So we look to scale by b4 in Section 4.4, where we discuss how to
obtain b4 and illustrate its usage in estimating the right-hand side of expression (16).

The above shows that inference for any extreme events is relatively straightforward
once we have a model for the process W,.. We follow Engelke et al. (2015) and de Fondev-
ille & Davison (2018) by modelling W, as a spatial stationary isotropic log-Gaussian
stochastic process which is determined solely by a variogram ~(h), for inter-site distance
h > 0. We use the Matérn variogram family

Ymat(h;t) = a {1 — (2y/vh/¢)"2" "I (v) 'K, (2v/vh/$)} (19)

where K, is a modified Bessel function of the second kind and the positive parameters
(a = ay, ¢ = ¢y, v = 1) determine the variance, range, and smoothness respectively at
time ¢t. Our choice of a bounded variogram was based on the evidence from Figure 4
which suggested that the summer temperature process is asymptotically dependent,
even at the longest distances in Ireland. See Healy et al. (2023, Section 7) for additional
discussion on the choice of variogram function and isotropy.

The issue of missing data in spatial extremes applications seems to be rarely discussed.
A possible reason for this is that with composite likelihood fitting methods for max-
stable processes (Padoan et al. 2010) the implications are restricted as only pairwise
joint likelihood contributions are used so the impact of missing data is limited. This is
not the case for r-Pareto processes, which model jointly across all sites, and the issue of
missing data in this context does not seem to have been discussed. When encountering
missing data it is tempting to remove all observations at that time point from all sites
in the network. However, we observed in Section 2 that this tactic would leave us with
no data! Fortunately, thanks to the properties of the log-Gaussian process, it is possible
to show that the model is closed under marginalisation (Engelke & Hitz 2020).

With missing data, we need to be careful in selecting a suitable risk function 7.
The choice of risk function needs to be invariant to the changing dimension of partially
observed events, whatever their missing patterns. Hence in our statistical inference at
time t, for all t € 7,, we take the risk function r; to be the average of the standardised
variables over the stations which were observed at time t, i.e.,

r(X)(t,8):5€8) =) X (t,s)Lo(t,8:)/ Y L(t, s1), (20)

where I,,(t, s;) is the indicator variable for whether X, (¢, s;) is observed or not, and the
sums are from i = 1,...,|S,|. For evaluating r, we would have liked to use a subset of
stations that are observed for all ¢ and reasonably evenly spread across Ireland. Unfor-
tunately, this was not possible due to sampling bias and missing data. To simplify the
fitting of the r-Pareto process we ensured that one site was always present. Specifically,
all spatial observations we analysed contained Aldergrove (north) which has very little
missing data over the period 1942-2020.

We set the risk threshold v,, used inequality (15) to define extreme spatial events,
at the 80% sample quantile of the risk values calculated from all observed events. We
explored different threshold choices and selected the lowest level we could whilst making
the usual bias/variance trade-off for tail selection. Healy et al. (2023, Figures 16 and
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17) show that the parametric estimate of x.', derived from the variogram, agrees well
with empirical estimates for each marginal model My, M7, and Ms.

We explored the effect of a time-changing dependence model. We allowed for the
variance and range parameters of the Matérn variogram (19) to vary over time ¢, while
keeping v constant. We considered a range of constant and log-linear models using each
of the marginal models My to Ms. For My we find some evidence, at the 5% level, for
«; increasing with M (t) (weakening dependence over time), but not for the improved
marginal models M; or Ms. Evidence for a change in extremal dependence was not
statistically significant and so we keep a temporally stationary r-Pareto process.

4.4. Simulation and efficient inference for spatial extreme events
We simulate spatial extreme events on the observational scale in year ¢ by first simulating
an event from the r-Pareto process and then map this pointwise to the data scale using
the inverse of transform (11) for the required ¢t. For each step of this process we use
the selected statistical model and the simulated values are generated using the fitted
parameters of that model, or for assessing uncertainty in the point estimates, using the
bootstrapped realisations of these parameters. As the estimated r-Pareto process in
our application is well-approximated by a stationary process over time, we can generate
identically distributed events of the r-Pareto process to transform for each location and
time ¢ using the time-varying marginal model. The r-Pareto process simulations are
generated using the R package mvPot (de Fondeville et al. 2021). We denote these
simulations by y¥,y%, ..., yb, for m simulations, with the ith simulation consisting of
the spatial realisation y” = {yf(s) : s € S}. For the ith realisation of the r-Pareto
process, y!, we define, r; = r(y!") > 1 as the risk, w; = yI’/r; as the spatial profile.
Healy et al. (2023, Figure 21) shows five simulated extreme events, transformed to
observational scale under 2020 conditions and the exact same events in 1942 conditions
(presented as a difference in temperatures at each site, for each event). A positive
difference shows the equivalent event in the two years to be hotter in 2020 than 1942,
with that difference found to be largest for the hotter events. As the r-Pareto process
realisations can have marginal values in the range (0,1) at some sites, i.e., outside the
domain of a marginal Pareto variable, so we follow de Fondeville & Davison (2018) and
for transformation to the observational space we use Fréchet marginals, not Pareto.
Although expression (16) provides a basis for inference for the probability of oc-
currence in any extreme event A C A, by the process X, we are most interested in
making inference about spatial events of the observational process which exceed a critical
temperature of T°C somewhere over Ireland at time ¢. We denote these events by

Ars(T) ={Xo(t,s),s € S: 3 sp €S with X,(t,s0) > T}. (21)
After the marginal transformation to Pareto margins, this event is equal to
Ais(T) ={XP(t,s),s € S:3 50 €S with XT(t,s0) > T (t,80)}, (22)

where TF(t,s) is the mapping of T through the transformation (11) at time ¢ and for
site s. To use the r-Pareto approximation, all elements of A; s(7") must have a risk
exceeding v,; this imposes a lower bound 7" > 20.6°C across all t. We also focus on



marginal extreme events, which restricts T' > max;cs u; = 22.9°C. As all the results we
present in Section 5 are for T' > 26°C this lower bound is not restrictive for our purposes.

To estimate Pr {A; s(T")}, there have been a set of possibilities proposed, see Healy
et al. (2023, Section 6.1). We focus on the most efficient of these estimators, which
exploits the independence property (17), and the scaling property (18). Specifically, w;
and r; are independent realisations for all 4, j, and there is no reason to restrict ourselves
to the observed r; as we know they are unit Pareto realisations. So we supplement the
information to have {rf ;7 =1,..., L}, which are i.i.d. realisations of a unit Pareto vari-
able, where L is taken as large as possible to improve computational efficiency. To find
the optimal scaling factor bp(;) we first define component-wise maxima of the simulated
Pareto processes scaled to have unit cost, i.e., w(m)(s) = maXi—1,..m {yip(s)/ri}, for
each s € §. At time ¢, we want to scale these component-wise maxima by as much as
possible without producing a scaled event with an exceedance of T (¢, s) for some s € S.
The appropriate scaling is then by ;) = minges {TP(t, s)/w(m)(s)}. Here by = vpba in
expression (18). Combined together, these give a form of importance sampling estimator

A 1 m L yP(SO)
Pr; As(T)} = ——— I{EISOGS:er z >TPt,so}, 23
imp (Aes(D)} = oy ZZ For = (t.s0) . (23)
see Healy et al. (2023, Algorithm 2). With this scaling choice, and the extrapolation
from the TJP > max(r1,...7m), we are guaranteed to have at least L out of the mL

simulated fields which achieve at least temperature T°C somewhere in § in year t.

5. Temporal changes in spatial extreme events

We present a range of summaries detailing how spatial daily maximum temperature
extreme events in Ireland are changing over the period 1942-2020. First, we look at the
changes in the marginal quantiles. Figure 5 shows estimates of the level exceeded by
daily values with probability 1/9200, i.e., that of a 100-year return level if the process was
stationary in time. For simplicity, we refer to these as the 100-year levels changing over
time. For model Ms, we show these estimates for 2020 and also present the estimated
difference between them for 2020 and 1942. In the latter, a positive value represents a
warming of temperatures. The 100-year return level has increased between 1.2 — 2.2°C
across Ireland, with the larger increases away from the south and east coasts. These
changes in extreme temperatures over this time period are substantially larger than the
1°C change of M! and M©, illustrating that climate change is more radically affecting
summer temperature extreme events than mean levels.

In Figure 5 we also report the change in the 0.025 and 0.975 quantiles of change in
return level from 1942 - 2020 across all bootstrap samples. In both cases, and at all
sites, these changes are positive, with the rate of change in these features being greater
than that of the point estimates. Although we present the results for the 100-year return
levels, similar results hold for all high quantiles and for the finite upper endpoints of the
marginal distribution; the latter as the estimated GPD shape parameter is negative (see
Table 2). Healy et al. (2023, Figures 14 and 15) gives equivalent figures for My and M.

Next, we consider summaries that also reflect the dependence structure of extreme
events. There are no established analytical closed-form expressions of such changes.
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Fig. 5. (1st plot) Estimated 100-year marginal return level for the year 2020; (3rd plot) estimated
change in 100-year marginal return level from 1942 to 2020; (2nd and 4th plots) lower and upper
95% ClI limits respectively for the change in 100-year return level from 1942 to 2020.

Instead, we revert to using simulated fields of extreme events and presenting risk mea-
sures based on empirical summaries using large samples of these fields. The simulation
strategy set out in Section 4.4 gives replicated independent spatial fields. In particular,
we focus on the occurrence of events A; s(7T'), i.e., an extreme temperature of at least
T°C somewhere in Ireland (determined by the set of locations as required), and then
summaries of the properties of such events. We estimate Pr{A; s(T")} using the estima-
tor f;rimp, with m = 25,000 and L = 300. Figure 6 shows this estimated probability
(expressed as a return period) for a range of temperatures 7' € [26, 34] for years 1942 and
2020 separately for S, and S.. For S,, the plot reveals a marked change with estimated
return periods being shorter in 2020 compared to 1942 for the same T. To illustrate
this, consider the event with the hottest temperature observed anywhere at the station
network, a temperature of 33°C at Phoenix Park, Dublin, July 2022. The spatial event
A; s(33) changes from being a 1 in 182-year event in 1942 to a 1 in 8.7-year event in
2020. Furthermore, the model estimates that a temperature in excess of 34°C, i.e., a
value not yet recorded in Ireland, changes from a 1 in 1,588-year event to a 1 in 27.5
year event over this time window.

32°C
Temperature 30°C

28°C

26°C
0.01 0.1 1 10 100 1000
Return Period (Years)

Fig. 6. Return period of the event A, s(7") where an extreme temperature exceeding 7°C occurs
somewhere on the Irish station network, S,. Blue dashed (solid orange) lines correspond to
t = 2020 (1942). Shaded regions show pointwise 95% confidence intervals for the return periods.
The higher bold curves show the corresponding point estimates for the climate model grid S..



Figure 6 shows that, for a given return period, hotter temperatures are expected
somewhere in S, than on S,, as the former is denser and with better coverage than
the station network. The difference between the results for the two collections of sites
is very small. This slight change shows that the station network, when all gauges are
working, has the ability to fully capture all extreme temperature events over Ireland.
Such information has not been available previously given the complexity of addressing
spatial dependence, marginal non-stationary, and missing data in the station network.

We now propose risk metrics to summarise the features of events satisfying A; s(7').
First consider a measure of pairwise dependence, which extends the idea behind x but
applied to the data scale, so it combines the effects of changes over time in the marginal
distributions and the estimated extremal dependence structure. Specifically, we define

X (h | Ars(T)) = Pr{X,(t,s") > T | Ars(T)},

where s” is a randomly selected site in S with Hsh — SOH = h, i.e., the conditional

probability of the observational process exceeding temperature T on day t at a site
which is a distance h away from a site sg that has a temperature exceeding T on that
day. We also investigate the associated unconditional risk measure

X% (h; T,t) = Pr(3 sp € S : min[X, (¢, s0), X,(t,s")] > T).

Figure 7 presents estimates of each of these two risk measures for a range of h and
T, between 1942 and 2020. On the observed data scale, we find that extremal spatial
dependence decreases with distance as would be expected, but beyond this, there are
quite different findings from the two measures. Risk measure x%*(h | A;s(T)) is broadly
stable over the presented range of T" and ¢ whilst the unconditional X"bs(h T,t) is sub-
stantially different. The former is perhaps not too surprising given that the model is
asymptotically dependent (the dependence structure is invariant to any change in the ex-
tremity of an event) and the extremal dependence structure is estimated to be stationary
over time. However, as the event is on the marginal scale and the marginal distributions
are changing with time, this finding was not anticipated. For x%*(h; T, t) we do see that
the joint probability of temperature being above T at sites h apart changes notably with
time, e.g., taking h = 100 km, we find that x2**(h; T, t) has increased by a factor of 2.8,
3.5, and 4.7 for T' = 28,29, and 30°C respectively.

Finally, we look at a spatial risk measure based on the proportion, C, of a spatial
field over the network that exceeds T°C at time ¢. Specifically, we consider the expected
value of C, denoted E,(C;t,T). We also consider the conditional expected value of C,
given by E,{C | A:s(T)}, i.e., given that we have observed a temperature somewhere
on the station network. This conditional expectation is closely related to a functional
used in characterising heatwave events (Cebrian et al. 2022). These functionals and their
relationships are given as follows:

E(C:t,T) = E(’;‘/I{X (t, ) >T}ds>

1
- B (!S\ / [{X,(t,s) > T}ds ‘ Aes(T ) x Pr{A, s(T)}
= Eo{C | Ars(T)} x Pr{A¢s(T)},
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Fig. 7. Estimates of x2**(h | A;s(T)) (top row) and x%°*(h;T,t) (bottom row) against A (in
km) for T = 28,29, and 30°C for 1942 (solid, orange line) and for 2020 (dashed, blue line)
for model M,. Confidence intervals are based on 10,000 simulations for each 500 bootstrap

sample datasets.

where I(B) is the indicator function of event B.

Figure 8 shows that estimates of both of these measures for the station network
over Ireland have increased from 1942 to 2020. The changes are highly significant,
a factor of 90 larger for T' = 34°C' when considering the unconditional expectation
E,(C;t,T). However, when conditioning on the event A;s(7) this expected coverage
proportion exhibits more limited changes with the largest difference being a doubling of
the expected area affected when T' = 34°C'. In this latter case, the estimated change is
small by comparison with its associated uncertainties.

We finish by reporting on our investigation of the sensitivity of our risk measure
analyses to our marginal modelling choices for temporal non-stationarity. The results
for the models My and M, i.e., the less well-fitting models, are given in Healy et al.
(2023, Section 6.2), with these being given for the same features shown for model M5 in
Section 5. Unsurprisingly, the inclusion of temporal non-stationarity in the tail model
gives markedly different conclusions for all risk measures compared to those derived from
the stationary model My. The inclusion of a coastal proximity covariate in model My
leads to larger GPD scale parameter estimates inland and lower estimates in coastal
regions than M, see Healy et al. (2023, Figure 7). This is reflected in the estimates of
Pr{A;s(T)} and E,(C;t,T), with estimates from M being lower than both M; and M,
and M giving slightly higher estimates than My on the station network. This change
results in the probability of observing 33°C somewhere in S, increasing by a factor of
1.5, 25, and 21 between 1942 and 2020 for models My, M7, and M, respectively, showing
that the difference in key conclusions is not too large between models M7 and M.
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Fig. 8. Left: expected proportion, E,{C | A.;s(T)}, of Ireland that exceeds a temperature
of T°C in an extreme event given that at least one site in Ireland (at the station network) ex-
ceeds T°C according to M,. Right: the equivalent unconditioned estimates, i.e., estimates of
E,(C;t,T). Estimates are plotted against T for 1942 (solid, orange line) and for 2020 (dashed,
blue line). The shaded regions give associated pointwise 95% confidence intervals, based on
10, 000 simulated fields for each 500 bootstrap sample datasets.

6. Conclusions

We have presented some novel candidate approaches to merge information from spa-
tially and temporally complete climate models into the spatial extreme value analysis
of sparse and temporally incomplete observed temperatures from available meteorologi-
cal stations. New methodological features include using outputs from an extreme value
analysis of the climate model data to provide a covariate for the equivalent analysis of
observational data, and dealing with r-Pareto processes in a missing data framework.
We also presented novel metrics, combining both marginal and dependence features, to
describe changes in spatial risk over time.

Our analysis was for daily maximum summer temperatures over Ireland. We found
that the climate model data were more helpful for marginal modelling of the observa-
tional data than for dependence modelling, as they overestimate extremal spatial de-
pendence relative to the observational data. We pooled data from across stations to fit
our model and found evidence that the Irish summer temperature anomalies were the
best-fitting covariate, appearing to mostly affect marginal behaviour with minimal effect
on spatial extremal dependence, see Healy et al. (2023, Section 2 and 7.2). We found
that from 1942 to 2020 the occurrence rates of high threshold exceedances have increased
by 35%, with 95% confidence interval 28 — 44%, and extreme quantiles have increased
by 1.2 — 2.2°C, the latter ~ 1°C greater than the change of mean summer temperature
anomalies for Ireland and globally. Finally, we found that spatial heatwave events over
thresholds that are critical for society have become much larger, having at least doubled
in spatial extent for 28°C, with this change increasing at more extreme temperatures.

7. Discussion

7.1. Use of climate models

In the analysis of climate extremes, practitioners tend to make use of some combination
of observations and climate models, but without necessarily recognising the inherent
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trade-offs between them and the respective limitations in the data sources. Perhaps
more critically we believe further thought could be given to the synergies which might
enable a better set of tools for practitioners. Downscaling from climate models to match
observational properties is a major area in statistical climate science, but it risks intro-
ducing biases in spatial dependence from climate models given its focus on the marginal
agreement. Here we have illustrated what appears to be an effective new approach aim-
ing instead to enhance the observational analysis by exploiting the strong information
about the physical properties of the climate system and the greater spatial coverage of
information embedded in the climate model data.

As a proof of concept, we have restricted the information we extract from the climate
models to that arising from one climate model output. There exists a broad ensemble
of global and regional models that could be used. Each combination of such models
encapsulates different modelling assumptions and therefore would provide a distinct
estimate of the behaviour of maximum temperatures over Ireland. To fully quantify
the uncertainty in our estimates would require an adequate sampling strategy to select
global-regional model combinations from the available ensemble.

Our analysis looks only at the change in extreme temperature events over the his-
torical record. We do not have observations of the future. Climate models are our only
reliable tool for predicting future temporally non-stationary extremal behaviour under
different scenarios, so being able to link the temporal non-stationarity of observational
and climate data is essential to understanding model strengths and weaknesses, one
such recent example being Zhong, Brunner, Opitz & Huser (2022) for precipitation ex-
tremes. Our approach has been to only extract marginal spatial information from the
climate model data, via o.(s), and instead rely on additional measures of global and
local climate change to capture temporal non-stationarity. However, for inference on a
future time period, it may be beneficial to model the change in this parameter through
time, i.e., o.(t,s), but this would require strong evidence that the climate model was
really capturing identifiable trends in the observed data. Incorporating future climate
modelling information is particularly important for the consideration of highly nonlinear
change linked to instabilities such as the possible effects of any change in the strength of
the Atlantic meridional overturning circulation (AMOC) which has a profound modu-
lating effect on Irish climate. Most global models suggest some weakening of the AMOC
through to 2100, and a complete shutdown cannot be ruled out.

Finally, although we focus on temperature, many other variables (e.g., wind, rainfall)
are important for assessing climate change for extreme meteorological events marginally,
jointly, and integrated over different time windows. Climate model data are likely to
provide improvements in extremal inference of such joint distributions under the as-
sumption that they better capture the physical interactions between processes. This can
be used to enhance the equivalent empirical information from the observational data.

7.2. Choice of threshold in non-stationary analysis

Threshold choice for the GPD and other tail models for identically distributed univariate
extremes has been a major area of research for much of the last 40 years. Therefore, it is
not surprising that there are a number of different perspectives for picking a systematic
threshold selection criteria in our temporally non-stationary spatial context.



For univariate temporally non-stationary problems Eastoe & Tawn (2009) propose
pre-processing the data using models fitted to the body of the distribution before mod-
elling the extremes of the residuals with a constant threshold. Another approach is to
use a conditional quantile (Northrop & Jonathan 2011). As noted in Section 3.3 it is
difficult to account for the uncertainty in the threshold selection, so incorporating a
temporal trend into the threshold undermines our ability to account for the uncertainty
in estimating the temporal change in extreme data, which is our primary focus. We are
pleased to see that even with our constant threshold at each station we found a simple
model for how the GPD scale parameter changes over time and that the GPD is a good
fit globally. More generally, the signal-to-noise ratio is critical in determining whether
non-stationarity is accounted for in selecting the set of “extreme data” to analyse.

We had an additional threshold to select for the extreme spatial dependence modelling
via the risk function r. We had to face issues of missing data, with our approach
presenting the first methods, we are aware of, for this. Climate models may help here
either through exploring the sensitivity of different missing data patterns or through
the use of reanalyses (weather forecast models conditioned on the observed values) to
replace missing data, as these will help identify the largest events over space correctly.

7.3. Choice of spatial extremes dependence model

The scale of Ireland relative to the physical systems that drive temperature extremes
has also played a key role in our choice of extreme value approach for modelling spatial
dependence. This enabled us to take a simple model which is asymptotically dependent
at the largest required spatial separation, which we achieved via an r-Pareto process
coupled to a log-Gaussian latent process with a bounded variogram. We do not believe
our approach would be applicable at much broader scales.

Even over the scale of Ireland, the asymptotic dependence property will not neces-
sarily hold for other climatic variables, e.g., precipitation, which are manifest on smaller
scales and with higher variability. In such cases, the modelling approaches need to in-
corporate asymptotic independence and to address issues about the scale over which
asymptotic dependence holds (Wadsworth & Tawn 2022, Zhong, Huser & Opitz 2022)
or even whether the spatial process is stationary over different mixture type events,
e.g., convective or frontal precipitation (Richards et al. 2023). Any application of this
method to different regions or processes should certainly involve an assessment of the
evidence for asymptotic dependence, as our impression is that this assumption is made
too readily. We find that, as a good approximation, we can assume spatial stationarity
and isotropy. Ireland has, relatively speaking, simple topography with few ranges of hills
of significant altitude. It does not follow that the method would be readily applicable to
more complex alpine regions without, at a minimum, considerable additional validation.

7.4. Choice of metrics for assessing change

Section 5 illustrates the challenge of finding effective metrics to illustrate temporal change
when considering extremes of spatial fields. Metrics for marginal variables, e.g., high
quantiles, are well-established and parsimonious. We see the development of spatial
risk measures which enable the simple assessment of changing risk over time as an
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important avenue for further research. Spatial extreme value model inference also lacks
well-established diagnostic methods for assessing the fit with observed events. Pairwise,
and potentially higher order versions of the measure y, used in Sections 4.2 and 5, can
be helpful but these may not be sufficient in practice. Winter et al. (2016) used severity-
area frequency curves as a basis of comparison, but these focused only on assessing the
performance of the model for the dependence structure. Picking metrics that directly
link to risk assessment from heatwaves, such as health factors (Winter & Tawn 2016) or
crop failures or forest fires (Zhang et al. 2022), is likely to be valuable for planners.

We focused on the spatial properties of the extreme events. Models for spatio-
temporal extremal dependence of the process are needed to capture the evolution over
time of spatial extreme events. This is an area where greater focus is required. For pro-
cesses that are asymptotically dependent in space and time, some methods have been
developed (Davis et al. 2013, Huser & Davison 2014), and it is pleasing to see recent
extensions to incorporate asymptotic independence (Simpson & Wadsworth 2021).
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