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Abstract. This paper derives confidence intervals (CI) and time-uniform confidence
sequences (CS) for the classical problem of estimating an unknown mean from
bounded observations. We present a general approach for deriving concentration
bounds, that can be seen as a generalization and improvement of the celebrated
Chernoff method. At its heart, it is based on a class of composite nonnegative
martingales, with strong connections to testing by betting and the method of mixtures.
We show how to extend these ideas to sampling without replacement, another heavily
studied problem. In all cases, our bounds are adaptive to the unknown variance, and
empirically vastly outperform existing approaches based on Hoeffding or empirical
Bernstein inequalities and their recent supermartingale generalizations by Howard et al.
[2021]. In short, we establish a new state-of-the-art for four fundamental problems:
CSs and CIs for bounded means, when sampling with and without replacement.

1. Introduction

This work presents a new approach to two fundamental problems: (Q1) how do we
produce a confidence interval for the mean of a distribution with (known) bounded
support using n independent observations? (Q2) given a fixed list of N (nonrandom)
numbers with known bounds, how do we produce a confidence interval for their
mean by sampling n  N of them without replacement in a random order? We
work in a nonasymptotic and nonparametric setting, meaning that we do not employ
asymptotics or parametric assumptions. Both (Q1) and (Q2) are well studied
questions in probability and statistics, but we bring new conceptual tools to bear,
resulting in state-of-the-art solutions to both.

We also consider sequential versions of these problems where observations are made
one-by-one; we derive time-uniform confidence sequences, or equivalently, confidence
intervals that are valid at arbitrary stopping times. In fact, we first describe our
techniques in the sequential regime, because the employed proof techniques naturally
lend themselves to this setting. We then instantiate the derived bounds for the more
familiar setting of a fixed sample size when a batch of data is observed all at once.
Our supermartingale techniques can be thought of as generalizations of classical
methods for deriving concentration inequalities, but we prefer to present them in the
language of betting, since this is a more accurate reflection of the authors’ intuition.
†Correspondence address: 5000 Forbes Ave, 132 Baker Hall, Pittsburgh, PA 15213, USA.
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Arguably the most famous concentration inequality for bounded random variables
was derived by Hoeffding [1963]. What is now referred to as “Hoeffding’s inequality”
was in fact improved upon in the same paper where he derived a Bernoulli-type
upper bound on the moment generating function of bounded random variables
[Hoeffding, 1963, Equation (3.4)]. While these bounds are already reasonably tight in
a worst-case sense, the resulting confidence intervals do not adapt to non-Bernoulli
distributions with lower variance. Inequalities by Bennett [1962], Bernstein [1927] and
Bentkus [2004] improve upon Hoeffding’s, but such improvements require knowledge
of nontrivial upper bounds on the variance. This led to the development of so-called
“empirical Bernstein inequalities” by Audibert et al. [2007]and Maurer and Pontil
[2009], which outperform Hoeffding’s method for low-variance distributions at large
sample sizes by estimating the variance from the data. Our new, and arguably
quite simple, approaches to developing bounds significantly outperform these past
works (e.g. Figure 1).‡ We also show that the same conceptual (betting) framework
extends to without-replacement sampling, resulting in significantly tighter bounds
than classical ones by Serfling [1974], improvements by Bardenet and Maillard [2015]
and previous state-of-the-art methods due to Waudby-Smith and Ramdas [2020].

For providing intuition, our approach can be described in words as follows: If we
are allowed to repeatedly bet against the mean being m, and if we make a lot of money
in the process, then we can safely exclude m from the confidence set. The rest of this
paper makes the above claim more precise by showing smart, adaptive strategies
for (automated) betting, quantifying the phrase “a lot of money”, and explaining
why such an exclusion is mathematically justified. At the risk of briefly losing the
unacquainted reader, here is a slightly more detailed high-level description:

For each m 2 [0, 1], we set up a “fair” multi-round game of statistician
against nature whose payoff rules are such that if the true mean happened
to equal m, then the statistician can neither gain nor lose wealth in
expectation (their wealth in the m-th game is a nonnegative martingale),
but if the mean is not m, then it is possible to bet smartly and make
money. Each round involves the statistician making a bet on the next
observation, nature revealing the observation and giving the appropriate
(positive or negative) payoff to the statistician. The statistician then plays
all these games (one for each m) in parallel, starting each with one unit of
wealth, and possibly using a different, adaptive, betting strategy in each.
The 1� ↵ confidence set at time t consists of all m 2 [0, 1] such that the
statistician’s money in the corresponding game has not crossed 1/↵. The
true mean µ will be in this set with high probability.

Our choice of language above stems from a game-theoretic approach towards prob-
ability, as developed in the books by Shafer and Vovk [2001, 2019] and a recent
paper by Shafer [2021], but from a purely mathematical viewpoint, our results are
extensions of a unified supermartingale approach towards nonparametric concentra-
‡github.com/wannabesmith/betting-paper-simulations has code to reproduce figures. The

betting module of the Python package in github.com/gostevehoward/confseq has the main
algorithms, but the package also contains implementations from other papers.

https://github.com/WannabeSmith/betting-paper-simulations
https://github.com/gostevehoward/confseq
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tion and estimation described in Howard et al. [2020, 2021]; related supermartingale
approaches were studied by Kaufmann and Koolen [2021], Jun and Orabona [2019].
We elaborate on this viewpoint in Section 4.1. The most directly related works to
our own are by Hendriks [2018], whose preprint has initial explorations of methods
similar to ours for with-replacement sequential testing and estimation, and Stark
[2020], who credits Kaplan for a computationally intractable variant of our approach
for sequential testing in the without-replacement case. Apart from several novel
results, the present paper extends these past works in depth, breadth and unity : our
work contains a deeper empirical and theoretical investigation from statistical and
computational viewpoints, places our work in a broader context of related work in
both settings, and unifies the with- and without-replacement methodology for both
testing and estimation in both fixed-time and sequential settings.

We now have the appropriate context for a concrete formalization of our problem,
which is slightly more general than introduced above. After that, we describe the
game, why the rules of engagement result in valid statistical inference, and derive
computationally and statistically efficient betting strategies.

Time-uniform confidence sequences

Fixed-time confidence intervals

Figure 1. Time-uniform 95% confidence sequences (upper row) and fixed-time 95%
confidence intervals (lower row) for the mean of independent and idenically distributed (iid)
draws from a Beta(10, 30) distribution (unknown to the methods). The betting approaches
(Hedged and Hedged-CI) adapt to both the small variance and asymmetry of the data,
outperforming the other methods. For a detailed empirical comparison under a larger variety
of settings, see Section C; for additional comparisons under non-iid data, see Section E.5.

Outline. We summarize the broad approach in Section 2. As a warmup, we derive
a new predictable plug-in method for deriving confidence sequences using exponential
supermartingales (Section 3), which already leads to computationally efficient and
visually appealing empirical Bernstein confidence intervals and sequences. We then
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further improve on the aforementioned methods by developing a new martingale
approach to deriving time-uniform and fixed-time confidence sets for means of
bounded random variables, and connect the developed ideas to betting (Section 4).
Section B discusses some principles to derive powerful betting strategies to obtain
tight confidence sets. We then show how our techniques also extend to sampling
without replacement (Section 5). Revealing simulations are performed along the way
to demonstrate the efficacy of the new methods, with a more extensive comparison
with past work in Section C. Section 6 summarizes how betting ideas have shaped
mathematics, outside of our paper’s focus on statistical inference. We postpone
proofs to Section A and further theoretical insights to Section E.

2. Concentration inequalities via nonnegative supermartingales

To set the stage, let Qm be the set of all distributions on [0, 1], where each distribution
has mean m. Note that Qm is a convex set of distributions and it has no common
dominating measure, since it consists of both discrete and continuous distributions.

Consider the setting where we observe a (potentially infinite) sequence of [0, 1]-
valued random variables with conditional mean µ for some unknown µ 2 [0, 1]. We
write this as (Xt)1t=1 ⇠ P for some P 2 Pµ, where Pµ is the set of all distributions
P on [0, 1]1 such that EP (Xt | X1, . . . , Xt�1) = µ. This includes familiar settings
such as independent observations, where Xi ⇠ Qi 2 Qµ, or i.i.d. observations where
all Qi’s are identical, but captures more general settings where the conditional
distribution of Xt given the past is an element of Qµ. When one only observes n
outcomes, it suffices to imagine throwing away the rest, so that in what follows, we
avoid new notation for distributions P over finite length sequences.

We are interested in deriving tight confidence sets for µ, typically intervals, with
no further assumptions. Specifically, for a given error tolerance ↵ 2 (0, 1), a (1� ↵)
confidence interval (CI) is a random set Cn ⌘ C(X1, . . . , Xn) ✓ [0, 1] such that

8n � 1, inf
P2Pµ

P (µ 2 Cn) � 1� ↵. (1)

As mentioned earlier, the inequality by Hoeffding [1963] implies that we can choose

Cn :=

 
Xn ±

r
log(2/↵)

2n

!
\ [0, 1]. (2)

Above, we write (a± b) to mean (a� b, a+ b) for brevity.
This inequality is derived by what is now known as the Chernoff method [Boucheron

et al., 2013], involving an analytic upper bound on the moment generating function
of a bounded random variable. However, we will proceed differently; we adopt a
hypothesis testing perspective, and couple it with a generalization of the Chernoff
method. As mentioned in the introduction, we first consider the sequential regime
where data are observed one after another over time, since nonnegative supermartin-
gales — the primary mathematical tools used throughout this paper — naturally
arise in this setup. As we will see, these sequential bounds can be instantiated for a
fixed sample size, yielding tight confidence intervals for this more familiar setting.
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These will be much tighter than the Hoeffding confidence interval (2), which is itself
one such fixed-sample-size instantiation [Howard et al., 2020, Figures 4 and 6].

Let us briefly review some terminology. For succinctness, we use the notation
Xt

1 := (X1, . . . , Xt). Define the sigma-field Ft := �(Xt

1) generated by Xt

1 with F0

being the trivial sigma-field. The canonical filtration F := (Ft)1t=0 refers to the
increasing sequence of sigma-fields F0 ⇢ F1 ⇢ F2 ⇢ · · · . A stochastic process
(Mt)1t=0 is called a test supermartingale for P if (Mt)1t=0 is a nonnegative process
adapted to F , M0 = 1, and

EP (Mt | Ft�1)  Mt�1 for each t � 1. (3)

(Mt)1t=0 is called a test martingale for P if the above “” is replaced with “=”. We
sometimes shorten (Mt)1t=0 to just (Mt) for brevity. If the above property holds
simultaneously for all P 2 P, we call (Mt) a test (super)martingale for P. We say
that a sequence (�t)1t=1 is predictable if �t is Ft�1-measurable for each t � 1, meaning
�t can only depend on Xt�1

1 . (In)equalities are interpreted in an almost sure sense.

2.1. Confidence sequences and the method(s) of mixtures
Even though the concentration inequalities thus far have been described in a setting
where the sample size n is fixed in advance, all of our ideas stem from a sequential
approach towards uncertainty quantification. The goal there is not to produce one
confidence set Cn, but to produce an infinite sequence (Ct)1t=1 such that

sup
P2Pµ

P (9t � 1 : µ /2 Ct)  ↵. (4)

Such a (Ct)1t=1 is called a confidence sequence (CS), and preferably limt!1Ct = {µ}.
It is known [Howard et al., 2021, Lemma 3] that (4) is equivalent to requiring that
supP2Pµ P (µ /2 C⌧ )  ↵ for arbitrary stopping times ⌧ with respect to F .

As detailed in the next subsection, one general way to construct a CS is to invert
a family of sequential tests based on applying Ville’s maximal inequality [Ville, 1939]
to a test (super)martingale. In fact, Ramdas et al. [2020] proved that this is (in some
formal sense) a universal method to construct CSs, meaning that any other approach
can in principle be recovered or dominated by the aforementioned one.

Designing test supermartingales is nontrivial, and the task of making it have “power
one” against composite alternatives is often accomplished via the method of mixtures.
This can arguably be traced back (in a nonstochastic context) to Ville’s 1939 thesis
and (in a stochastic context) to Wald [1945]. Robbins and collabarators [Robbins
and Siegmund, 1968, Robbins, 1970, Darling and Robbins, 1967a] applied the method
to derive CSs, and these ideas have been extended to a variety of nonparametric
settings by Howard et al. [2020, 2021]. The latter paper describes several variants:
conjugate mixtures, discrete mixtures, stitching and inverted stitching.

These works form our vantage point for the rest of the paper, but we extend them
in several ways. First, we describe a “predictable plug-in” technique that is implicit
in the work of Ville. It can be viewed as a nonparametric extension of a passing
remark in the parametric setting in the textbook by Wald [1945, Eq.10:10] and later
explored in the parametric case by Robbins and Siegmund [1974].
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Like Ville’s work in the binary setting, the predictable plug-in method connects
the game-theoretic approach and the aforementioned mixture methods — succinctly,
the plugged-in value determines the bet, where each bet is implicitly targeting
a different alternative (much like the components of a mixture). Following this
translation, prior work on using the method mixtures for confidence sequences can
be viewed as using the same betting strategy (mixture distribution) for every value
of m. We find that there is significant statistical benefit to betting differently for
each m (but tied together in a specific way, not in an ad hoc manner). One must
typically specify the mixture distribution in advance of observing data, but betting
can be viewed as building up a data-dependent mixture distribution on the fly (this
led us to previously name our approach as the “predictable mixture” method). These
sequential perspectives are powerful, even if only interested in fixed-sample CIs.

2.2. Nonparametric confidence sequences via sequential testing
As seen above, it is straightforward to derive a confidence interval for µ by resorting to
a nonparametric concentration inequality like Hoeffding’s. In contrast, it is also well
known that CIs are inversions of families of hypothesis tests (as we will see below),
so one could presumably derive CIs by first specifying tests. However, the literature
on nonparametric concentration inequalities, such as Hoeffding’s, has not commonly
utilized a hypothesis testing perspective to derive concentration bounds; for example
the excellent book on concentration by Boucheron, Lugosi, and Massart [2013]
has no examples of such an approach. This is presumably because the underlying
nonparametric, composite hypothesis tests may be quite challenging themselves,
and one may not have nonasymptotically valid solutions or closed-form analytic
expressions for these tests. This is in contrast to simple parametric nulls, where
it is often easy to calculate a p-value based on likelihood ratios. In abandoning
parametrics, and thus abandoning likelihood ratios, it may be unclear how to define a
powerful test or calculate a nonasymptotically valid p-value. This is where betting and
test (super)martingales come to the rescue. Ramdas et al. [2020, Proposition 4] prove
that not only do likelihood ratios form test martingales, but every (nonparametric,
composite) test martingale is also a (nonparametric, composite) likelihood ratio.

Theorem 1 (4-step procedure for supermartingale confidence sets).

On observing (Xt)1t=1 ⇠ P from P 2 Pµ for some unknown µ 2 [0, 1], do

(a) Consider the composite null hypothesis Hm

0 : P 2 Pm for each m 2 [0, 1].

(b) For each index m 2 [0, 1], construct a nonnegative process Mm
t ⌘

Mm(X1, . . . , Xt) such that the process (Mµ

t
)1
t=0 indexed by µ has the

following property: for each P 2 Pµ, (Mµ

t
)1
t=0 is upper-bounded by a test

(super)martingale for P , possibly a different one for each P .

(c) For each m 2 [0, 1] consider the sequential test (�mt )1
t=1 defined by

�mt := 1(Mm

t � 1/↵),
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where �mt = 1 represents a rejection of Hm

0 after t observations.

(d) Define Ct as the set of m 2 [0, 1] for which �mt fails to reject Hm

0 :

Ct := {m 2 [0, 1] : �mt = 0} .

Then (Ct)1t=1 is a (1�↵)-confidence sequence for µ: supP2Pµ P (9t � 1 : µ /2 Ct)  ↵.

The above result relies centrally on Ville’s inequality [Ville, 1939], which states
that if (Lt) ⌘ (Lt)1t=1 is (upper bounded by) a test martingale for P , then we have
P (9t � 1 : Lt � 1/↵)  ↵. See [Howard et al., 2020, Section 6] for a short proof.

Proof (Theorem 1). By Ville’s inequality, �mt is a level-↵ sequential hypothesis
test, in the sense that for any P 2 Pµ, we have P (9t � 1 : �µ

t
= 1)  ↵. Now, by

definition of the sets (Ct)1t=1, we have that µ /2 Ct at some time t � 1 if and only if
there exists a time t � 1 such that �µ

t
= 1, and hence

sup
P2Pµ

P (9t � 1 : µ /2 Ct) = sup
P2Pµ

P (9t � 1 : �µ
t
= 1)  ↵, (5)

which completes the proof. 2

At a high level, this approach is not new. Composite test supermartingales for P have
been used in past works on concentration inequalities and/or confidence sequences
(which are related but different), from the initial series of works by Robbins and
collaborators in the 1960s and 1970s, to de la Peña et al. [2007], to recent work by
Jun and Orabona [2019, Section 7.2] and Howard et al. [2020, 2021]. Test martingales
have also been explicitly considered in some hypothesis testing problems [Vovk et al.,
2005, Shafer et al., 2011]; the latter paper popularized the term “test martingale” that
we borrow, but unlike us, used it primarily for singleton P = {P}. We highlight an
(independently developed) unpublished preprint by Hendriks [2018] that has overlaps
with the current paper in the with-replacement setting, and some complementary
results. For singleton (parametric) classes P, Wald’s sequential likelihood ratio
statistic is a test martingale, so all of the above methods can be viewed as inverting
nonparametric or composite generalizations of Wald’s tests.

Nevertheless, we make two additional comments. First, the requirement in step (b)
of the algorithm that the process (Mm

t ) be upper-bounded by a test (super)martingale
for each P 2 P was posited by Howard et al. [2020], and has recently been christened
a e-process for P [Ramdas et al., 2021] (see also Grünwald et al. [2019]). E-processes
are strictly more general than test (super)martingales for P in the sense that there
exist many interesting classes P for which nontrivial test (super)martingales do not
exist, but one can design powerful e-processes for P. Second, one must take care
to design test (super)martingales for each m that are tied together across m in a
nontrivial manner that improves statistical power while maintaining computational
tractability. All the confidence sets in this paper (both in the sequential and batch
settings) will be based on this 4-step procedure, but with different carefully chosen
processes (Mm

t ). In the language of betting, we will come up with new, powerful
ways to bet for each m, and also tie together the betting strategies for different m.
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2.3. Connections to the Chernoff method
By virtue of (Ct)1t=1 being a time-uniform confidence sequence, we also have that
Cn is a (1 � ↵)-confidence interval for µ for any fixed sample size n. In fact, the
celebrated Chernoff method results in such a confidence interval. So, how exactly
are the two approaches related? The answer is simple: Theorem 1 generalizes and
improves on the Chernoff method. To elaborate, recall that Hoeffding proved that

sup
P2Pµ

EP [exp(�(X � µ)� �2/8)]  1, for any � 2 R, (6)

and so if Xn

1 are independent (say), the following process can be used in Step (b):

Mm

t
:=

tY

i=1

exp
�
�(Xi �m)� �2/8

�
. (7)

Usually, the only fact that matters for the Chernoff method is that EP [Mm
t ]  1, and

Markov’s inequality is applied (instead of Ville’s) in Step (c). To complete the story,
the Chernoff method then involves a smart choice for �. Setting � :=

p
8 log(1/↵)/n

recovers the familiar Hoeffding inequality for the batch sample-size setting. Taking a
union bound over Xn

1 and �Xn

1 yields the Hoeffding confidence interval (2) exactly.
Using our 4-step approach, the resulting confidence sequence is a time-uniform
generalization of Hoeffding’s inequality, recovering the latter precisely including
constants at time n; see Howard et al. [2020] for this and other generalizations.

In recent parlance, a statistic like Mm
t , which has at most unit expectation under

the null, has been called a betting score [Shafer, 2021] or an e-value [Vovk, 2021] and
their relationship to sequential testing [Grünwald et al., 2019] and estimation [Ramdas
et al., 2020] as an alternative to p-values has been recently examined. In parametric
settings with singleton nulls and alternative hypotheses, the likelihood ratio is an
e-value. For composite null testing, the split likelihood ratio statistic [Wasserman
et al., 2020] (and its variants) are e-values. However, our setup is more complex: Pm

is highly composite, there is no common dominating measure to define likelihood
ratios, but Hoeffding’s result yields an e-value. (In fact, it yields test supermartingale
and hence an e-process, which is an e-value even at stopping times.)

In summary, the Chernoff method is simply one powerful, but as it turns out,
rather limited way to construct an e-value. This paper provides better constructions
of Mm

t , whose expectation is exactly equal to one, thus removing one source of
looseness in the Hoeffding-type approach above, as well as better ways to pick the
tuning parameter �, which will correspond to our bet.

3. Warmup: exponential supermartingales and predictable plug-ins

A central technique for constructing confidence sequences (CSs) is Robbins’ method
of mixtures [Robbins, 1970], see also Darling and Robbins [1967a], Robbins and
Siegmund [1968, 1970, 1972, 1974]. Related ideas of “pseudo-maximization” or
Laplace’s method were further popularized and extended by de la Peña et al. [2004,
2007, 2009], and has led to several other followup works [Abbasi-Yadkori et al., 2011,
Balsubramani, 2014, Howard et al., 2020, Kaufmann and Koolen, 2021].
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However, beyond the case when the data are (sub)-Gaussian, the method of
mixtures rarely leads to a closed-form CS; it yields an implicit construction for Ct

which can sometimes be computed efficiently (e.g. using conjugate mixtures [Howard
et al., 2021]), but is otherwise analytically opaque and computationally tedious.
Below, we provide an alternative construction — called the “predictable plug-in” —
that is exact, explicit and efficient (computationally and statistically).

In the next section, our CSs avoid exponential supermartingales, and are much
tighter than the recent state-of-the-art in Howard et al. [2021]. The ones in this
section match the latter but are simpler to compute, so we present them first.

3.1. Predictable plug-in Cramer-Chernoff supermartingales
Suppose (Xt)1t=1 ⇠ P for some P 2 Pµ where Pµ is the set of all distributions onQ1

i=1[0, 1] so that EP (Xt | Ft�1) = µ for each t. The Hoeffding process (MH
t (m))1

t=0
for a given candidate mean m 2 [0, 1] is given by

MH

t
(m) :=

tY

i=1

exp (�(Xi �m)�  H(�)) (8)

with MH

0 (m) ⌘ 1 by convention. Here  H(�) := �2/8 is an upper bound on the
cumulant generating function (CGF) for [0, 1]-valued random variables with � 2 R
chosen in some strategic way. For example, to maximize MH

n (m) at a fixed sample
size n, one would set � :=

p
8 log(1/↵)/n as in the classical fixed-time Hoeffding

inequality [Hoeffding, 1963].
Following Howard et al. [2021], we have that (MH

t (µ))1
t=0 is a nonnegative super-

martingale with respect to the canonical filtration. Therefore, by Ville’s maximal
inequality for nonnegative supermartingales [Ville, 1939, Howard et al., 2020],

P
�
9t � 1 : MH

t
(µ) � 1/↵

�
 ↵. (9)

Robbins’ method of mixtures proceeds by noting that
R
�2RMH

t (m)dF (�) is also a
supermartingale for any “mixing” probability distribution F (�) on R and thus

P

✓
9t � 1 :

Z

�2R
MH

t
(µ)dF (�) � 1/↵

◆
 ↵. (10)

In this particular case, if F (�) is taken to be the Gaussian distribution, then the
above integral can be computed in closed-form [Howard et al., 2020]. For other
distributions or altogether different supermartingales (i.e. other than Hoeffding), the
integral may be computationally tedious or intractable.

To combat this, instead of fixing � 2 R or integrating over it, consider constructing
a sequence �1,�2, . . . which is predictable, and thus �t can depend on Xt�1

1 . Then,

MPrPl-H
t

(m) :=
tY

i=1

exp(�i(Xi �m)�  H(�i)) (11)

is also a test supermartingale for Pm (and hence Ville’s inequality applies). We call
such a sequence (�t)1t=1 a predictable plug-in. While not always explicitly referred



10 Waudby-Smith and Ramdas

to by this exact name, predictable plug-ins have appeared in works on parametric
sequential analysis by Wald [1947, Eq. (10:10)], Robbins and Siegmund [1974, Eq.
(4)], Dawid [1984], and Lorden and Pollak [2005] as well as in the information theory
literature [Rissanen, 1984]. As we will see, these techniques also prove useful in
nonparametric testing and estimation problems both in sequential and batch settings.

Using MPrPl-H
t (m) as the process in Step (b) of Theorem 1 results in a lower

CS for µ, while constructing an analogous supermartingale using (�Xt)1t=1 yields
an upper CS. Combining these by taking a union bound results in the predictable
plug-in Hoeffding CS which we introduce now.

Proposition 1 (Predictable plug-in Hoeffding CS [PrPl-H]). Suppose
that (Xt)1t=1 ⇠ P for some P 2 Pµ. For any chosen real-valued predictable (�t)1t=1,

CPrPl-H
t :=

 P
t

i=1 �iXiP
t

i=1 �i
±

log(2/↵) +
P

t

i=1  H(�i)P
t

i=1 �i

!
forms a (1� ↵)-CS for µ,

as does its running intersection,
T

it
CH

i
.

A sensible choice of predictable plug-in is given by

�PrPl-H
t

:=

s
8 log(2/↵)

t log(t+ 1)
^ 1, (12)

for reasons which will be discussed in Section 3.3. The proof of Proposition 1 is
provided in Section A.1. As alluded to earlier, predictable plug-ins are actually the
least interesting when using Hoeffding’s sub-Gaussian bound because of the available
closed form Gaussian-mixture boundary. However, the story becomes more interesting
when either (a) the method of mixtures is computationally opaque or complex, or
(b) the optimal choice of � is based on unknown but estimable quantities. Both (a)
and (b) are issues that arise when computing empirical Bernstein-type CSs and CIs.
In the following section, we present predictable plug-in empirical Bernstein-type CSs
and CIs which are both computationally and statistically efficient.

3.2. Application: closed-form empirical Bernstein confidence sets
To prepare for the results that follow, consider the empirical Bernstein-type process,

MPrPl-EB

t
(m) :=

tY

i=1

exp {�i(Xi �m)� vi E(�i)} (13)

where, following Howard et al. [2020, 2021], we have defined vi := 4(Xi � bµi�1)2 and
 E(�) := (� log(1� �)� �)/4 for � 2 [0, 1). (14)

As we revisit later, the appearance of the constant 4 is to facilitate easy comparison
to  H , since lim�!0+  E(�)/ H(�) = 1. In short,  E is nonnegative, increasing on
[0, 1), and grows quadratically near 0.

Using MPrPl-EB
t (m) in Step (b) in Theorem 1 — and applying the same procedure

but with (Xt)1t=1 and m replaced by (�Xt)1t=1 and �m combined with a union bound
over the resulting CSs — we get the following CS.
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Theorem 2 (Predictable plug-in empirical Bernstein CS [PrPl-EB]).

Suppose (Xt)1t=1 ⇠ P for some P 2 Pµ. For any (0, 1)-valued predictable (�t)1t=1,

CPrPl-EB
t :=

 P
t

i=1 �iXiP
t

i=1 �i
±

log(2/↵) +
P

t

i=1 vi E(�i)P
t

i=1 �i

!
forms a (1� ↵)-CS for µ,

as does its running intersection,
T

it
CPrPl-EB
i

.

In particular, we recommend the predictable plug-in (�PrPl-EBt )1
t=1 given by

�PrPl-EB

t
:=

s
2 log(2/↵)

b�2

t�1
t log(1 + t)

^c, b�2

t
:=

1

4
+
P

t

i=1
(Xi � bµi)2

t+ 1
, bµt :=

1

2
+
P

t

i=1
Xi

t+ 1
(15)

for some c 2 (0, 1) (a reasonable default being 1/2 or 3/4). This choice was inspired
by the fixed-time empirical Bernstein as well as the widths of time-uniform CSs
(more details are provided in Section 3.3). The sequences of estimators (bµt)1t=1 and
(b�2t )1t=1 can be interpreted as predictable, regularized sample means and variances.
This technique was employed by Kotłowski et al. [2010] for misspecified exponential
families in the so-called maximum likelihood plug-in strategy.

The proof of Theorem 2 relies on establishing that MPrPl-EB
t (m) is a test super-

martingale for Pm. This latter fact is related to, but cannot be derived directly from,
a powerful deterministic inequality for bounded numbers due to Fan et al. [2015].
One needs an additional trick from Howard et al. [2021, Section A.8] which swaps
(Xi �m)2 with (Xi � bµi�1)2, for any predictable bµi�1, within the variance term vi.
It is this additional piece which yields both tighter and closed-form CSs; details are
in Section A.2. We remark that before taking the running intersection, the above
intervals are symmetric around the weighted sample mean, but this symmetry will
not carry forward to other CSs in the paper.

Time-uniform empirical Bernstein confidence sequences

Figure 2. Empirical Bernstein CSs produced via a predictable plug-in (PrPl) with (�t)1t=1

from (15) match (or slightly improve) those obtained via conjugate mixtures (CM) by Howard
et al. [2021]; the former is closed-form, but the latter is not and requires numerical methods.

Figure 2 compares the conjugate mixture empirical-Bernstein CS (CM-EB) due to
Howard et al. [2021] with our predictable plug-in empirical-Bernstein CS (PrPl-EB).
The two CSs perform similarly, but our closed-form PrPl-EB is over 500 times faster
to compute than CM-EB (in our experience) which requires root finding at each step.
However, our later bounds will be tighter than both of these.
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Remark 1. Theorem 2 yields computationally and statistically efficient empirical
Bernstein-type CIs for a fixed sample size n. Recalling (15), we recommend usingT

in
CPrPl-EB
i

along with the predictable sequence

�PrPl-EB(n)

t
:=

s
2 log(2/↵)

nb�2

t�1

^ c. (16)

We call the resulting confidence interval the “predictable plug-in empirical Bernstein
confidence interval” or [PrPl-EB-CI] for short; see Figure 3.

If X1, . . . , Xn are independent, then at the expense of computation, the above CI
can be effectively derandomized to remove the effect of the ordering of variables. One
can randomly permute the data B times to obtain ( eX1,b, . . . , eXn,b) and correspond-
ingly compute fMPrPl-EB

n,b
(m), one for each permutation b 2 {1, . . . , B}. Averaging

over these permutations, define fMPrPl-EB
n (m) := 1

B

P
B

b=1
fMPrPl-EB

n,b
(m). For each

b, MPrPl-EB
n,b

(µ) has expectation at most one (by linearity of expectation). Thus,
fMPrPl-EB

n (µ) is a e-value (i.e. it has expectation at most 1). By Markov’s inequality,
eCPrPl-EB
n := {m 2 [0, 1] : fMPrPl-EB

n (m) < 1/↵} is a (1� ↵)-CI for µ. This set is not
available in closed-form and the intersection

T
in

eCPrPl-EB
i

no longer yield a valid
CI. In our experience, this derandomization procedure neither helps nor hurts. In
any case, both

T
in

Ci and eCn will be significantly improved in Section 4.4.
In Section E.3, we show that in iid settings the width of [PrPl-EB-CI] scales with

the true (unknown) standard deviation:

p
n

✓
log(2/↵) +

P
n

i=1
vi E(�i)P

n

i=1
�i

◆
a.s.��! �

p
2 log(2/↵). (17)

Notice that (17) is the same asymptotic behavior that one would observe for CIs
based on Bernstein’s or Bennett’s inequalities, both of which require knowledge of the
true variance �2, while [PrPl-EB-CI] does not. This is in contrast to the empirical
Bernstein CIs of Maurer and Pontil [2009] whose limit would be �

p
2 log(4/↵). In

the maximum variance case where � = 1/2, (17) yields the same asymptotic behavior
as Hoeffding’s CI (2).

Fixed-time empirical Bernstein confidence intervals

Figure 3. Our predictable plug-in (PrPl) empirical Bernstein (EB) CI is significantly tighter
than those of Maurer and Pontil [2009] and Audibert et al. [2007].
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Table 1. Below, we think of log x as log(x + 1) to avoid trivialities. The
claimed rates are easily checked by approximating the sums as integrals,
and taking derivatives. For example, d

dx
log log x = 1/x log x, so the sum ofP

it
1/i log i ⇣ log log t. It is worth remarking that for t = 1080, the number

of atoms in the universe, log log t ⇡ 5.2, which is why we treat log log t as a
constant when expressing the rate for Wt. The iterated logarithm pattern in
the the last two lines can be continued indefinitely.

Strategy (�i)1i=1

P
t

i=1
�i

P
t

i=1
�2
i

Width Wt

⇣ 1/i ⇣ log t ⇣ 1 1/ log t

⇣
p

log i/i ⇣
p
t log t ⇣ log2 t ⇣ log3/2 t/

p
t

⇣ 1/
p
i ⇣

p
t ⇣ log t ⇣ log t/

p
t

⇣ 1/
p
i log i ⇣

p
t/ log t ⇣ log log t ⇣

p
log t/t

⇣ 1/
p
i log i log log i ⇣

p
t/ log t ⇣ log log log t ⇣

p
log t/t

Until now, we presented various predictable plug-ins — (�PrPl-Ht )1
t=1, (�PrPl-EBt )1

t=1,
and (�PrPl-EB(n)

t
)n
t=1 — but have not provided intuition for why these are sensible

choices. Next, we discuss guiding principles for deriving predictable plug-ins.

3.3. Guiding principles for deriving predictable plug-ins
Let us begin our discussion with the predictable plug-in Hoeffding process (11) and
the resulting CS in Proposition 1, which has a half-width

Wt =
log(2/↵) +

P
t

i=1 �
2
i
/8

P
t

i=1 �i

To ensure that Wt ! 0 as t ! 1, it is clear that we want �t
a.s.��! 0, but at what rate?

As a sensible default, we recommend setting �t ⇣ 1/
p
t log t so that Wt = eO(

p
log t/t)

which matches the width of the conjugate mixture Hoeffding CS [Howard et al., 2020,
Proposition 2] (here eO treats O(log log t) factors as constants). See Table 3.3 for a
comparison between rates for �t and their resulting CS widths.

Now consider the predictable plug-in empirical Bernstein process (13) and the
resulting CS of Theorem 2, which has a half-width

Wt =
log(2/↵) +

P
t

i=1 4(Xi � bµi�1)2 E(�i)P
t

i=1 �i

By two applications of L’Hôpital’s rule, we have that
 E(�)

 H(�)
�!0

+

����! 1. (18)

Performing some approximations for small �i to help guide our choice of (�t)1t=1
(without compromising validity of resulting confidence sets) we have that

Wt ⇡
log(2/↵) +

P
t

i=1 4(Xi � µ)2�2
i
/8

P
t

i=1 �i
. (19)
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Thus, in the special case of i.i.d. Xi with variance �2, for large enough t,

EP (Wt | Ft�1) .
log(2/↵) + �2

P
t

i=1 �
2
i
/2

P
t

i=1 �i
. (20)

If we were to set �1 = �2 = · · · = �? 2 R and minimize the above expression for a
specific time t?, this amounts to minimizing

log(2/↵) + �2t?�?2/2

t?�?
, (21)

which is achieved by setting

�? :=

r
2 log(2/↵)

�2t?
. (22)

This is precisely why we suggested the predictable plug-in (�PrPlt )1
t=1 given by (15),

where the additional log(t+1) is included in an attempt to enforce Wt = eO(
p

log t/t).
The above calculations are only used as guiding principles to sharpen the confidence

sets, but all such schemes retain the validity guarantee. As long as (�t)1t=1 is [0, 1)-
valued and predictable, we have that (ME

t (µ))1
t=0 is a test supermartingale for Pµ

which can be used in Theorem 1 to obtain different valid CSs for µ.
Foreshadowing our attempt to generalize this procedure in the next section, notice

that the exponential function was used throughout to ensure nonnegativity, but that
any other test supermartingale would have sufficed. In fact, if a martingale is used
in place of a supermartingale, then Ville’s inequality is tighter.

Next, we present a test martingale, removing a source of looseness in the confidence
sets derived thus far. We discuss its betting interpretation, provide other guiding
principles for setting �i (equivalently, for betting), which will involve attempting to
maximize the expected log-wealth in the betting game.

4. The capital process, betting, and martingales

In Section 3, we generalized the Cramer-Chernoff method to derive predictable
plug-in exponential supermartingales and used this result to obtain tight empirical
Bernstein CSs and CIs. In this section, we consider an alternative process which can
be interpreted as the wealth accumulated from a series of bets in a game. This process
is a central object of study in the game-theoretic probability literature where it is
referred to as the capital process [Shafer and Vovk, 2001]. We discuss its connections
to the purely statistical goal of constructing CSs and CIs and demonstrate how
these sets improve on Cramer-Chernoff approaches, including the empirical Bernstein
confidence sets of the previous section.

Consider the same setup as in Section 3: we observe an infinite sequence of
conditionally mean-µ random variables, (Xt)1t=1 ⇠ P from some distribution P 2 Pµ.
Define the capital process Kt(m) for any m 2 [0, 1],

Kt(m) :=
tY

i=1

(1 + �i(m) · (Xi �m)), (23)
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with K0(m) := 1 and where (�t(m))1
t=1 is a (�1/(1�m), 1/m)-valued predictable

sequence, and thus �t(m) can depend on Xt�1
1 . Note that for each t � 1, we have

Xt 2 [0, 1], m 2 [0, 1] and �t(m) 2 (�1/(1�m), 1/m). Here and below, 1/m should
be interpreted as 1 when m = 0 and similarly for 1/(1�m) and m = 1, respectively.
Importantly, (1 + �t(m) · (Xt � m)) 2 [0,1), and thus Kt(m) � 0 for all t � 1.
Following similar techniques to the previous section, the reader may easily check that
Kt(µ) is a test martingale. Moreover, we have the stronger result summarized in the
following central proposition.

Proposition 2. Suppose a draw from some distribution P yields a sequence
X1, X2, . . . of [0, 1]-valued random variables, and let µ 2 [0, 1] be a constant. The
following four statements imply each other:

(a) EP (Xt | Ft�1) = µ for all t 2 N, where Ft�1 = �(X1, . . . , Xt�1).

(b) There exists a constant � 2 R\{0} for which (Kt(µ))1t=0 is a strictly positive
test martingale for P .

(c) For every fixed � 2 (� 1
1�µ

, 1
µ
), (Kt(µ))1t=0 is a test martingale for P .

(d) For every (� 1
1�µ

, 1
µ
)-valued predictable sequence (�t)1t=1, (Kt(µ))1t=0 is a test

martingale for P .

Further, the intervals (� 1
1�µ

, 1
µ
) mentioned above can be replaced by any subinterval

containing at least one nonzero value, like [�1, 1] or (�0.5, 0.5). Finally, every test
martingale for Pµ is of the form (Kt(µ)) for some predictable sequence (�t).

The proof can be found in Section A.3. While the subsequent theorems will primarily
make use of (a) =) (d), the above proposition establishes a core fact: the
assumption of the (conditional) means being identically µ is an equivalent restatement
of our capital process being a test martingale. Thus, test martingales are not
simply “technical tools” to deal with means of bounded random variables, they are
fundamentally at the very heart of the problem definition itself.

Proposition 2 can be generalized to another remarkable, yet simple, result: for
any set of distributions S, every test martingale for S has the same form.

Proposition 3 (Universal representation). For any arbitrary set of (pos-
sibly unbounded) distributions S, (Mt) is a test martingale for S if and only if
Mt =

Q
t

i=1(1 + �iZi) for some Zi � �1 such that ES [Zi|Fi�1] = 0 for every S 2 S,
and some predictable �i such that �iZi � �1. The same claim also holds for test
supermartingales for S, with the aforementioned “= 0” replaced by “ 0”.

The proof can be found in Section A.4. The above proposition immediately makes
this paper’s techniques actionable for a wide class of nonparametric testing and
estimation problems. We give an example relating to quantiles later.
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4.1. Connections to betting
It is worth pausing to clarify how the capital process Kt(m) and Proposition 2 can be
viewed in terms of betting. We imagine that nature implicitly posits a hypothesis Hm

0
— which we treat as a game providing us a chance to make money if the hypothesis is
wrong, by repeatedly betting some of our capital against Hm

0 . We start the game
with a capital of 1 (i.e. K0(m) := 1), and design a bet of bt := st|�mt | at each step,
where st 2 {�1, 1}. Setting st := 1 indicates that we believe that µ > m while
st := �1 indicates the opposite. |�mt | indicates the amount of our capital that we are
willing to put at stake at time t: setting �mt = 0 results in neither losing nor gaining
any capital regardless of the outcome, while setting �mt 2 {�1/(1�m), 1/m} means
that we are willing to risk all of our capital on the next outcome.

However, if Hm

0 is true (i.e. m = µ), then by Proposition 2, our capital process is
a martingale. In betting terms, no matter how clever a betting strategy (�mt )1

t=1 we
devise, we cannot expect to make (or lose) money at each step. If on the other hand,
Hm

0 is false, then a clever betting strategy will make us a lot of money. In statistical
terms, when our capital exceeds 1/↵, we can confidently reject the hypothesis Hm

0
since if it were true (and the game were fair) then by Ville’s inequality [Ville, 1939],
the a priori probability of this ever occurring is at most ↵. We imagine simultaneously
playing this game with Hm

0

0 for each m0 2 [0, 1]. At any time t, the games m0 2 [0, 1]
for which our capital is small (< 1/↵) form a CS.

Both the Cramer-Chernoff processes of Section 3 and Kt(m) are nonnegative
and tend to increase when µ > m. However, only Kt(m) is a test martingale when
m = µ; the others are test supermartingales. A test martingale is the wealth
accumulated in a “fair game” where our capital stays constant in expectation, while
a test supermartingale is the wealth accumulated in a game where our capital is
expected to decrease (not strictly). Larger values of capital correspond to rejecting
Hm

0 more readily. Therefore, test supermartingales tend to yield conservative tests
compared to their martingale counterparts.

More generally, every nonnegative supermartingale can be regarded as the wealth
process of a gambler playing a game with odds that are fair or stacked against them.
In other words, there is a one-to-one correspondence between wealths of hypothetical
gamblers and nonnegative supermartingales. Taking this perspective, every statement
involving nonnegative supermartingales (and thus likelihood ratios) are statements
about betting, and vice versa. Mixture methods that combine nonnegative super-
martingales are simply strategies to hedge across various instruments available to the
gambler. Thus, the gambling analogy can be entirely dropped, and our results would
find themselves comfortably nestled in the rich literature on martingale methods for
concentration inequalities, but we mention the betting analogy for intuition so that
the mathematics are animated and easier to absorb.

Ville introduced martingales into modern mathematical probability theory, and
centered them around their betting interpretation. Since then, ideas from betting
have appeared in various fields, including probability theory, statistical testing and
estimation, information theory, and online learning theory. While our paper focuses
on the utility of betting in some statistical inference tasks, Section F provides a brief
overview of the use of betting in other mathematical disciplines.
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4.2. Connections to likelihood ratios
As alluded to in the previous subsection, useful intuition is provided via the connection
to likelihood ratios. Kt(m) is a “composite” test martingale for Pm, meaning that
it is a nonnegative martingale starting at one for every P 2 Pm (recall that P is a
distribution over infinite sequences of observations with conditional mean m).

If we were dealing with a single distribution such as Q1, meaning a product
distribution where every observation is drawn iid from Q, then one may pick any
alternative Q0 that is absolutely continuous with respect to Q, to observe that the
likelihood ratio

Q
t

i=1Q
0(Xi)/Q(Xi) is a test martingale for Q1.

However, since Pm is highly composite and nonparametric and is not even
dominated by a single measure (as it contains atomic measures, continuous measures,
and all their mixtures), it is unclear how one can even begin to write down a
likelihood ratio. Nevertheless, Ramdas et al. [2020, Proposition 4] show that if (Mt)
is a composite test martingale for any S, then for every distribution Q 2 S, Mt

equals the likelihood ratio of some Q0 against Q (where Q0 depends on Q).
Thus, not only is every likelihood ratio a test martingale, but every (composite)

test martingale can also be represented as a likelihood ratio. Hence, in a formal sense,
test martingales are nonparametric composite generalizations of likelihood ratios,
which are at the very heart of statistical inference. When this observation is combined
with Proposition 2, it should be no surprise any longer that the capital process Kt(m)
(even devoid of any betting interpretation) is fundamental to the problem at hand.
In Section E.6 we also observe connections to the empirical likelihood of Owen [2001]
and the dual likelihood of [Mykland, 1995].

4.3. Adaptive, constrained adversaries
Despite the analogies to betting, the game described so far appears to be purely
stochastic in the sense that nature simply commits to a distribution P 2 Pµ for some
unknown µ 2 [0, 1] and presents us observations from P . However, Proposition 2 can
be extended to a more adversarial setup, but with a constrained adversary.

To elaborate, recall the difference between Q and P from the start of Section 2
and consider a game with three players: an adversary, nature, and the statistician.
First, the adversary commits to a µ 2 [0, 1]. Then, the game proceeds in rounds. At
the start of round t, the statistician publicly discloses the bets for every m, which
could depend on X1, . . . , Xt�1. The adversary picks a distribution Qt 2 Qµ, which
could depend on X1, . . . , Xt�1 and the statistician’s disclosed bets, and hands Qt to
nature. Nature simply acts like an arbitrator, first verifying that the adversary chose
a Qt with mean µ, and then draws Xt ⇠ Qt and presents Xt to the statistician.

In this fashion, the adversary does not need to pick µ and P 2 Pµ at the start
of the interaction, which is the usual stochastic setup, but can instead build the
distribution P in a data-dependent fashion over time. In other words, the adversary
does not commit to a distribution P , but instead to a rule for building P from the
data. Of course, they do not need to disclose this rule, or even be able express what
this rule would do on any other hypothetical outcomes other than the one observed.
The results in this paper, which build on the central Proposition 2, continue to hold
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in this more general interaction model.
A geometric reason why we can move from the stochastic model first described to

the above (constrained) adversarial model, is that the above distribution P lies in the
“fork convex hull” of Pµ. Fork-convexity is a sequential analogue of convexity [Ramdas
et al., 2021]. Informally, the fork-convex hull of a set of distributions over sequences
is the set of predictable plug-ins of these distributions, and is much larger than
their convex hull (mixtures). If a process is a nonnegative martingale under every
distribution in a set, then it is also a nonnegative martingale under every distribution
in the fork convex hull of that set. No results about fork convexity are used anywhere
in this paper, and we only mention it for the mathematically curious.

4.4. The hedged capital process
We now return to the purely statistical problem of using the capital process Kt(m)
to construct time-uniform CSs and fixed-time CIs. We might be tempted to
use Kt(µ) as the nonnegative martingale in Theorem 1 to conclude that Bt :=
{m 2 [0, 1] : Kt(m) < 1/↵} forms a (1� ↵)-CS for µ. Unlike the empirical Bernstein
CS of Section 3, Bt cannot be computed in closed-form. Instead, we theoretically
need to compute the family of processes {Kt(m)}m2[0,1] and include those m 2 [0, 1]
for which Kt(m) remains below 1/↵. This is not practical as the parameter space
[0, 1] is uncountably infinite. But if we know a priori that Bt is guaranteed to produce
an interval for each t, then it is straightforward to find a superset of Bt by either
performing a grid search on (0, 1/g, 2/g, . . . , (g� 1)/g, 1) for some large g 2 N, or by
employing root-finding algorithms. This motivates the hedged capital process, defined
for any ✓,m 2 [0, 1] as

K±
t
(m) := max

�
✓K+

t
(m), (1� ✓)K�

t
(m)

 
, (24)

where K+
t
(m) :=

tY

i=1

(1 + �+
i
(m) · (Xi �m)),

and K�
t
(m) :=

tY

i=1

(1� ��
i
(m) · (Xi �m)),

and (�+
t
(m))1

t=1 and (��
t
(m))1

t=1 are predictable sequences of [0, 1
m
)- and [0, 1

1�m
)-

valued random variables, respectively.
K±

t
(m) can be viewed from the betting perspective as dividing one’s capital into

proportions of ✓ and (1�✓) and making two series of simultaneous bets, positing that
µ � m, and µ < m, respectively which accumulate capital in K+

t
(m) and K�

t
(m). If

µ 6= m, then we expect that one of these strategies will perform poorly, while we
expect the other to make money in the long term. If µ = m, then we expect neither
strategy to make money. The maximum of these processes is upper-bounded by their
convex combination,

M±
t
:= ✓K+

t
+ (1� ✓)K�

t
.

Both K±
t

and M±
t

can be used for Step (b) of Theorem 1 to yield a CS. Empirically,
both yield intervals, but only the former provably so.
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Time-uniform confidence sequences: high-variance, symmetric data

Time-uniform confidence sequences: low-variance, asymmetric data

Figure 4. Predictable plug-in Hoeffding, empirical Bernstein, and hedged capital CSs
under two distributional scenarios. Notice that the latter roughly matches the others in the
Bernoulli(1/2) case, but shines in the low-variance, asymmetric scenario.

Theorem 3 (Hedged capital CS [Hedged]). Suppose (Xt)1t=1 ⇠ P for some
P 2 Pµ. Let (�̃+

t
)1
t=1 and (�̃�

t
)1
t=1 be real-valued predictable sequences not depending

on m, and for each t � 1 let

�+
t
(m) := |�̃+

t
| ^ c

m
, ��

t
(m) := |�̃�

t
| ^ c

1�m
, (25)

for some c 2 [0, 1) (some reasonable defaults being c = 1/2 or 3/4). Then

B±
t
:=

�
m 2 [0, 1] : K±

t
(m) < 1/↵

 
forms a (1� ↵)-CS for µ,

as does its running intersection
T

it
B±

i
. Further, B±

t
is an interval for each t � 1.

Finally, replacing K±
t
(m) by M±

t
(m) yields a tighter (1� ↵)-CS for µ.

For reasons given in Section B.1, we recommend setting �̃+
t
= �̃�

t
= �PrPl±

t
as

�PrPl±
t

:=

s
2 log(2/↵)

b�2

t�1
t log(t+ 1)

, b�2

t
:=

1/4 +
P

t

i=1
(Xi � bµi)2

t+ 1
, and bµt :=

1/2 +
P

t

i=1
Xi

t+ 1
,

(26)
for each t � 1, and truncation level c := 1/2 or 3/4; see Figure 4. A reasonable point
estimator for µ is argminm2[0,1]K±

t
(m) or argminm2[0,1]M±

t
(m) (see Figure 18).

Remark 2. Since K±
t
(m)  M±

t
(m), the latter confidence sequence is tighter.

In the proof of Theorem 3, we use a property of the max function to establish
quasiconvexity of K±

t
(m), implying that B±

t
is an interval. We find the difference in

empirical performance negligible (Figure 5). For the interested reader, Section E.4
constructs a (pathological) CS that is almost surely not an interval.
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Figure 5. A comparison of capital processes K+

t
(m), K�

t
(m), the hedged capital process

K±
t
(m), and its upper-bounding nonnegative martingale, M±

t
(m) under four alternatives

(from left to right): m ⌧ µ, m < µ, m > µ, m � µ. When m < µ, we see that K+

t
(m)

increases, while K�
t
(m) approaches zero, but the opposite is true when m > µ. Notice that

not much is gained by taking a sum M±
t
(m) rather than a maximum K±

t
(m), since one of

K+

t
(m) and K�

t
(m) vastly dominates the other, depending on whether m > µ or m < µ.

Remark 3. Theorem 3 yields tight hedged CIs for a fixed sample size n. Recall-
ing (26), we recommend using

T
in

B±
i
, and setting �̃+

t
= �̃�

t
= �̃±

t
given by

�̃±
t
:=

s
2 log(2/↵)

nb�2

t�1

. (27)

We refer to the resulting CI as the “hedged capital confidence interval” or [Hedged-CI]

for short, and demonstrate its superiority to past work in Figure 6.

Similar to the discussion after Remark 1, if X1, . . . , Xn are independent, then
one can permute the data many times and average the resulting capital processes to
effectively derandomize the procedure.

The proof of Theorem 3 is in Section A.5. Unlike the empirical Bernstein-type CSs
and CIs of Section 3, those based on the hedged capital process are not necessarily
symmetric. In fact, we empirically find through simulations that these CSs and CIs
are able to adapt and benefit from this asymmetry (see Figures 4 and 6). While
it is not obvious from the definition of B±

t
, bets can be chosen such that hedged

capital CSs and CIs converge at the optimal rates of O(
p

log log t/t) and O(1/
p
n),

respectively (see Section E.2) and such that for sufficiently large n, hedged capital
CIs almost surely dominate those based on Hoeffding’s inequality (see Section E.1).
However, the implications of time-uniform convergence rates are subtle, and optimal
rates are not always desirable in practical applications (see [Howard et al., 2021,
Section 3.5]). Nevertheless, we find that hedged capital CSs and CIs significantly
outperform past works even for small sample sizes (see Section C). Some additional
tools for visualizing CSs across ↵ and t are provided in Section D.5.

In Section B, we discuss some guiding principles for deriving powerful betting
strategies, presenting the hedged capital CSs and CIs as special cases along with the
following game-theoretic betting schemes:

• Growth rate adaptive to the particular alternative (GRAPA),
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Fixed-time confidence intervals: high-variance, symmetric data

Fixed-time confidence intervals: low-variance, asymmetric data

Figure 6. Hoeffding (H), empirical Bernstein (EB), and hedged capital CIs under two
distributional scenarios. Similar to the time-uniform setting, the betting approach tends to
outperform the other bounds, especially for low-variance, asymmetric data.

• Approximate GRAPA (aGRAPA),
• Lower-bound on the wealth (LBOW),
• Online Newton step-m (ONS-m),
• Diversified Kelly betting (dKelly),
• Confidence boundary bets (ConBo), and
• Sequentially rebalanced portfolio (SRP).

Each of these betting strategies have their respective benefits, whether computational,
conceptual, or statistical which are discussed further in Section B.

5. Betting while sampling without replacement (WoR)

This section tackles a slightly different problem, that of sampling without replacement
(WoR) from a finite set of real numbers in order to estimate its mean. Importantly,
the N numbers in the finite population (x1, . . . , xN ) are fixed and nonrandom. What
is random is only the order of observation; the model for sampling uniformly at
random without replacement (WoR) posits that at time t � 1,

Xt | (X1, . . . , Xt�1) ⇠ Uniform ((x1, . . . , xN )\(X1, . . . , Xt�1)) . (28)

All probabilities are thus to be understood as solely arising from observing fixed
entities in a random order, with no distributional assumptions being made on the
finite population. We consider the same canonical filtration F = (Ft)Nt=0 as before.
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For t � 1, let Ft := �(Xt

1) be the sigma-field generated by X1, . . . , Xt and let F0 be
the empty sigma-field. For succinctness, we use the notation [a] := {1, . . . , a}.

For each m 2 [0, 1], let Lm := {xN1 2 [0, 1]N :
P

N

i=1 xi/N = m} be the set of all
unordered lists of N � 2 real numbers in [0, 1] whose average is m. For instance, L0

and L1 are both singletons, but otherwise Lm is uncountably infinite. Let Pm be
the set of all measures on FN that are formed as follows: pick an arbitrary element
of Lm, apply a uniformly random permutation, and reveal the elements one by one.
Thus, every element of Pm is a uniform measure on the N ! permutations of some
element in Lm, so there is a one-to-one mapping between Lm and Pm.

Define P :=
S

m
Pm and let µ represent the true unknown mean, meaning that

the data is drawn from some P 2 Pµ. For every m 2 [0, 1], we posit a composite null
hypothesis H0

m : P 2 Pm, but clearly only one of these nulls is true. We will design
betting strategies to test these nulls and thus find efficient confidence intervals or
sequences for µ. It is easier to present the sequential case first, since that is arguably
more natural for sampling WoR, and discuss the fixed-time case later.

5.1. Existing (super)martingale-based confidence sequences or tests
Several papers have considered estimating the mean of a finite set of nonrandom
numbers when sampling WoR, often by constructing concentration inequalities
[Hoeffding, 1963, Serfling, 1974, Bardenet and Maillard, 2015, Waudby-Smith and
Ramdas, 2020]. Notably, Hoeffding [1963] showed that the same bound for sampling
with replacement (2) can be used when sampling WoR. Serfling [1974] improved
on this bound, which was then further refined by Bardenet and Maillard [2015].
While test supermartingales appeared in some of the aforementioned works, Waudby-
Smith and Ramdas [2020] identified better test supermartingales which yield explicit
Hoeffding- and empirical Bernstein-type concentration inequalities and CSs for
sampling WoR that significantly improved on previous bounds. Consider their
exponential Hoeffding-type supermartingale,

MH-WoR

t
:= exp

8
<

:

tX

i=1

2

4�i

0

@Xi � µ+
1

N � (i� 1)

i�1X

j=1

(Xj � µ)

1

A�  H(�i)

3

5

9
=

; , (29)

and their exponential empirical Bernstein-type supermartingale,

MEB-WoR

t
:= exp

8
<

:

tX

i=1

2

4�i

0

@Xi � µ+
1

N � (i� 1)

i�1X

j=1

(Xj � µ)

1

A� vi E(�i)

3

5

9
=

; , (30)

where (�t)Nt=1 is any predictable �-sequence (real-valued for MH-WoR
t , but [0, 1)-valued

for MEB-WoR
t ), vi = 4(Xi � bµi�1)2 as before, and  H(·) and  E(·) are defined as in

Section 3. Defining MH-WoR
0 ⌘ MEB-WoR

0 := 1, Waudby-Smith and Ramdas [2020]
prove that (MH-WoR

t )N
t=0 and (MEB-WoR

t )N
t=0 are test supermartingales with respect

to F , and hence can be used in Step (b) of Theorem 1.
In recent work on election audits, Stark [2020] credits Harold Kaplan for proposing

MK

t
:=

Z
1

0

tY

i=1

 
1 + �

"
Xi

1� (i� 1)/N

µ�
P

i�1

j=1
Xi/N

� 1

#!
d�. (31)
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The “Kaplan martingale” (MK
t )N

t=0 was employed for election auditing, but it is a
polynomial of degree t and is computationally expensive for large t [Stark, 2020].

Next, we mimic the approach of Section 4 to derive a capital process for sampling
WoR. We then derive WoR analogues of the efficient betting strategies from Section B.

5.2. The capital process for sampling without replacement
Define the predictable sequence (µWoR

t )t2[N ] where

µWoR

t
:= E[Xt|Ft�1] =

Nµ�
P

t�1

i=1
Xi

N � (t� 1)
. (32)

It is clear that µWoR
t 2 [0, 1], since it is the mean of the unobserved elements of

{xi}i2[N ]. (µWoR
t )t2[N ] is unobserved since µ is unknown, so it is helpful to define

mWoR

t
:=

Nm�
P

t�1

i=1
Xi

N � (t� 1)
. (33)

Now, let (�t(m))N
t=1 be a predictable sequence such that �t(m) is

⇣
� 1

1�m
WoR
t

, 1
m

WoR
t

⌘
-

valued. Define the without-replacement capital process KWoR
t (m),

KWoR

t
(m) :=

tY

i=1

�
1 + �i(m) · (Xi �mWoR

i
)
�

(34)

with KWoR
0 (m) := 1. The following result is analogous to Proposition 2.

Proposition 4. Let XN

1 be a WoR sample from xN1 2 [0, 1]N . The following two
statements imply each other:

(a) EP (Xt | Ft�1) = µWoR
t for each t 2 [N ].

(b) For every predictable sequence with �t(m) 2
⇣
� 1

(1�µ
WoR
t

) ,
1

µ
WoR
t

⌘
, (KWoR

t (µ))1
t=0

is a test martingale.

The other claims within Proposition 2 also hold above with minor modification,
but we do not mention them again for brevity. Further, Proposition 3 technically
covers WoR sampling as well. We now present a “hedged” capital process and powerful
betting schemes for sampling WoR, to construct a CS for µ = 1

N

P
N

i=1 xi.

5.3. Powerful betting schemes
Similar to Section 4.4, define the hedged capital process for sampling WoR:

KWoR,±
t

(m) := max

(
✓

tY

i=1

�
1 + �+

i
(m) · (Xi �mWoR

t )
�
,

(1� ✓)
tY

i=1

�
1� ��

i
(m) · (Xi �mWoR

t )
�
)
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for some predictable (�+
t
(m))N

t=1 and (��
t
(m))N

t=1 taking values in [0, 1/mWoR
t ] and

[0, 1/(1�mWoR
t )] at time t, respectively. Using

⇣
KWoR,±

t
(m)

⌘1
t=0

as the process in
Step (b) of Theorem 1, we obtain the CS summarized in the following theorem.

Theorem 4 (WoR hedged capital CS [Hedged-WoR]). Given a finite
population xN1 2 [0, 1]N with mean µ := 1

N

P
N

i=1 xi = µ, suppose that X1, X2, . . . XN

are sampled WoR from xN1 . Let (�̇+
t
)1
t=1 and (�̇�

t
)1
t=1 be real-valued predictable

sequences not depending on m, and for each t � 1 let

�+
t
(m) := |�̇+

t
| ^ c

mWoR
t

, ��
t
(m) := |�̇�

t
| ^ c

1�mWoR
t

,

for some c 2 [0, 1) (some reasonable defaults being c = 1/2 or 3/4). Then

B±,WoR
t

:=
n
m 2 [0, 1] : K±,WoR

t
(m) < 1/↵

o
forms a (1� ↵)-CS for µ,

as does
T

it
B±,WoR

i
. Furthermore, B±,WoR

t
is an interval for each t � 1.

The proof of Theorem 4 is in Section A.9. We recommend setting �̇+
t
= �̇�

t
= �PrPl±

t

as was done earlier in (26); for each t � 1, and c := 1/2, let

�PrPl±
t

:=

s
2 log(2/↵)

b�2
t�1t log(t+ 1)

, b�2t :=
1
4 +

P
t

i=1(Xi � bµi)2

t+ 1
, and bµt :=

1
2 +

P
t

i=1Xi

t+ 1
,

See Figure 7 for a comparison to the best prior work.

Remark 4. As before, we can use Theorem 4 to derive powerful CIs for the
mean of a nonrandom set of bounded numbers given a fixed sample size n  N .
We recommend using

T
in

B±,WoR
i

, and setting �̇+
t
= �̇�

t
= �̇±

t
as in (27): �̇±

t
:=q

2 log(2/↵)
nb�2

t�1
. We refer to the resulting CI as [Hedged-WoR-CI]; see Figure 8.

Notice that constructing a WoR test martingale only relies on changing the fixed
conditional mean µ to the time-varying conditional mean µWoR

t := Nµ�
P

t�1
i=1 Xi

N�t+1 and
now designing (�1/(1� µWoR

t ), 1/µWoR
t )-valued bets instead of (�1/(1� µ), 1/µ)-

valued ones. In this way, it is possible to adapt any of the betting strategies in
Section B to sampling WoR, yielding a wide array of solutions to this estimation
problem.

5.4. Relationship to composite null testing
This paper focuses primarily on estimation, but we end with a note that our CSs (or
CIs) yield valid, sequential (or batch) tests for composite null hypotheses H0 : µ 2 S
for any S ⇢ [0, 1]. Specifically, for any of our capital processes Kt(m),

pt := sup
m2S

1

Kt(m)
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WoR time-uniform confidence sequences: high-variance, symmetric data

WoR time-uniform confidence sequences: low-variance, asymmetric data

Figure 7. Without-replacement betting CSs versus the predictable plug-in supermartingale-
based CSs [Waudby-Smith and Ramdas, 2020]. Similar to the with-replacement case, the
betting approach matches or vastly outperforms past state-of-the art methods.

WoR fixed-time confidence intervals: high-variance, symmetric data

WoR fixed-time confidence intervals: low-variance, asymmetric data

Figure 8. WoR analogue of the hedged capital CI versus the WoR Hoeffding- and empirical
Bernstein-type CIs [Waudby-Smith and Ramdas, 2020]. Similar to with-replacement, the
betting approach has excellent performance.
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is an “anytime-valid p-value” for H0, as is ept := infst ps, meaning that

sup
P2

S
m2S

Pm

P (p⌧  ↵)  ↵ for arbitrary stopping times ⌧ .

Alternately, pt is also the smallest ↵ for which our (1� ↵)-CS does not intersect S.
Similarly, et := infm2S Kt(m) is an “e-process” for H0, meaning that

sup
P2

S
m2S

Pm

EP [e⌧ ]  1 for arbitrary stopping times ⌧ .

For more details on inference at arbitrary stopping times, we refer the reader to
Howard et al. [2020, 2021], Grünwald et al. [2019], Ramdas et al. [2020].

6. A brief selective history on betting and its mathematical applications

From a purely statistical perspective, this paper could be viewed as tackling the
problem of deriving sharp confidence sets for means of bounded random variables. In
this pursuit, we find that a technique with excellent empirical performance happens
to have strong connections to the topics of betting and gambling. While we provide
a more detailed discussion in Section F, here we briefly summarize some of the ways
in which betting ideas have appeared in and shaped probability, statistical inference,
information theory, and online learning, in the broad context of our paper.

• Probability: The 1939 PhD thesis of Ville [1939] brought betting and mar-
tingales to the forefront of modern probability theory, by giving actionable
interpretations to Kolmogorov’s newly developed measure-theoretic probability,
and dealing a near-fatal blow to the theory of collectives by von Mises. Ville
showed that for any event A of probability measure zero (like sequences violating
the law of large numbers), he could design an explicit betting strategy that
never bets more than it has, whose wealth (a test martingale) grows without
to infinity if the event A occurs. Ville worked with binary sequences, but his
result holds more generally; see Shafer and Vovk [2001].
One may view Ville’s result as a theorem in measure-theoretic probability
theory; what he effectively proved was: the event that a test (super)martingale
exceeds 1/↵ has probability at most ↵ (Ville’s inequality in this paper). This
holds for any ↵ 2 [0, 1], treating 1/0 ⌘ +1, with the ↵ = 0 case being the
most remarkable part. But Ville’s result is also an axiomatic building block
for game-theoretic probability [Vovk, 1993, Shafer and Vovk, 2001, 2019]. Many
classical results in probability can been derived in completely game-theoretic
terms [Shafer and Vovk, 2001, 2019]. The capital processes used for deriving
CSs are of the same form as those used to derive these foundational theorems
of game-theoretic probability, despite the two goals being quite different.

• Statistical inference: The famous book of Wald [1945] was the first to
thoroughly present and study sequential hypothesis testing. Despite not being
presented in this way by Wald, we know in hindsight that the sequential
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probability ratio test (SPRT) is quite centrally based on the fact that the
likelihood ratio is a nonnegative martingale. Two decades later, Robbins and
colleagues built on Wald’s sequential testing work in several ways, including to
estimation via confidence sequences [Darling and Robbins, 1967a,b,c, Robbins
and Siegmund, 1968, 1969, 1970, 1972, 1974, Robbins, 1970, Lai, 1976]. The
recent work of Howard et al. [2020, 2021], Ramdas et al. [2021], Wasserman et al.
[2020] extends the early work of Wald, Robbins and colleagues to a broader class
of problems using exponential supermartingales and “e-processes”, which can
be seen as nonparametric, composite generalizations of the SPRT martingale.
Connections between betting and the works of Wald, Robbins et al., and Howard
et al. are implicit in those works, but can now be seen in hindsight, and our
paper makes these connections explicit.

• Information theory: Working in the new field of information theory, Kelly Jr
[1956] made direct connections to betting by showing that the capacity of
a channel (itself fundamentally related to entropy and the Kullback-Leibler
divergence) is given by the maximal rate of growth of wealth of a gambler in a
simple game with iid Bernoulli(p) observations and known p. Breiman [1961]
generalized Kelly’s results significantly, and Krichevsky and Trofimov [1981]
extended these results beyond the case of known p using a mixture method.
Thomas Cover’s interest in these techniques spans several decades [Cover, 1974,
1984, 1987, Bell and Cover, 1980, 1988], culminating in his famous universal
portfolio algorithm [Cover, 1991]. The results of Krichevsky-Trofimov and Cover
are essentially regret inequalities, leading directly to the final subfield below.

• Online learning: The techniques of Krichevsky, Trofimov and Cover found
extensive applications to sequential prediction with the logarithmic loss [Cesa-
Bianchi and Lugosi, 2006]. Here, one derives regret inequalities for the total
loss accumulated when predicting the next observation from a potentially
adversarial sequence. This problem is fundamentally connected to online convex
optimization, for which Orabona and colleagues use parameter-free betting
algorithms to derive regret inequalities [Orabona and Pal, 2016, Orabona and
Tommasi, 2017, Jun et al., 2017, Cutkosky and Orabona, 2018, Jun and Orabona,
2019]. Rakhlin and Sridharan [2017] articulated a deep connection between
martingale concentration and deterministic regret inequalities, and Jun and
Orabona [2019, Section 7.1] derive concentration bounds for the general setting
of Banach space-valued observations with sub-exponential noise.

7. Summary

Nonparametric confidence sequences are particularly useful in sequential estimation
because they enable valid inference at arbitrary stopping times, but they are underap-
preciated as powerful tools to provide accurate inference even at fixed times. Recent
work [Howard et al., 2020, 2021] has developed several time-uniform generalizations of
the Cramer-Chernoff technique utilizing “line-crossing” inequalities and using various



28 Waudby-Smith and Ramdas

Probability

Statistical inference

Information theory

Online learning

19
39

Ville

19
66

Martin-Löf

19
93

–2
01

9

Shafer & Vovk

20
07

–2
01

1

Kumon, Takemura,
& Takeuchi

19
45

–4
7

Wald

19
67

–1
97

6

Robbins, Darling,
Siegmund & Lai

20
18

–2
1

Shafer
Grünwald et al.
Howard et al.
Ramdas et al.

19
56

Kelly Jr

19
74

–1
99

1

Cover

19
81

Krichevsky & Trofimov

20
06

Cesa-Bianchi
& Lugosi

20
16

–2
02

0

Orabona, Jun, & Pal;
Rakhlin & Sridharan

Figure 9. A brief selective history of betting ideas appearing (often implicitly) in various
literatures. As discussed further in Section F, these subfields have rarely cited each other,
but ideas are now beginning to permeate. Several authors did not explicitly use the language
of betting, and their inclusion above is due to reinterpreting their work in hindsight.

variants of Robbins’ method of mixtures (discrete mixtures, conjugate mixtures and
stitching) to convert them to “curve-crossing” inequalities.

This work adds new techniques to the toolkit: to complement the aforementioned
mixture methods, we develop a “predictable plug-in” approach. When coupled with
existing nonparametric supermartingales, it yields (for example) computationally
efficient empirical-Bernstein confidence sequences. One of our major contributions is
to thoroughly develop the theory and methodology for a new nonnegative martingale
approach to estimating means of bounded random variables in both with- and
without-replacement settings. These convincingly outperform all existing published
work that we are aware of, for CIs and CSs, both with and without replacement.

Our methods are particularly easy to interpret in terms of evolving capital
processes and sequential testing by betting [Shafer, 2021] but we go much further
by developing powerful and efficient betting strategies that lead to state-of-the-art
variance-adaptive confidence sets that are significantly tighter than past work in
all considered settings. In particular, Shafer espouses complementary benefits of
such approaches, ranging from improved scientific communication, ties to historical
advances in probability, and reproducibility via continued experimentation (also
see Grünwald et al. [2019]), but our focus here has been on developing a new state of
the art for a set of classical, fundamental problems.

There appear to be nontrivial connections to online learning theory [Kotłowski
et al., 2010, Kumon et al., 2011, Orabona and Tommasi, 2017, Cutkosky and Orabona,
2018], and to empirical and dual likelihoods (see Section E.6 and an extended
historical review of betting in Section F). The reductions from regret inequalities to
concentration bounds described in Rakhlin and Sridharan [2017] and Jun and Orabona
[2019] are fascinating, but existing published bounds are loose in the constants and
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not competitive in practice compared to our direct approach. Exploring deeper
connections may yield other confidence sequences or betting strategies.

It is clear to us, and hopefully to the reader as well, that the ideas behind this
work (adaptive statistical inference by betting) form the tip of the iceberg—they lead
to powerful, efficient, nonasymptotic, nonparametric inference and can be adapted
to a range of other problems. As just one example, let Pp,q represent the set of all
continuous distributions such that the p-quantile of Xt, conditional on the past, is
equal to q. This is also a nonparametric, convex set of distributions with no common
reference measure. Nevertheless, for any predictable (�i), it is easy to check that

Mt =
tY

i=1

(1 + �i(1Xiq � p))

is a test martingale for Pp,q. Setting p = 1/2 and q = 0, for example, we can
sequentially test if the median of the underlying data distribution is the origin.
The continuity assumption can be relaxed, and this test can be inverted to get a
confidence sequence for any quantile. We do not pursue this idea further in the
current paper because the recent (rather different) nonnegative martingale methods
of Howard and Ramdas [2022] already provide a challenging benchmark for that
problem. Typically, one test martingale-based method cannot uniformly dominate
another, and the large gains in this paper were made possible because all previous
published approaches implicitly or explicitly employed test supermartingales, while
we employ test martingales that are computationally simple to implement.

To conclude, we opine that “game-theoretic statistical inference” is in its nascency,
and we expect much theoretical and practical progress in coming years. We hope the
reader shares our excitement in this regard.
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