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A. Proofs of main results

We first introduce a lemma which will aid in the proofs to follow.

Lemma 1 (Predictable plug-in Chernoff supermartingales). Suppose that
X1, X2, · · · ⇠ P , and for some µ, vt and  (�), we have that for any � 2 ⇤ ✓ R,

EP [exp(�(Xt � µ)� vt (�)) | Ft�1]  1 for each t � 1 . (35)

Then, for any ⇤-valued sequence (�t)1t=1 that is predictable with respect to F ,

M 

t
(µ) :=

tY

i=1

exp (�i(Xi � µ)� vi (�i))

forms a test supermartingale with respect to F .

Proof. Writing out the conditional expectation of M 

t
for any t � 2,

E
⇣
M 

t
(µ) | Ft�1

⌘
= E

 
tY

i=1

exp (�i(Xi � µ)� vi (�i))
��� Ft�1

!

(i)
=

t�1Y

i=1

exp (�i(Xi � µ)� vi (�i))E [exp (�t(Xt � µ)� vt (�t)) | Ft�1]| {z }
1 by assumption

= M 

t�1(µ),

where (i) follows from the fact that exp (�i(Xi � µ)� vi (�i)) is Ft�1-measurable
for i  t� 1. Since F0 was assumed to be trivial, for M1 we have that

E[M 

1 (µ)|F0] = E [exp (�1(X1 � µ)� v1 (�1))]| {z }
1 by assumption

,

which completes the proof. 2

A.1. Proof of Proposition 1
The proof proceeds in three steps. First, apply a standard MGF bound by Hoeffding
[1963]. Second, we apply Lemma 1. Finally, we apply Theorem 1 to obtain a CS and
take a union bound.

Step 1. By Hoeffding [1963], we have that E [exp(�t(Xt � µ)�  H(�t)) | Ft�1]  1
since Xt 2 [0, 1] almost surely and since �t is Ft�1-measurable.

Step 2. By Step 1 and Lemma 1, we have that

MPrPl-H
t (µ) :=

tY

i=1

exp (�i(Xi � µ)�  H(�i))



Estimating bounded means by betting 37

forms a test supermartingale.

Step 3. By Step 2 combined with Theorem 1, we have that

P

 
9t � 1 : µ 

P
t

i=1 �iXiP
t

i=1 �i
�

log(1/↵) +
P

t

i=1  H(�i)P
t

i=1 �i

!

= P
⇣
9t � 1 : MPrPl-H

t (µ) � 1/↵
⌘
 ↵.

Applying the same bound to (�Xt)1t=1 with mean �µ and taking a union bound, we
have the desired result,

P

 
9t � 1 : µ /2

 P
t

i=1 �iXiP
t

i=1 �i
±

log(2/↵) +
P

t

i=1  H(�i)P
t

i=1 �i

!!
 ↵,

which completes the proof. 2

A.2. Proof of Theorem 2
By Lemma 1 combined with Theorem 1, it suffices to prove that

EP [exp {�t(Xt � µ)� vt E(�t)} | Ft�1]  1.

For succinctness, denote

Yt := Xt � µ and �t := bµt � µ.

Note that EP (Yt | Ft�1) = 0. It then suffices to prove that for any [0, 1)-bounded,
Ft�1- measurable �t ⌘ �t(Xt�1

1 ),

E
"
exp

(
�tYt � 4(Yt � �t�1)

2 E(�t)

) ��� Ft�1

#
 1.

Indeed, in the proof of Proposition 4.1 in Fan et al. [2015], exp{⇠�� 4⇠2 E(�)} 
1 + ⇠� for any � 2 [0, 1) and ⇠ � �1. Setting ⇠ := Yt � �t�1 = Xt � bµt�1,

E
"
exp

(
�tYt � 4(Yt � �t�1)

2 E(�t)

) ��� Ft�1

#

= E
h
exp

n
�t(Yt � �t�1)� 4(Yt � �t�1)

2 E(�t)
o �� Ft�1

i
exp(�t�t�1)

 E
h
1 + (Yt � �t�1)�t | Ft�1

i
exp(�t�t�1)

(i)
= E

⇥
1� �t�1�t | Ft�1

⇤
exp(�t�t�1)

(ii)
 1,

where equality (i) follows from the fact that Yt is conditionally mean zero, and
inequality (ii) follows from the inequality 1 � x  exp(�x) for all x 2 R. This
completes the proof. 2
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A.3. Proof of Proposition 2
We proceed by proving (d) =) (c) =) (b) =) (a) =) (d).

Proof of (d) =) (c). This claim follows from the fact that for � 2 (�1/(1�µ), 1/µ),
we have that (�,�, . . . ) is a (�1/(1� µ), 1/µ)-valued predictable sequence.
Proof of (c) =) (b). By the assumption of (c), we have that for � = 0.5, Kt(µ)
forms a test martingale. Furthermore, since Xi, µ 2 [0, 1] for each i 2 {1, 2, . . . }, we
have that 1 + 0.5(Xi � µ) > 0 almost surely for each i. Therefore, (Kt(µ))1t=1 is a
strictly positive test martingale.
Proof of (b) =) (a). Suppose that there exists � 2 R \ {0} such that Kt(µ) forms
a strictly positive martingale. Then we must have

Kt�1(µ) = E (Kt(µ) | Ft�1)

= Kt�1(µ) · E (1 + �(Xi � µ) | Ft�1)

= Kt�1(µ) · [1 + �(E(Xt | Ft�1)� µ)] .

Now since Kt�1(µ) > 0, we have that

1 + �(E(Xt | Ft�1)� µ) = 1.

Since � 6= 0 by assumption, we have that E(Xt | Ft�1) = µ as required.
Proof of (a) =) (d). Let (�t(µ))1t=1 be a (�1/(1 � µ), 1/µ)-valued predictable
sequence. Then Kt(µ) is clearly nonnegative and K0(µ) = 1 by definition. Writing
out the conditional mean of the capital process for any t � 1,

E (Kt(µ) | Ft�1) = Kt�1(µ) · E (1 + �t(µ)(Xi �m) | Ft�1)

= Kt�1(µ) · [1 + �t(µ)(E(Xi | Ft�1)� µ)]

= Kt�1(µ),

and thus Kt(µ) forms a test martingale.
The proof of the final part of the proposition is simple. Let (Mt) be a test

martingale for Pµ. Define Yt := Mt/Mt�1 if Mt�1 > 0, and as Yt := 0 otherwise.
Now note that Mt =

Q
t

i=1 Yt and EP [Yt|Ft�1] = 1 for any P 2 Pµ. In other words,
every test martingale is a product of nonnegative random variables with conditional
mean one. Now rewrite Yt as (1 + ft(Xt)) for some predictable function ft. Since Yt
is nonnegative, we must have ft(Xt) � �1 , and since Yt is conditional mean one, we
must have ft(Xt) is conditional mean zero. Such a representation in fact holds true
for any test martingale, and we have not yet used the fact that we are working with
test martingales for Pµ. Now, the proof ends by noting that the only predictable
functions ft with the latter property under every P 2 Pµ has the form �t(Xt�µ) for
some predictable �t; any nonlinear function of Xt would not have mean zero under
every distribution with mean µ.

This completes the proof of Proposition 2 altogether. 2



Estimating bounded means by betting 39

A.4. Proof of Proposition 3
We only prove the martingale part of the proposition, since the supermartingale
aspect follows analogously, and as mentioned early in the paper, inequalities and
equalities are meant in an almost sure sense.

First, it is easy to check that if (Mt) is a test martingale for S, then Mt is
the product of nonnegative conditionally unit mean terms, that is Mt =

Q
t

i=1 Yi
such that for all S 2 S, we have ES [Yi|Fi�1] = 1 and Yi � 0. (Indeed, one can
identify Yi :=

Mi

Mi�1
1Mi�1>0.) Now, define Z 0

i
:= Yi � 1, and note that Z 0

i
� �1, and

ES [Z 0
i
|Ft�1] = 0. Thus, Mt has been represented as

Q
t

i=1(1 + Z 0
i
). Now, the proof is

completed by noting that any such Z 0
i

can be written as �iZi for a predictable �i
(this step is purely cosmetic). 2

A.5. Proof of Theorem 3
First, we present Lemma 2 which establishes that the hedged capital process is a
quasiconvex function of m (and thus has convex sublevel sets). We then invoke this
lemma to prove the main result.

Lemma 2. Let ✓ 2 [0, 1] and

K±
t
(m) := max

�
✓K+

t
(m), (1� ✓)K�

t
(m)

 

⌘ max

(
✓

tY

i=1

(1 + �+
i
(m) · (Xi �m)), (1� ✓)

tY

i=1

(1� ��
i
(m) · (Xi �m))

)

be the hedged capital process as in Section 4. Consider the (1� ↵) confidence set of
the same theorem,

B±
t
⌘ B±(X1, . . . , Xt) :=

⇢
m 2 [0, 1] : K±

t
(m) <

1

↵

�
.

Then B±
t

is an interval on [0, 1].

Proof. Since sublevel sets of quasiconvex functions are convex, it suffices to
prove that K±

t
(m) is a quasiconvex function of m 2 [0, 1]. The crux of the argument

is: the product of nonnegative nonincreasing functions is quasiconvex, the product
of nonnegative nondecreasing functions is also quasiconvex, and the maximum of
quasiconvex functions is quasiconvex.

To elaborate, we will proceed in two steps. First, we use an induction argument to
show that K+

t
(m) and K�

t
(m) are nonincreasing and nondecreasing, respectively, and

hence quasiconvex. Finally, we note that K±
t
(m) := max

�
✓K+

t
(m), (1� ✓)K�

t
(m)

 

is a maximum of quasiconvex functions and is thus itself quasiconvex.

Step 1. First, since �̇+
t

does not depend on m, we have that

1 + �+
t
(m)(Xt �m) := 1 +

⇣
|�̇+

t
| ^ c

m

⌘
(Xt �m)
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is nonnegative and nonincreasing in m for each t 2 {1, 2, . . . }. (To see this, consider
the terms with and without truncation separately.) Suppose for the sake of induction
that

t�1Y

i=1

�
1 + �+

i
(m)(Xi �m)

�

is nonnegative and nonincreasing in m. Then,

K+
t
(m) :=

tY

i=1

�
1 + �+

i
(m)(Xi �m)

�

=
�
1 + �+

t
(m)(Xt �m)

�
·
t�1Y

i=1

�
1 + �+

i
(m)(Xi �m)

�

is a product of nonnegative and nonincreasing functions, and is thus itself nonnegative
and nonincreasing. By a similar argument, K�

t
(m) is nonnegative and nondecreasing.

K+
t
(m) and K�

t
(m) are thus both quasiconvex.

Step 2. Since the maximum of quasiconvex functions is quasiconvex, we infer that

K±
t
(m) := max

�
✓K+

t
(m), (1� ✓)K�

t
(m)

 

is quasiconvex. In particular, the sublevel sets of quasiconvex functions is convex,
and thus

B±
t
:=

⇢
m 2 [0, 1] : K±

t
(m) <

1

↵

�

is an interval, which completes the proof of Lemma 2. 2

Proof (Theorem 3). The proof proceeds in three steps. First we show that
K±

t
(µ) is upper-bounded by test martingale. Second, we apply the 4-step procedure

in Theorem 1 to get a CS for µ. Third and finally, we invoke Lemma 2 to conclude
that the CS is indeed convex at each time t.

Step 1. We first upper bound K±
t
(m) as follows:

K±
t
(m) := max

�
✓K+

t
(m), (1� ✓)K�

t
(m)

 

 ✓K+
t
(m) + (1� ✓)K�

t
(m) =: M±

t
(m).

By Proposition 2, we have that K+
t
(µ) and K�

t
(µ) are test martingales for P. For

each P 2 P, writing out the conditional expectation of M±
t
(µ) for any t � 1,

EP

⇥
M±

t
(µ) | Ft�1

⇤
= EP

h
✓K+

t
(µ) + (1� ✓)K�

t
(µ)

��� Ft�1

i

= ✓EP (K+
t
(µ) | Ft�1) + (1� ✓)EP (K�

t
(µ) | Ft�1)

= ✓K+
t�1(µ) + (1� ✓)K�

t�1(µ)

= M±
t�1(µ),

and M±
0 (µ) = ✓K+

0 (µ) + (1 � ✓)K�
0 (µ) = 1. Therefore, (M±

t
(µ))1

t=0 is a test
martingale for P.
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Step 2. By Step 1 combined with Theorem 1 we have that

B±
t
:=

⇢
m 2 [0, 1] : K±

t
(m) <

1

↵

�

forms a (1� ↵)-CS for µ.

Step 3. Finally, by Lemma 2, we have that B±
t

is an interval for each t 2 {1, 2, . . . },
which completes the proof of Theorem 3. 2

A.6. Proof of Lemma 3
Following the proof of Lemma 4.1 in Fan et al. [2015], we have that the function

f(x) :=

8
<

:

log(1 + x)� x

x2/2
x 2 (�1,1) \ {0}

�1 x = 0

(36)

is an increasing and continuous function in x (note that f(0) is defined as �1 because
it is a removable singularity). For any y � �m and � 2 [0, 1/m) we have

�y � �m� > �1. (37)

Combining (36) and (37), we have

log(1 + �y)� �y
�2y2/2

� log(1�m�) +m�

�2m2/2
,

and thus, log(1 + �y)� �y
(i)
� y2

m2
(log(1�m�) +m�) .

Above, (i) can be quickly verified for the case when �y = 0, and follows from (36)
and (37) otherwise. Rearranging terms, we obtain the first half of the desired result,

log(1 + �y) � �y + y2

m2
(log(1�m�) +m�). (38)

Now, for any y  1�m and � 2 (�1/(1�m), 0], we have

�y � (1�m)� > �1,

and proceed similarly to before to obtain

log(1 + �y) � �y + y2

(1�m)2
(log(1 + (1�m)�)� (1�m)�),

which completes the proof. 2
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A.7. Proof of Proposition 5
Since sublevel sets of convex functions are convex, it suffices to prove that with
probability one, KhgKelly

n (m) is a convex function in m on the interval [0, 1].
We proceed in three steps. First, we show that if two functions are (a) both

nonincreasing (or both nondecreasing), (b) nonnegative, and (c) convex, then their
product is convex. Second, we use Step 1 and an induction argument to prove thatQ

t

i=1(1 + �(Xi/m � 1)) is convex for any fixed � 2 [0, 1]. Third and finally, we
show that KhgKelly

n (m) is a convex combination of convex functions and is thus itself
convex.

Step 1. The claim is that if two functions f and g are (a) both nonincreasing
(or both nondecreasing), (b) nonnegative, and (c) convex on a set S ✓ R, then
their product is also convex on S. Let x1, x2 2 S, and let t 2 [0, 1]. Furthermore,
abbreviate f(x1) by f1, g(x1) by g1, and similarly for f2 and g2. Writing out the
product fg evaluated at tx1 + (1� t)x2,

(fg)(tx1 + (1� t)x2) = f(tx1 + (1� t)x2)g(tx1 + (1� t)x2)

= |f(tx1 + (1� t)x2)||g(tx1 + (1� t)x2)|
 |tf2 + (1� t)f2||tg1 + (1� t)g2|
= t2f1g1 + t(1� t) (f1g2 + f2g1) + (1� t)2f2g2,

where the second equality follows from assumption that f and g are nonnegative,
and the inequality follows from the assumption that they are both convex. To show
convexity of (fg), it then suffices to show that,
⇣
tf1g1 + (1� t)f2g2

⌘
�
⇣
t2f1g1 + t(1� t) [f1g2 + f2g1] + (1� t)2f2g2

⌘
� 0. (39)

To this end, write out the above expression and group terms,
⇣
tf1g1 + (1� t)f2g2

⌘
�
⇣
t2f1g1 + t(1� t) [f1g2 + f2g1] + (1� t)2f2g2

⌘

= (1� t)tf1g1 + t(1� t)f2g2 � t(1� t)[f1g2 + f2g1]

= t(1� t)
⇣
f1g1 + f2g2 � f1g2 � f2g1

⌘

= t(1� t)(f1 � f2)(g1 � g2).

Now, notice that t(1� t) � 0 since t 2 [0, 1] and that (f1 � f2)(g1 � g2) � 0 by the
assumption that f and g are both nonincreasing or nondecreasing. Therefore, we
have satisfied the inequality in (39), and thus fg is convex on S.

Step 2. Now, we prove convexity of
Q

t

i=1(1 + �(Xi/m� 1)) for a fixed � 2 [0, 1].
First note that for any � 2 [0, 1], 1 + �(Xi/m� 1) is a nonincreasing, nonnegative,
and convex function in m 2 [0, 1]. Suppose for the sake of induction that conditions
(a), (b), and (c) hold for

Q
n�1
i=1 (1 + �(Xi/m� 1)). By the inductive hypothesis, we
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have that
nY

i=1

(1 + �(Xi/m� 1)) = (1 + �(Xn/m� 1)) ·
n�1Y

i=1

(1 + �(Xi/m� 1))

is a product of functions satisfying (a) through (c). By Step 1,
Q

n

i=1(1+�(Xi/m�1))
is convex in m 2 [0, 1]. A similar argument can be made for K�

n (m), but instead of
the multiplicands being nonincreasing, they are now nondecreasing.

Step 3. Now, notice that for the evenly-spaced points (�1+, . . . ,�G+) on [0, 1/m],
we have that (�1+, . . . , �G+) = (m�1+, . . . ,m�G+) are G evenly-spaced points on
[0, 1]. It then follows that for any m and any g 2 {0, 1, . . . , G},

m 7!
nY

i=1

(1 + �g+(Xi �m))

is a nonincreasing, nonnegative, and convex function in m 2 [0, 1]. It follows that

1

G

GX

g=1

nY

i=1

(1 + �g+(Xi �m))

is convex in m 2 [0, 1]. A similar argument goes through for 1
G

P
G

g=1

Q
n

i=1(1 +

�g+(Xi �m). Finally, since ✓ 2 [0, 1], we have that

✓

G

GX

g=1

nY

i=1

(1 + �g+(Xi �m)) +
1� ✓
G

GX

g=1

nY

i=1

(1 + �g�(Xi �m))

is a convex combination of convex functions in m 2 [0, 1]. It then follows that

{m 2 [0, 1] : KhgKelly
t

(m) < 1/↵}

is an interval, which completes the proof. 2

A.8. Proof of Proposition 4
Proof of (1) =) (2). By definition of KWoR

t (µ), we have

E
�
KWoR

t (µ) | Ft�1
�
=

t�1Y

i=1

�
1 + �i(µ) · (Xi � µWoR

t )
�
· E

�
1 + �t(µ) · (Xt � µWoR

t ) | Ft�1
�

= KWoR
t�1 (µ) ·

�
1 + �t(µ) · (E(Xt | Ft�1)� µWoR

t )
�

= KWoR
t�1 (µ).

Since KWoR
0 (µ) ⌘ 1 by convention, we have that KWoR

t (µ) is a martingale.
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Now, note that since Xt 2 [0, 1] and �WoR
t (µ) 2 [�1/(1�µWoR

t ), 1/µWoR
t ] for each

t by assumption, we have that 1 + �t(µ) ·
�
Xt � µWoR

t

�
� 0 and thus KWoR

t (µ) � 0.
Therefore, KWoR

t (µ) is a test martingale.
Proof of (2) =) (1). Suppose that KWoR

t (µ) is a test martingale for any (�t(µ))Nt=1
with �t(µ) 2 [�1/(1� µWoR

t , 1/µWoR
t ], but suppose for the sake of contradiction that

E(Xt? | Ft?�1) 6= µWoR
t? for some t? 2 {1, 2, . . . }. Set �1 = �2 = · · · = �t?�1 = 0 and

�t? = 1. Then,

KWoR
t? (µ) ⌘ KWoR

t?�1(µ) · (1 + �t?(Xt? � µWoR
t? )) = 1 +Xt? � µWoR

t? .

By assumption of KWoR
t (µ) forming a martingale, we have that E

�
KWoR

t? (µ) | Ft?�1
�
=

KWoR
t?�1(µ) = 1. On the other hand, since E (Xt? | Ft?�1) 6= µWoR

t? , we have

E
�
KWoR

t? (µ) | Ft?�1
�
= E

�
1 +Xt? � µWoR

t? | Ft?�1
�
6= 1,

a contradiction. Therefore, we must have that E (Xt | Ft�1) = µWoR
t for each t,

which completes the proof of (2) =) (1) and Proposition 4. 2

A.9. Proof of Theorem 4
The proof that B±,WoR

t
forms a (1�↵)-CS for µ proceeds in exactly the same manner

as Theorem 3, noting that E (Xt | Ft�1) = µWoR
t instead of µ.

To show that B±,WoR
t

is indeed an interval for each t � 1, we note that the proof
of Theorem 3 applies since mWoR

t is increasing or decreasing if and only if m is
increasing or decreasing, respectively. 2

B. How to bet: deriving adaptive betting strategies

In Section 4.4, we presented CSs and CIs via the hedged capital process. We suggested
a specific betting scheme which has strong empirical performance but did not discuss
where it came from. In this section, we derive various betting strategies and discuss
their statistical and computational properties.

B.1. Predictable plug-ins yield good betting strategies
First and foremost, we will examine why any predictable plug-in for empirical
Bernstein-type CSs and CIs (i.e. those recommended in Theorem 2 and Remark 1)
yield effective betting strategies. Consider the hedged capital process

K±
t
(m) := max

(
✓

tY

i=1

(1 + �+
i
(Xi �m)), (1� ✓)

tY

i=1

(1� ��
i
(Xi �m))

)

⌘ max
�
✓K+

t
(m), (1� ✓)K�

t
(m)

 
,

where (�+
t
(m))1

t=1 and (��
t
(m))1

t=1 are [0, 1/m]-valued and [0, 1/(1 � m)]-valued
predictable sequences as in Theorem 3. First, consider the “positive” capital process,
K+

t
(µ) evaluated at m = µ. An inequality that has been repeatedly used to derive
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empirical Bernstein inequalities [Howard et al., 2020, 2021, Waudby-Smith and
Ramdas, 2020], including the current paper is the following due to Fan et al. [2015,
equation 4.12]: for any y � �1 and � 2 [0, 1), we have

log(1 + �y) � �y � 4 E(�)y
2. (40)

where  E(�) is as defined in (14). If the predictable sequence (�+
t
(m))1

t=1 is further
restricted to [0, 1), then by (40) we have

K+
t
(µ) :=

tY

i=1

(1 + �+
i
(Xi � µ)) � exp

 
tX

i=1

�+
i
(Xi � µ)�

tX

i=1

4(Xi � µ)2 E(�
+
i
)

!

(i)
⇡ exp

 
tX

i=1

�+
i
(Xi � µ)�

tX

i=1

4(Xi � bµi�1)
2 E(�

+
i
)

!

= MPrPl-EB
t (µ),

where (i) follows from the approximations bµt�1 ⇡ µ for large t. Not only does
the approximate inequality K+

t
(µ) & MPrPl-EB

t (µ) shed light on why a sensible
empirical Bernstein predictable plug-in translates to a sensible betting strategy, but
also why we might expect K+

t
(m) to be more powerful than MPrPl-EB

t (m) for the
same [0, 1)-valued predictable sequence (�+

t
(m))1

t=1. Moreover, K+
t
(m) has the added

flexibility of allowing (�t(m))1
t=1 to take values in [0, 1/m] � [0, 1) which we find —

through simulations — tends to improves empirical performance (see Figure 19 in
Section E.2.2). Finally, a similar story holds for K�

t
(µ) with the added caveat that

(��
t
)1
t=1 can instead take values in [0, 1/(1�m)] � [0, 1) which as before, seems to

improve empirical performance.
Despite the success of predictable plug-ins as betting strategies, it is natural to

wonder whether it is preferable to focus on directly maximizing capital over time.
As will be seen in the following section, these capital-maximizing approaches tend
to have improved empirical performance, but are not always guaranteed to produce
convex confidence sets (i.e. intervals). Nevertheless, it is worth examining some of
these strategies both for their intuitive appeal and excellent empirical performance.

B.2. Growth rate adaptive to the particular alternative (GRAPA)
As alluded to in Section 6, Kelly Jr [1956] dealt with capital processes, betting
strategies, etc. in the fields of information and communication theory in the pursuit
of maximizing the information rate over a channel. Kelly suggested that an effective
betting strategy is one that maximizes a gambler’s expected log-capital — i.e. the
growth rate of the gambler’s capital — under a particular alternative.§ However,
Kelly’s setup was a simplified special case of ours: Kelly’s observations were binary,
and the exact alternative was assumed known, while ours are merely bounded in
§This objective has also been arrived at indirectly as the dual in optimization programs for

deriving regret bounds for Kullback-Leibler-based UCB algorithms in multi-armed bandit
problems [Honda and Takemura, 2010, Cappé et al., 2013].
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[0, 1] with an unknown alternative. Nevertheless, the principle of maximizing the log-
capital can be adapted to our setting under bounded observations and an unknown
alternative. We summarize this adaptation here and refer to it as maximizing the
“growth rate adaptive to the particular alternative” or “GRAPA” for short.

Write the log-capital process at time t as

`t(�
t

1,m) := log(Kt(m)) =
tX

i=1

log(1 + �i(m)(Xi �m)), (41)

for a general [�1/(1�m), 1/m]-valued sequence (�t(m))1
t=1. If we were to choose a

single value of �HS := �1 = · · · = �t which maximizes the log-capital `t “in hindsight”
(i.e. based on all of the previous data), then this value is given by

@`t(�HS,m)

@�HS
=

tX

i=1

Xi �m

1 + �HS(Xi �m)
set
= 0.

However, �HS is clearly not predictable. Following Kumon et al. [2011] (who referred
to this as the “sequential optimization strategy”), we set (�GRAPA

t (m))1
t=1 such that

1

t� 1

t�1X

i=1

Xi �m

1 + �GRAPA
t

(m)(Xi �m)
set
= 0, (42)

truncated to lie between (�c/(1 � m), c/m) using some c  1. Importantly,
�GRAPA
t (m) only depends on X1, . . . , Xt�1, and is thus predictable.

This rule is a sequentially adaptive version of the worst-case “GROW” criterion
of Grünwald et al. [2019]. To see the connection, one can derive (42) from a slightly
different motivation. At the t-th step, we want to choose �t(m) so that the wealth
multiplier (1 + �t(m)(Xt �m)) is as large as possible. The ideal choice would be

�⇤t (m) := argmax
�2[�1/(1�m),1/m]

EPµ [log(1 + �(Xt �m)) | Ft�1], (43)

where Pµ is the unknown true distribution. Writing down the stationary condition
for this optimization problem by differentiating through the expectation, we get

EPµ


Xt �m

1 + �⇤
t
(m)(Xt �m)

| Ft�1

�
= 0. (44)

Since Pµ is unknown, using a simple empirical plug-in estimator yields (42).
CSs constructed from (�GRAPA

t (m))1
t=1 tend to have excellent empirical perfor-

mance, but can be prohibitively slow due to the required root-finding in (42) for each
time t and m 2 [0, 1] (or a sufficiently fine grid of [0, 1]). A similar but computation-
ally inexpensive alternative to GRAPA is “approximate GRAPA” (aGRAPA), which
we derive now.
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B.3. Approximate GRAPA (aGRAPA)
Rather than solve (42), we take the Taylor approximation of (1 + y)�1 by (1� y) for
y ⇡ 0 to obtain

1

t� 1

t�1X

i=1

Xi �m

1 + �aGRAPA
t

(m)(Xi �m)
⇡ 1

t� 1

t�1X

i=1

�
1� �aGRAPA

t (m)(Xi �m)
�
(Xi �m)

=
1

t� 1

t�1X

i=1

(Xi �m)� �aGRAPA
t (m)

t� 1

t�1X

i=1

(Xi �m)2

set
= 0,

which, after appropriate truncation leads what we call the “approximate GRAPA”
(aGRAPA) betting strategy,

�aGRAPA
t (m) := � c

1�m
_ bµt�1 �m

b�2
t�1 + (bµt�1 �m)2

^ c

m
,

for some truncation level c  1. This expression is quite natural: we bet more
aggressively if our empirical mean is far away from m, and are further emboldened if
the empirical variance is small.

Figure 10. �aGRAPA

t
for various values of m under two distributions: Bernoulli(1/2) and

Beta(1, 1). The dotted lines show the “oracle” bets, meaning �aGRAPA

t
with estimates of

the mean and variance replaced by their true values. As time passes, bets stabilize and
approach their oracle quantities.

As alluded to at the end of Section B.1, CSs derived using the capital process
Kt(m) with arbitrary betting schemes are not always guaranteed to produce a
convex set (interval). In fact, it is possible to construct scenarios where the sublevel
sets of KaGRAPA

t (m) are nonconvex in m (see Section E.4 for an example). In our
experience, this type of situation is not common, and one must actively search for
such pathological examples.
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B.4. Lower-bound on the wealth (LBOW)
Instead of maximizing log(Kt(m)), we may aim to do so for a tight lower-bound
on the wealth (LBOW). This technique has proven useful in the game-theoretic
probability literature [Shafer and Vovk, 2001, Proof of Lemma 3.3] and [Cutkosky
and Orabona, 2018, Proof of Theorem 1]. Our lower bound will rely on an extension
of Fan’s inequality (40) to � 2 (�1/(1 � m), 1/m), summarized in the following
lemma.

Lemma 3. If y � �m, then for any � 2 [0, 1/m), we have

log(1 + �y) � �y + y2

m2
(log(1�m�) +m�).

On the other hand, if y  1�m, then for any � 2 (�1/(1�m), 0], we have

log(1 + �y) � �y + y2

(1�m)2
(log(1 + (1�m)�)� (1�m)�).

Thus, for y 2 [�m, 1�m], both of the above inequalities hold.
The proof is an easy generalization of inequality (40) by Fan et al. [2015], and also
follows from similar observations about the subexponential function  E in Howard
et al. [2020, 2021], but we prove it from first principles in Section A.6 for completeness.
Using Lemma 3, we have for �L+ 2 [0, 1/m), the following lower-bound on `(�L+,m),

`(�L+,m) := log

 
tY

i=1

(1 + �L+(Xi �m))

!

� �L+
tX

i=1

(Xi �m) +
log(1�m�L+) +m�L+

m2

tX

i=1

(Xi �m)2, (45)

and for �L� 2 (�1/(1�m), 0], we have

`(�L�,m) := log

 
tY

i=1

(1 + �L�(Xi �m))

!

� �L�
tX

i=1

(Xi �m) +
log(1 + (1�m)�L�)� (1�m)�L�

(1�m)2

tX

i=1

(Xi �m)2.

(46)

Importantly, if
P

t

i=1(Xi �m) is positive, then (45) is concave, while if negative,
(46) is concave. Maximizing (45) or (46) depending on the sign of

P
t

i=1(Xi �m) we
obtain the following “hindsight” choice for �L,

�L =

8
>>>>><

>>>>>:

P
t

i=1(Xi �m)

m
P

t

i=1(Xi �m) +
P

t

i=1(Xi �m)2
if

tX

i=1

(Xi �m) � 0,

P
t

i=1(Xi �m)

�(1�m)
P

t

i=1(Xi �m) +
P

t

i=1(Xi �m)2
if

tX

i=1

(Xi �m)  0.
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Of course, this choice of �L is not predictable and thus is not a valid betting
strategy in the framework of the current paper. This motivates the following strategy,
(�Lt (m))1

t=1 given by

�Lt (m) :=
�c

1�m
_ bµt�1 �m

!t�1|bµt�1 �m|+ b�2
t�1 + (bµt�1 �m)2

^ c

m
, (47)

where !t :=

(
m if bµt �m � 0 ,

1�m if bµt �m < 0 .

Similarly to the aGRAPA betting procedure, LBOW is computationally-inexpensive
but is not guaranteed to produce an interval. The expression also carries similar
intuition to the GRAPA case.

B.5. Online Newton Step (ONS-m)
Betting algorithms play an essential role in online learning as several optimization
problems can be framed in terms of coin-betting games [Cutkosky and Orabona,
2018, Orabona and Tommasi, 2017, Jun et al., 2017, Jun and Orabona, 2019]. While
the downstream application is different, the game-theoretic techniques of maximizing
wealth are almost immediately applicable to the problem at hand. Here, we consider
a slight modification to the Online Newton Step (ONS) algorithm due to Cutkosky
and Orabona [2018].

Algorithm 1: ONS-m.
Result: (�Ot (m))T

t=1
�O1 (m) 1;
for t 2 {1, . . . , T � 1} do

yt  Xt �m ;
Set zt  yt/(1� yt�Ot (m)) ;
At  1 +

P
t

i=1 z
2
i

;
�O
t+1(m) �c

1�m
_
⇣
�Ot (m)� 2

2�log(3)
zt

At

⌘
^ c

m
;

end

Through simulations, we find that ONS-m performs competitively. However, its
lack of closed-form expression makes it a slightly more computationally-expensive
alternative to aGRAPA and LBOW, but not nearly as expensive as GRAPA (see
Table 2).

B.6. Diversified Kelly betting (dKelly)
Instead of committing to one betting strategy such as aGRAPA or LBOW, we can
simply take the average capital among D separate strategies. This follows from
the fact that an average of test martingales is itself a test martingale. That is, if
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Figure 11. Comparison of the wealth process under various game-theoretic betting strate-
gies with 100 repeats. In this example, the 1000 observations are drawn from a Beta(10,
10) distribution, and the candidate means m being tested are 0.5, 0.51, and 0.55 (from
left to right). Notice that these strategies perform similarly, but have varying computational
costs (see Table 2).

(�1t )
1
t=1, (�

2
t )

1
t=1, . . . , (�

D
t )

1
t=1 are D separate betting strategies, then

KdKelly
t

(µ) :=
1

D

DX

d=1

tY

i=1

⇣
1 + �di (µ)(Xi � µ)

⌘

forms a test martingale. Following Kelly’s original motivation to maximize (expected)
log-capital, notice that by Jensen’s inequality,

log
⇣
KdKelly

t

⌘
>

1

D

DX

d=1

log

 
tY

i=1

⇣
1 + �di (µ)(Xi � µ)

⌘!
.

In other words, the log-capital of the diversified bets is strictly larger than the average
log-capital among the diverse candidate bets.

Grid Kelly betting (gKelly). While it is possible to use any finite collection of
strategies, we focus our attention on a particularly simple (and useful) example
where the bets are constant values on a grid. Specifically, divide the interval
[�1/(1 � m), 1/m] up into G evenly-spaced points �1, . . . ,�G. Then define the
gKelly capital process KgKelly

t
by

KgKelly
t

(m) :=
1

G

GX

g=1

tY

i=1

(1 + �g(Xi �m)) .

When used to construct confidence sequences for µ, KgKelly
t

demonstrates excellent
empirical performance. Moreover, this procedure can be slightly modified into
“Hedged gKelly” (hgKelly) so that confidence sequences constructed using gKelly are
intervals almost surely.

In order to mimic the unknown optimal �⇤, D or G should not be kept constant,
but itself grow slowly (say logarithmically) with t. In game-theoretic terms, one
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should slowly add more strategies to the portfolio, in order to asymptotically match
the performance of the optimal one over time. (When adding a new �g to an existing
mixture, it obviously only begins to contribute to the wealth from the following step
onwards; formally G would be replaced by Gt, and

Q
t

i=1(1 + �g(Xi �m) would be
replaced by

Q
t

i=tg
(1 + �g(Xi �m) if �g was first introduced after tg � 1 steps.)

Hedged gKelly. First, divide the interval [�1/(1�m), 0] and [0, 1/m] into G evenly-
spaced points: (�1�, . . . ,�G�) and (�1+, . . . ,�G+), respectively. Then define the
“Hedged grid Kelly capital process” KhgKelly

t
given by

KhgKelly
t

(m) :=
✓

G

GX

g=1

tY

i=1

�
1 + �g+(Xi �m)

�
+

1� ✓
G

GX

g=1

tY

i=1

�
1 + �g�(Xi �m)

�
,

where ✓ 2 [0, 1] (a reasonable default being ✓ = 1/2).

Proposition 5. If (Xt)1t=1 ⇠ P for some P 2 Pµ, then KhgKelly
t

(µ) forms a
test martingale and BhgKelly

t
:=

n
m 2 [0, 1] : KhgKelly

t
(m) < 1/↵

o
is a CS for µ that

forms an interval for each t � 1.

The proof in Section A.7 proceeds by showing that KhgKelly
t

is a convex function of
m and hence its sublevel sets are intervals.

B.7. Confidence Boundary (ConBo)
The aforementioned strategies benefit from targeting bets against a particular null
hypothesis, Hm

0 for each m 2 [0, 1], but this has the drawback of Kt(m) potentially
not being quasiconvex in m. One of the advantages of the hedged capital process as
described in Theorem 3 is that K±

t
(m) is always quasiconvex, and thus its sublevel

sets (and hence the confidence sets B±
t
) are intervals.

In an effort to develop game-theoretic betting strategies which generate confidence
sets which are intervals, we present the Confidence Boundary (ConBo) bets. Rather
than bet against the null hypotheses Hm

0 for each m 2 [0, 1], consider two sequences of
nulls, (Hut

0 )1
t=1 and (H lt

0 )
1
t=1 corresponding to upper and lower confidence boundaries,

respectively. The ConBo bet �CB
t is then targeted against ut�1 and lt�1 using any

game-theoretic betting strategy (e.g. ⇤GRAPA, ⇤Kelly, LBOW, or ONS-m). Letting
�Gt (m) be any such strategy, we summarize the ConBo betting scheme in Algorithm 2.

Corollary 1 (Confidence boundary CS [ConBo]). In Algorithm 2,

BCB
t forms a (1� ↵)-CS for µ,

as does
T

it
BCB

i
. Further, BCB

t is an interval for any t � 1.

We can also adapt the ConBo betting scheme outlined in Algorithm 2 to the
without-replacement setting by replacing m by mWoR

t for each time t.
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Algorithm 2: ConBo
Result: (KCB

t (m))T
t=1

l0  0 ; u0  1;
KCB+

0 (m) KCB�
0 (m) 1;

for t 2 {1, . . . , T} do
�CB+
t

 max
�
�Gt (lt�1), 0

 
^ c/m; // Compute ConBo bets

�CB�
t

 
��min

�
�Gt (ut�1), 0

 �� ^ c/(1�m);
KCB+

t
(m) 

h
1 + �CB+

t
(Xt �m)

i
· KCB+

t�1 (m); // Update capital

KCB�
t

(m) 
h
1� �CB�

t
(Xt �m)

i
· KCB�

t�1 (m);

KCB
t (m) max

n
✓KCB+

t
(m), (1� ✓)KCB�

t
(m)

o
; // Hedging

BCB
t  {m 2 [0, 1] : Kt(m) < 1/↵} ;

lt  infBCB
t ; // Update confidence boundaries to bet against

ut  supBCB
t ;

end

Corollary 2 (WoR confidence boundary CS [ConBo-WoR]). Under the
same conditions as Theorem 4, define �CB-WoR+

t
and �CB-WoR�

t
as in Algorithm 2

but with m replaced by mWoR
t . Then,

BCB-WoR
t :=

�
m 2 [0, 1] : KCB-WoR

t < 1/↵
 

forms a (1� ↵)-CS for µ,

as does
T

it
BCB-WoR

i
. Further, BCB-WoR

t is an interval for each t � 1.

B.8. Sequentially Rebalanced Portfolio (SRP)
Implicitly, none of the aforementioned strategies take advantage of “rebalancing”,
meaning the ability to take ones capital Kt at time t, diversify it in any manner
at time t + 1, and repeat. This has had the mathematical advantage of being
able to write the resulting capital process (Kt(m))1

t=1 in the following general, but
closed-form expression:

Kt(m) :=
DX

d=1

✓d

tY

i=1

(1 + �di (m) · (Xi �m)),

where D � 1 is as in Section B.6, (�1t (m))1
t=1, . . . , (�

D
t (m))1

t=1 are [�1/(1�m), 1/m]-
valued predictable sequences as usual, and (✓d)Dd=1 are convex weights such thatP

D

d=1 ✓d = 1. However, a more general capital process martingale can be written but
instead of having a closed-form product expression, it can be written recursively as

KSRP
t (m) :=

DtX

d=1

(1 + �dt (m) · (Xt �m)) · ✓dt · KSRP
t�1 (m), (48)
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where (�dt )
Dt

d=1 are [1/(1�m), 1/m]-valued predictable bets, (✓dt )
Dt

d=1 are predictable
convex weights that sum to 1 (conditional on Xt�1

1 ), and we have set the initial
capital KSRP

0 (m) to 1 as usual.
Adopting the betting interpretation, (48) is a rather intuitive procedure. At each

time step t, the gambler divides their previous capital KSRP
t�1 (m) up into Dt � 1

portions given by ✓1t ·KSRP
t�1 (m), . . . , ✓Dt

t
· KSRP

t�1 (m), then invests these wealths with
bets �1t (m), . . . ,�Dt

t
(m), respectively. The gambler’s wealths are then updated to

(1 + �1t (m) · (Xt �m)) · ✓1t · KSRP
t�1 (m), . . . , (1 + �Dt

t
(m) · (Xt �m)) · ✓Dt

t
· KSRP

t�1 (m),

which are then combined via summation to yield a final capital of (48).
It is now routine to check that the process given by (48) is a nonnegative martingale

when evaluated at µ since

E
�
KSRP

t (µ) | Xt�1
1

�
=

DtX

d=1

KSRP
t�1 (µ) · ✓Dt

t
·

0

@1 + �t(µ)

0

@E(Xt | Xt�1
1 )� µ

| {z }
=0

1

A

1

A

= KSRP
t�1 (µ)

DtX

d=1

✓Dt

t

| {z }
=1

= KSRP
t�1 (µ).

Note that SRP is the most general and customizable betting strategy presented in
this paper, since it can be composed of any of the previously discussed strategies,
and includes each of them as a special case.

C. Simulations

This section contains a comprehensive set of simulations comparing our new confidence
sets presented against previous works. We present simulations for building both
time-uniform CSs and fixed-time CIs with or without replacement. Each of these are
presented under four distributional “themes”: (1) discrete, high-variance; (2) discrete,
low-variance; (3) real-valued, evenly spread; and (4) real-valued, concentrated.
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C.1. Time-uniform confidence sequences (with replacement)

Figure 12. Comparing Hedged, hgKelly, PrPl-EB, and PrPl-H CSs alongside other time-
uniform confidence sequences in the literature; further details in Section D.1. Clearly, the
betting approach is dominant in all settings.
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C.2. Fixed-time confidence intervals (with replacement)

Figure 13. Hedged capital, Anderson, Bentkus, Maurer-Pontil empirical Bernstein, and
predictable plug-in empirical Bernstein CIs under four distributional scenarios. Further
details can be found in Section D.2. Clearly, the betting approach is dominant in all settings.



56 Waudby-Smith and Ramdas

C.3. Time-uniform confidence sequences (without replacement)

Figure 14. Hedged capital, Hoeffding, and empirical Bernstein CSs for the mean of a finite
set of bounded numbers when sampling WoR. Further details can be found in Section D.3.
Clearly, the betting approach is dominant in all settings.
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C.4. Fixed-time confidence intervals (without replacement)

Figure 15. Fixed-time hedged capital, Hoeffding-type, and empirical Bernstein-type CIs
for the mean of a finite set of bounded numbers when sampling WoR. Further details can
be found in Section D.4. Clearly, the two betting approaches (Hedged and ConBo) are
dominant in all settings.
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Table 2. Typical computation time for constructing a CS from time 1 to 103 for
the mean of Bernoulli(1/2)-distributed random variables. The three betting CSs
were computed for 1000 evenly-spaced values of m in [0, 1], while a coarser
grid would have sped up computation. All CSs were calculated on a laptop
powered by a quad-core 2GHz 10th generation Intel Core i5. Parallelization
was carried out using the Python library, multiprocess [McKerns et al., 2011].

Betting scheme Interval (a.s.) Computation time (seconds)
ConBo+LBOW X 0.08

Hedged+(�PrPl±
t

)1
t=1

X 0.25
hgKelly (G = 20) X 1.38

aGRAPA 0.35
LBOW 0.25
ONS-m 12.45
Kelly 197.38

D. Simulation details

In each simulation containing confidence sequences or intervals and their widths, we
took an average over 5 random draws from the relevant distribution. For example, in
the “Time-uniform confidence sequences” plot of Figure 1, the CSs (PrPl-H, PrPl-EB,
and Hedged) were averaged over 5 random draws from a Beta(10, 30) distribution.
Computation times for various strategies are given in Table 2.

D.1. Time-uniform confidence sequences (with replacement)
Each of the CSs considered in the time-uniform (with replacement) case are presented
as explicit theorems and propositions throughout the paper. Specifically,

• PrPl-H: Predictable plug-in Hoeffding (Proposition 1);

• PrPl-EB: Predictable plug-in empirical Bernstein (Theorem 2);

• Hedged: Hedged capital process (Theorem 3); and

• hgKelly: Hedged grid-Kelly (Proposition 5).

Bernoulli [HRMS20] Section C compared these against the conjugate mixture
sub-Bernoulli confidence sequence by Howard et al. [2021], recalled below.

Hoeffding [1963, Equation (3.4)], presented the sub-Bernoulli upper-bound on the
moment generating function of bounded random variables for any � > 0:

EP (exp {�(Xi � µ)})  1� µ+ µ exp{�},

which can be used to construct an e-value by noting that

EP

⇣
exp

n
�(Xi � µ)� log(1� µ+ µe�)

o
| Fi�1

⌘
 1.
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Then, Howard et al. [2021] showed that the cumulative product process

tY

i=1

⇣
exp

n
�(Xi � µ)� log(1� µ+ µe�)

o⌘
(49)

forms a test supermartingale, as does a mixture of (49) for any probability distribution
F (�) on R+:

Z

�2R+

tY

i=1

⇣
exp

n
�Xi � log(1� µ+ µe�)

o⌘
dF (�). (50)

In particular, Howard et al. [2021] take F (�) to be a beta distribution so that the
integral (50) can be computed in closed-form. Using (50) in Step (b) in Theorem 1
yields the “Bernoulli [HRMS20]” confidence sequence.

There are yet other improvements of Hoeffding’s inequality, for example one that
goes by the name of Kearns-Saul [Kearns and Saul, 1998] but was incidentally noted
in Hoeffding’s original paper itself. This inequality, and other variants, are looser
than the sub-Bernoulli bound and so we exclude them here; see Howard et al. [2020]
for more details. Most importantly, none of these adapt to the true underlying
variance of the random variables, unlike most of our new techniques.

A-Bentkus [KZ21] We also compared our bounds against the “adaptive Bentkus
confidence sequence” (A-Bentkus) due to Kuchibhotla and Zheng [2021, Section 3.5].
These combine a maximal version of Bentkus et al.’s concentration inequality [Kuchib-
hotla and Zheng, 2021, Theorem 1] with the “stitching” technique Zhao et al. [2016],
Mnih et al. [2008], Howard et al. [2021] — a method to obtain infinite-horizon
concentration inequalities by taking a union bound over exponentially-spaced finite
time horizons.

D.2. Fixed-time confidence intervals (with replacement)
For the fixed-time CIs included from this paper, we have

• PrPl-EB-CI: Predictable plug-in empirical Bernstein CI (Remark 1); and

• Hedged-CI: Hedged capital process CI (Remark 3).

These were compared against CIs due to Hoeffding [1963], Maurer and Pontil [2009],
Anderson [1969], and Bentkus [2004] which we now recall.

H-CI [H63] These intervals refer to the CIs based on Hoeffding’s classical concen-
tration inequalities [Hoeffding, 1963]. Specifically, for a sample size n � 1, “H-CI
[H63]” refers to the CI,

1

n

nX

i=1

Xi ±
r

log(2/↵)

2n
.
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Anderson [A69] These intervals refer to the confidence intervals due to Anderson
[1969] which take a unique approach by considering the entire sample cumulative
distribution function, rather than just the mean and variance. Consequently, however,
Anderson’s CIs require iid observations, rather than the more general setup we
consider. We nevertheless find that even in the iid setting, our approach outperforms
Anderson’s.

Suppose X1, . . . , Xn

iid⇠ P are [0, 1]-bounded with mean EP (X1) = µ. Let
X(1), . . . , X(n) denote the order statistics of Xn

1 with the convention that X(0) := 0
and X(n+1) := 1. Following the notation of Learned-Miller and Thomas [2019],
Anderson’s CI is given by

"
nX

i=1

uDKW
i

�
�X(n�(i+1)) +X(n�i)

�
, 1�

nX

i=1

uDKW
i

�
X(i+1) �X(i)

�
#
,

where uDKW
i

=
⇣
i/n�

p
log(2/↵)/2n

⌘
_ 0. Learned-Miller and Thomas [2019,

Theorem 2] show that Anderson’s CI is always tighter than Hoeffding’s. The authors
also introduce a bound which is strictly tighter than Anderson’s which they conjecture
has valid (1� ↵)-coverage, but we do not compare to this bound here.

EB-CI [MP09] The empirical Bernstein CI of Maurer and Pontil [2009] is given by

1

n

nX

i=1

Xi ±
r

2b�2 log(4/↵)
n

+
7 log(4/↵)

3(n� 1)
,

and b�2 is the sample variance.

Bentkus-CI [B04] Bentkus’ confidence interval requires an a-priori upper bound on
Var(Xi) for each i. As alluded to in the introduction, we do not consider concentration
bounds which require knowledge of the variance. However, since we assume Xi 2 [0, 1],
we have the trivial upper bound, Var(Xi)  1

4 , which we implicitly use throughout
our computation of Bentkus’ confidence interval.

Define the independent, mean-zero random variables (Gi)ni=1 as

Gi :=

(
�1

4 w.p. 4
5

1 w.p. 1
5

,

an important technical device which has appeared in seminal works by Hoeffding
[1963, Equation (2.14)] and Bennett [1962, Equation (10)]. Then the “Bentkus-CI” is

1

n

nX

i=1

Xi ±
W ?
↵

n
,

where W ?
↵ 2 [0, n] is given by the value of W↵ such that

inf
y2[0,n] : yW↵

E
⇥P

n

i=1(Gi � y)2+
⇤

(W↵ � y)2+
= ↵.
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Efficient algorithms have been developed to solve the above [Bentkus et al., 2006,
Section 9], [Kuchibhotla and Zheng, 2021].

PTL-`2 [PTL21] The work by Phan et al. [2021] proposes an interesting but
computationally intensive approach to constructing confidence intervals for means
of iid bounded random variables. Specifically, we will focus on their tightest bound
(according to [Phan et al., 2021, Figure 4]) which makes use of the `2 norm in its
derivation (and which we thus refer to as PTL-`2).

For example, computing PTL-`2 confidence intervals¶ from a sample X1, . . . , X300 ⇠
Unif[0, 1] of n = 300 uniformly distributed random variables took upwards of 11
minutes while our betting confidence interval (Remark 3) took less than 0.5 sec-
onds. For this reason, we conduct a small-scale simulation of sample sizes 5-200
(see Figure 16). We find that PTL-`2 performs extremely well for the low-variance
continuous distribution Beta(10, 30) but poorly for sample sizes closer to 200 for
Bernoulli data. Nevertheless, PTL-`2 requires i.i.d. data (while we only require
boundedness and conditional mean µ) and PTL-`2 does not have time-uniform or
without-replacement analogues.

D.3. Time-uniform confidence sequences (without replacement)
The WoR CSs which were introduced in this paper include

• Hedged-WoR: Without replacement hedged capital process (Theorem 4); and

• hgKelly-WoR: Without replacement analogue of hgKelly (Proposition 5).

The CSs labeled “H-WoR [WR20]” and “EB-WoR [WR20]” are the without-replacement
Hoeffding- and empirical Bernstein-type CSs due to Waudby-Smith and Ramdas
[2020] which we recall now.

H-WoR [WR20] Define the weighted WoR mean estimator and the Hoeffding-type
�-sequence,

bµWoR

t (�t1) :=

P
t

i=1 �i(Xi +
1

N�i+1

P
i�1
j=1Xj)

P
t

i=1 �i(1 +
i�1

N�i+1)
, and �t :=

s
8 log(2/↵)

t log(t+ 1)
^ 1,

respectively. Then “H-CS [WR20]” refers to the WoR Hoeffding-type CS,

bµWoR

t (�t1)±
P

t

i=1  H(�i) + log(2/↵)
P

t

i=1 �i
⇣
1 + i�1

N�i+1

⌘ .

¶We used code by Phan et al. [2021] with their default tuning parameters, available at
github.com/myphan9/small_sample_mean_bounds.

https://github.com/myphan9/small_sample_mean_bounds
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Figure 16. Various with-replacement fixed-time confidence intervals, including that of Phan
et al. [2021] (PTL-`2-CI). While PTL-`2-CI performs very well in the Beta(10, 30) regime, it
appears to suffer for Bernoulli(1/2) with larger n. In any case, PTL-`2-CI relies on iid data,
while the other four methods do not.
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EB-WoR [WR20] Analogously to the Hoeffding-type CSs, “EB-CS [WR20]” corre-
sponds to the empirical Bernstein-type CSs for sampling WoR due to Waudby-Smith
and Ramdas [2020]. These CSs take the form

bµWoR
t (�t1)±

P
t

i=1 4(Xi � bµi�1)2 E(�i) + log(2/↵)
P

t

i=1 �i
⇣
1 + i�1

N�i+1

⌘ ,

where in this case, we have

�t :=

s
2 log(2/↵)

b�2
t�1t log(t+ 1)

^ 1

2
, b�2t :=

1/4 +
P

t

i=1(Xi � bµi)2

t+ 1
, and bµt :=

1

t

tX

i=1

Xi.

(51)

D.4. Fixed-time confidence intervals (without replacement)
The only fixed-time CI introduced in this paper is Hedged-WoR-CI: the without-
replacement hedged capital process CI described in Section 5. The other two are
both due to Waudby-Smith and Ramdas [2020] which we describe now.

H-WoR-CI [WR20] This corresponds to the CI described in Corollary 3.1 of
Waudby-Smith and Ramdas [2020]. This has the form

bµWoR

n ±

q
1
2 log(2/↵)

p
n+ 1p

n

P
n

i=1
i�1

N�i+1

.

EB-WoR-CI [WR20] Similarly, this CI corresponds to that described in Corol-
lary 3.2 of Waudby-Smith and Ramdas [2020]. Specifically, “EB-WoR-CI [WR20]” is
defined as

bµWoR
n (�n1 )±

P
n

i=1 4(Xi � bµi�1)2 E(�i) + log(2/↵)
P

n

i=1 �i
⇣
1 + i�1

N�i+1

⌘ ,

where

�t :=

s
2 log(2/↵)

nb�2
t�1

^ 1

2
, b�2t :=

1/4 +
P

t

i=1(Xi � bµi)2

t+ 1
, and bµt :=

1
2 +

P
t

i=1Xi

t+ 1
,

(52)
and bµWoR

n is defined as

bµWoR

t (�t1) :=

P
t

i=1 �i(Xi +
1

N�i+1

P
i�1
j=1Xj)

P
t

i=1 �i(1 +
i�1

N�i+1)
.

D.5. Betting “confidence distributions”: confidence sets at several resolutions
Figures 17 and 18 demonstrate two tools to visualize CSs at various ↵ and t.
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Figure 17. This plot shows the aGRAPA CS for all ↵ 2 [0, 1/2] under Unif[0, 1] data.

Figure 18. Here we plot the inverse wealth 1/Kt(m) in game m against m 2 [0, 1], at
t = 25, 100, 250 for three different betting strategies. Note the different y-axis scales. Despite
not being normalized to yield a “confidence distribution”, this is a useful visual tool. For
example, the mode in each plot signifies the m against which we have minimum wealth,
which is a reasonable point estimator for µ. Further, the superlevel set for any ↵ 2 [0, 1]
yields exactly the (1� ↵)-CS for µ (for that corresponding time and strategy) since it yields
all m with wealth less than 1/↵. Last, for any m 2 [0, 1], the height (truncated at one) is
anytime-valid p-value for the null hypothesis that the mean equals m.

E. Additional theoretical results

E.1. Betting confidence sets are tighter than Hoeffding
In this section, we demonstrate that the betting approach can dominate Hoeffding
for sufficiently large sample sizes. First, we show that for any x,m 2 (0, 1) and any
� 2 R, then � ⌘ �m(�) can be set as

�m(�) := exp
�
�m�� �2/8

 
(exp(�)� 1),

so that

Hm(x) := exp
�
�(x�m)� �2/8

 
| {z }

Hoeffding term

 1 + �(x�m)| {z }
Capital process term

=: Km(x)
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for any x,m 2 [0, 1]. In particular, the Hoeffding-type and capital process su-
permartingales are built from precisely the above terms, respectively, and so if
Hm(x)  Km(x) for any x 2 [0, 1], then their respective supermartingales will satisfy
the same inequality almost surely.

Proposition 6 (Capital process dominates Hoeffding process). Suppose
x,m 2 [0, 1] and � 2 R. Then there exists �m(�) 2 R such that

Hm(x) := exp
�
�(x�m)� �2/8

�
 1 + �m(�)(x�m) =: Km(x).

Note that Proposition 6 alone does not confirm that the Hoeffding-based CIs will be
dominated by capital process-based CIs since � must be within [�1/(1�m), 1/m] for
Km(x) to be nonnegative. However, it is easy to verify that for all � 2 [�0.45, 0.45],
we have that � 2 [�1, 1] and thus Km(x) � 0. When constructing a Hoeffding-type
(1�↵)-confidence interval, for example, one would set �Hn :=

p
8 log(2/↵)/n, making

�Hn 2 [�0.45, 0.45] whenever n � 40 log(2/↵), in which case a capital process-based
CI will dominate a Hoeffding-based CI almost surely.

Proof (Proposition 6). We prove the result for � � 0 and remark that this
implies the result for the case when �  0 by considering (1�x) and (1�m) instead
of x and m, respectively.

The proof proceeds in 3 steps. First, we consider the line segment Lm(x) con-
necting Hm(0) and Hm(1) and note that by convexity of Hm(x), we have that
Hm(x)  Lm(x) for all x 2 [0, 1]. We then find the slope of this line segment
and set � to this value so that the line Km(x) := 1 + �(x � m) has the same
slope as Lm(x). Finally, we demonstrate that Lm(0)  Km(0), and conclude that
Hm(x)  Lm(x)  Km(x) for all x 2 [0, 1].

Step 1. Note that Hm(x) is a convex function in x 2 [0, 1], and thus

8x 2 [0, 1], Hm(x)  Hm(0) + [Hm(1)�Hm(0)]x =: Lm(x).

Step 2. Observe that the slope of Lm(x) is Hm(1)�Hm(0). Setting � := Hm(1)�
Hm(0) we have that Km(x) and Lm(x) are parallel.

Step 3. It remains to show that Km(0) � Lm(0) ⌘ Hm(0) for every m 2 [0, 1].
Consider the following equivalent statements:

Km(0) � Hm(0)

() 1�m [Hm(1)�Hm(0)] � Hm(0)

() 1�m exp
�
�� �m� �2/8

�
� (1�m) exp

�
��m� �2/8

�

() 1 � exp
�
��m� �2/8

�
[1�m+m exp(�)]

() exp
�
�m+ �2/8

�
� [1�m+m exp(�)]

() a(�) := exp
�
�m+ �2/8

�
� [1�m+m exp(�)] � 0.
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Now, note that a is smooth and a(0) = 0 and so it suffices to show that its derivative
a0(�) � 0 for all � � 0. To this end, consider the following equivalent statements.

a0(�) ⌘
✓
m+

�

4

◆
exp

�
�m+ �2/8

�
�m exp(�) � 0

()
✓
m+

�

4

◆
exp

�
�m+ �2/8

�
� m exp(�)

() ln

✓
1 +

�

4m

◆
+ �m+ �2/8 � �

() b(�) := ln

✓
1 +

�

4m

◆
+ �m+ �2/8� � � 0,

and hence it suffices to show that b(�) � 0. Similar to a(�), we have that b(0) = 0
and so it suffices to show that its derivative, b0(�) � 0 for all � � 0. Indeed,

b0(�) ⌘ 1

4m+ �
+m+

�

4
� 1 � 0

() c(�) := 1 +m(4m+ �) +
�

4
(4m+ �)� 4m� � � 0

Since c(�) is a convex quadratic, it is straightforward to check that

argmin
�2R

c(�) = 2� 4m,

and that c(2� 4m) = 0. In conclusion, if we set � ⌘ �m(�) as

�m(�) := Hm(1)�Hm(0) = exp
�
�m�� �2/8

 
(exp(�)� 1),

then Hm(x)  Km(x) := 1 + �m(�)(x�m) for every m 2 [0, 1]. This completes the
proof. 2

E.2. Optimal convergence of betting confidence sets
In Section B, it was mentioned that for nonnegative martingales, Ville’s inequality is
nearly an equality and hence martingale-based CSs are nearly tight in a time-uniform
sense. However, it is natural to wonder what other theoretical guarantees betting
CSs/CIs can have in addition to their empirical performance. In the time-uniform
setting, CSs for the mean cannot attain widths which scale faster than ⇣

p
log log t/t,

due to the law of the iterated logarithm. Similarly, fixed-time CIs cannot scale faster
than ⇣ 1/

p
n. In this section, we show that it is possible to choose betting strategies

such that the resulting CSs and CIs scale at the optimal rates of O(
p

log log t/t) and
O(1/

p
n), respectively.

E.2.1. An iterated logarithm betting confidence sequence
We will establish the law of the iterated logarithm (LIL) convergence rate by carefully
constructing a capital process martingale whose resulting CS is — for sufficiently
large t — tighter than a larger CS which itself attains the required LIL rate.
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Before stating the result in Proposition 7, let ⇣(s) :=
P1

k=1
1
ks be the Riemann

zeta function and for each k 2 {1, 2, . . . }, define

�k :=

s
8 log (ks⇣(s))

⌘k+1/2
, and

�k(m) = exp
�
�m�k � �2k/8

 
(exp(�k)� 1) ^ 1,

where ⌘ > 1 is some user-chosen constant. Let kt denote the (unique) integer such
that log⌘ t  kt  log⌘ t+ 1. Define the process

KL
t :=

1

2
KL+

t
(m) +

1

2
KL�

t
(m)

where KL+
t

(m) :=
1

ks
t
⇣(s)

tY

i=1

(1 + �kt
(Xi �m)) and

KL�
t

(m) :=
1

ks
t
⇣(s)

tY

i=1

(1� �kt
(Xi �m)).

Note that KL+
t

(m) and KL�
t

(m) are both upper-bounded by the infinite mixtures

KL+
t

(m) 
1X

k=1

1

ks⇣(s)

tY

i=1

(1 + �k(Xi �m)) and (53)

KL�
t

(m) 
1X

k=1

1

ks⇣(s)

tY

i=1

(1� �k(Xi �m)), (54)

which themselves form nonnegative martingales when m = µ by Fubini’s theorem.
Consequently,

CL
t :=

⇢
m 2 [0, 1] : KL

t (m) <
1

↵

�

forms a (1� ↵)-CS for µ. The following proposition establishes the LIL rate of CL
t .

Proposition 7. The CS (CL
t )

1
t=1 has a width of O(

p
log log t/t), meaning

⌫(CL
t ) = O

 r
log log t

t

!
,

where ⌫ is the Lebesgue measure.

Proof. The proof proceeds in three steps. In Step 1, we construct a distinct but
related CS (which we will denote by (C⇥

t
)1
t=1) via the stitching technique [Howard

et al., 2021]. In Step 2, we demonstrate that this stitched CS achieves the desired rate
by deriving an analytically tractible superset whose width scales as O(

p
log log t/t).

Finally, in Step 3, we will show that the stitched CS C⇥
t

is a superset of CL
t for all t

sufficiently large, thus implying the final result.
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Step 1. Constructing the stitched CS C⇥
t
: In the language of betting, the idea

behind stitching is to first divide one’s capital up into infinitely many portions
w1, w2, . . . such that

P1
k=1wk = 1, and then place a constant bet �k using a capital

of wk on a designated epoch of time, which will be chosen to be geometrically spaced.
In what follows, the portions wk will be given by wk = 1

⇣(s)ks , and we will divide
time {1, 2, 3, . . . } up into epochs demarcated by the endpoints ⌘k�1 and ⌘k for each
k 2 {1, 2, 3, . . . } and for some user-specified ⌘ > 1 (e.g. ⌘ = 1.1). The constant
bets �k will be chosen so that they are effective between ⌘k�1 and ⌘k and lead to
O(

p
log log t/t) widths after being combined across epochs.

The construction of the stitched boundary essentially follows (a simplified version
of) the proof of Theorem 1 in Howard et al. [2021, Section A.1], but we present the
derivation here for completeness. Consider the Hoeffding-type process for a fixed
� 2 R:

M�

t (m) := exp
�
�St(m)� t�2/8

 
, (55)

where St(m) :=
P

t

i=1(Xi � m). As discussed in Section 3, Mt(µ) forms a test
supermartingale, and hence by Ville’s inequality we have

P

0

BB@9t � 1 : St(µ) �
r + t�2/8

�| {z }
g�,r(t)

1

CCA  e�r.

We have typically used r = log(1/↵) throughout the paper, but the above alternative
notation will help in the following discussion. Using the notation of Howard et al.
[2021, Section A.1], define the boundary above as g�,r(t) := (r + t�2/8)/�, and let

�k :=

s
8rk

⌘k�1/2
,

where rk := log

✓
ks⇣(s)

↵/2

◆
.

Some algebra will reveal that plugging the above choices of �k and rk into g�,r(t)
yields

g�k,rk
(t) :=

r
rkt

8

 r
⌘k�1/2

t
+

r
t

⌘k�1/2

!
,

resulting in the following concentration inequality for each k:

P (9t � 1 : St(µ) � g�k,rk
(t))  exp{�rk}.

Let kt denote the (unique) epoch number such that ⌘kt�1  t  ⌘kt (i.e. such that
log⌘ t  kt  log⌘ t+ 1). Now, we take a union bound over k = 1, 2, 3, . . . resulting
in the following boundary,

P
�
9t � 1 : St(µ) � g�kt

,rkt
(t)
�


1X

k=1

exp{�rk} =
↵/2

⇣(s)

1X

k=1

1

ks

| {z }
⇣(s)

= ↵/2.
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Repeating all of the previous steps for �S(µ) and taking a union bound, we arrive
at the (1� ↵) stitched CS (C⇥

t
)1
t=1 given by

C⇥
t
:=

 
1

t

tX

i=1

Xi ±
g�kt

,rkt
(t)

t

!
,

with the guarantee that P (9t � 1 : µ /2 C⇥
t
)  ↵.

Step 2. Demonstrating that C⇥
t

achieves the desired LIL width: Now, we will simply
upper-bound g�kt

,rkt
(t) by an analytical boundary depending explicitly on t (rather

than implicitly through kt) to see that it achieves the desired LIL width. First,
notice that

p
⌘kt�1/2/t+

p
t/⌘kt�1/2 is uniquely minimized when t = ⌘kt�1/2 and

hence its maximum on the interval (⌘kt�1, ⌘kt) must be at the endpoints. Therefore,p
⌘kt�1/2/t+

p
t/⌘kt�1/2  ⌘1/4 + ⌘�1/4 and thus for each k, we have

g�kt
,rkt

(t) 
r

rkt
t

8

⇣
⌘1/4 + ⌘�1/4

⌘
for all ⌘kt�1  t  ⌘kt .

Furthermore, for all ⌘kt�1  t  ⌘kt , we have that kt  log⌘ t + 1. Applying this
inequality to the above, we obtain the final bound which does not depend on k,

g�kt
,rkt

(t) 

s
t log

�
2
�
log⌘ t+ 1

�s
⇣(s)/↵

�

8

⇣
⌘1/4 + ⌘�1/4

⌘
for all k.

In conclusion, we have that

C⇥
t
✓

0

@1

t

tX

i=1

Xi ±

s
log

�
2
�
log⌘ t+ 1

�s
⇣(s)/↵

�

8t

⇣
⌘1/4 + ⌘�1/4

⌘
1

A ,

and thus C⇥
t
= O

⇣p
log log t/t

⌘
, as desired.

Step 3. Showing that CL
t ✓ C⇥

t
for all t large enough: This step in the proof

essentially follows immediately from the discussion in Section E.1. We justified that
for � � 0, setting � as

� = exp
�
�m�� �2/8

 
(exp(�)� 1) ^ 1,

yields 1 + �(x�m) � exp
�
�(x�m)� �2/8

 
for all x,m 2 [0, 1] if � is sufficiently

small (i.e. so that � is not relying on truncation at 1). Since �k is decreasing in t, it
follows that for t sufficiently large,

tY

i=1

(1 + �kt
(Xi �m)) � exp

�
�kt

St(m)� �2
kt
/8
 

almost surely.
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Therefore, for t sufficiently large,

KL+
t

(m) :=
1

ks
t
⇣(s)

tY

i=1

(1 + �kt
(Xi �m))

� 1

ks
t
⇣(s)

exp
�
�kt

St(m)� �2
kt
/8
 
=: H1+

t
(m)

and similarly for KL�
t

(m),

KL�
t

(m) � 1

ks
t
⇣(s)

exp
�
��kt

St(m)� �2
kt
/8
 
=: H1�

t
(m).

Therefore, for sufficiently large t, we have

CL
t :=

⇢
m 2 [0, 1] : KL

t (m) <
1

↵

�

✓
⇢
m 2 R : max

⇢
1

2
H1+

t
(m),

1

2
H1�

t
(m)

�
<

1

↵

�

| {z }
(?)

and it is straightforward to verify that (?) is precisely C⇥
t

.
In summary, we constructed a CS C⇥

t
using the stitching technique in Step 1, and

then showed that ⌫(C⇥
t
) = O(

p
log log t/t) in Step 2. Finally in Step 3, we showed

that our discrete mixture betting CS CL
t is a subset of C⇥

t
for t sufficiently large,

and hence by subadditivity of measures,

⌫(CL
t ) = O

 r
log log t

t

!
,

which completes the proof. 2

Remark 5. Notice that KL+
t

and KL�
t

can be made strictly more powerful if they
are replaced by adding additional terms, as long as the final sums are upper-bounded
by (53) and (54), respectively. In particular, any finite sum analogue of (53) and (54)
would have sufficed, as long as KL+

t
and KL�

t
form a term in each sum, respectively.

We presented KL+
t

and KL�
t

in their current forms for the sake of notational (and
computational) simplicity.

E.2.2. The
p
n-convergence of betting CIs

Proposition 8. Suppose Xn

1 ⇠ P are independent observations from a distribu-
tion P 2 Pµ with mean µ 2 [0, 1]. Let �n 2 (0, 1) such that �n ⇣ 1/

p
n. Then the

confidence interval,

Cn :=

⇢
m 2 [0, 1] : K±

n <
1

↵

�
has an asymptotic width of O(1/

p
n).
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Proof. Writing out the capital process with positive bets, we have by Lemma 3
that for any m 2 [0, 1],

K+
n (m) :=

nY

i=1

(1 + �n(Xi �m))

� exp

 
�n

nX

i=1

(Xi �m)�  E(�n)
nX

i=1

4(Xi �m)2
!

� exp

 
�n

nX

i=1

(Xi �m)� 4n E(�n)

!
=: B+

t
(m),

and similarly for negative bets,

K�
n (m) :=

nY

i=1

(1� �n(Xi �m))

� exp

 
��n

tX

i=1

(Xi �m)� 4n E(�n)

!
=: B�

t
(m).

For any ✓ 2 (0, 1), consider the set,

Sn :=

⇢
m : B+

t
(m) <

1

✓↵

�\⇢
m : B�

t
(m) <

1

(1� ✓)↵

�

Now notice that the 1/↵-level set of K±
n (m) := max {✓K+

n (m), (1� ✓)K�
n (m)} is a

subset of Sn:

Cn =

⇢
m : K+

n (m) <
1

✓↵

�\⇢
m : K�

n (m) <
1

(1� ✓)↵

�
✓ Sn.

On the other hand, it is straightforward to derive a closed-form expression for Sn:
0

@
P

n

i=1Xi

n
�

log
�

1
✓↵

�
+ 4n E(�n)

n�n
,

P
n

i=1Xi

n
+

log
⇣

1
(1�✓)↵

⌘
+ 4n E(�n)

n�n

1

A ,

which in the typical case of ✓ = 1/2 has the cleaner expression,
P

n

i=1Xi

n
± log(2/↵) + 4n E(�n)

n�n
.

As discussed in Section B, we have by two applications of L’Hôpital’s rule that
 E(�n)
 H(�n)

n!1���! 1, where  H(�n) := �2n/8 ⇣ 1/n and thus the width Wn of Sn scales as

Wn := 2 · log(1/↵) + 4n E(�n)

n�n
⇣ log(1/↵)p

n
+

4n/np
n
⇣ 1p

n
.

Since Cn ✓ Sn, we have that Cn has a width of O(1/
p
n), which completes the proof.

2
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Despite these results, the hedged capital CI presented and recommended in Section 4.4
does not satisfy the assumptions of the above proof. In particular, we recommended
using the variance-adaptive predictable plug-in,

�PrPl-EB(n)

t
:=

s
2 log(2/↵)

nb�2

t�1

, b�2

t
:=

1/4 +
P

t

i=1
(Xi � bµi)2

t+ 1
, and bµt :=

1/2 +
P

t

i=1
Xi

t+ 1
,

(56)
using a truncation which depends on m,

�+
t
(m) := �±

t
^ c

m
, ��

t
(m) := �

✓
�±
t
^ c

1�m

◆
, (57)

and finally defining the hedged capital process for each t 2 {1, . . . , n}:

K±
t
(m) := max

(
✓

tY

i=1

(1 + �+
i
(m) · (Xi �m)), (1� ✓)

tY

i=1

(1� ��
i
(m) · (Xi �m))

)
.

Furthermore, the resulting CI is defined as an intersection,

Bn :=
n\

t=1

⇢
m 2 [0, 1] : K±

t
(m) <

1

↵

�
. (58)

All of these tweaks (i.e. making bets predictable, truncating beyond (0, 1), and taking
an intersection) do not in any way invalidate the type-I error, but we find (through
simulations) that they tighten the CIs, especially in low-variance, asymmetric settings
(see Figure 19).

E.3. On the width of empirical Bernstein confidence intervals
Recall the predictable plug-in empirical Bernstein confidence interval:

CPrPl-EB(n)
n :=

✓P
n

i=1 �iXiP
n

i=1 �i
±

log(2/↵) +
P

n

i=1 vi E(�i)P
n

i=1 �i

◆
,

where

�t :=

s
2 log(2/↵)

nb�2
t�1

, b�2t :=
1
4 +

P
t

i=1(Xi � bµi)2

t+ 1
, and bµt :=

1
2 +

P
t

i=1Xi

t+ 1
.

Below, we analyze the asymptotic behavior of the width of CPrPl-EB(n)
n in the i.i.d.

setting. In Proposition 9, we will show that if the data are drawn i.i.d. from a
distribution Q 2 Qµ having variance �2, then the half-width Wn of CPrPl-EB(n)

n scales
as

p
nWn ⌘

p
n

✓
log(2/↵) +

P
n

i=1 vi E(�i)P
n

i=1 �i

◆
a.s.��! �

p
2 log(2/↵), (59)

and hence the width is asymptotically proportional to the standard deviation.
First, let us prove a few lemmas about nonrandom sequences of numbers, which

will be helpful in what follows. These are simple facts for which we could not find a
proof to reference, so we prove them below for completeness.
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Figure 19. Hedged capital CIs with various added tweaks. The CIs labeled “No tweaks”
refer to those which satisfy the conditions of Proposition 8. The other three plots differ
in which “tweaks” have been added. Those with “PrPl” in the legend use the predictable
plug-in approach defined in (56); those with m in the legend have been truncated using m
as outlined in (57); finally, the plots with \n

i=1
in their legends had their running intersections

taken as in (58).

Lemma 4. Suppose (an)1n=1 is a sequence of real numbers such that an ! a. Then
their cumulative average also converges to a, meaning that 1

n

P
n

i=1 ai ! a.

Proof. Let ✏ > 0 and choose N ⌘ N✏ 2 N such that whenever n � N , we have

|an � a| < ✏. (60)

Moreover, choose

M ⌘MN >

P
N

i=1 |ai � a|
✏

(61)

and note that
n�N � 1

n
< 1. (62)

Let n � max {N,M}. Then we have by the triangle inequality,
�����
1

n

nX

i=1

(ai � a)

����� 
1

n

NX

i=1

|ai � a|+ 1

n

nX

i=N+1

|ai � a|

 1

n

NX

i=1

|ai � a|+ 1

n
(n�N � 1)✏ by (60)

 2✏ by (61) and (62),

which can be made arbitrarily small. This completes the proof of Lemma 4. 2
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Lemma 5. Let (an)1n=1 and (bn)1n=1 be sequences of numbers such that

an ! 0 and (63)
|bn|  C for some C � 0 and for all n � 1. (64)

Then anbn ! 0. Further, if (An) is a sequence of random variables such that An ! 0
almost surely, then Anbn ! 0 almost surely.

The proof is trivial, since |Anbn|  C|An| which converges to zero almost surely. 2

Now, we prove that a modified variance estimator is consistent.

Lemma 6. Let X1, . . . , Xn

i.i.d.⇠ Q 2 Qµ with Var(Xi) = �2. Then the modified
variance estimator

b�2n :=
1

n

nX

i=1

(Xi � bµi�1)
2

converges to �2, Q-almost surely.

Proof. By direct substitution,

b�2n :=
1

n

nX

i=1

(Xi � bµi�1)
2 =

1

n

nX

i=1

(Xi � µ+ µ� bµi�1)
2

=
1

n

nX

i=1

(Xi � µ)2

| {z }
a.s.��!�2

� 2

n

nX

i=1

(Xi � bµi�1)(bµi�1 � µ)

| {z }
(?)

+
1

n

nX

i=1

(µ� bµi�1)
2

| {z }
(??)

.

Now, note that bµi�1�µ
a.s.��! 0 and |Xi�bµi�1|  1 for each i. Therefore, by Lemma 5,

(Xi� bµi�1)(bµi�1�µ)
a.s.��! 0, and by Lemma 4, (?) a.s.��! 0. Furthermore, we have that

(µ� bµi�1)2
a.s.��! 0 and so by another application of Lemma 4, we have (??)

a.s.��! 0.
This completes the proof of Lemma 6. 2

Next, let us analyze the second term in the numerator in the margin of CPrPl-EB(n)
n ,

log(2/↵) +
P

n

i=1 vi E(�i)P
n

i=1 �i
. (65)

Lemma 7. Under the same assumptions as Lemma 6,

nX

i=1

vi E(�i)
a.s.��! log(2/↵).
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Proof. Recall that  E(�)
 H(�)

�!0���! 1, and b�2t
t!1���! �2. By definition of �i, we have

that �i
a.s.��! 0 and thus we may also write

 E(�i)

 H(�i)
= 1 +Ri and (66)

s
�2

b�2
t

= 1 +R0
i (67)

for some Ri, R0
i

a.s.��! 0. Thus, we rewrite the left hand side of the claim as

nX

i=1

vi E(�i) =
nX

i=1

vi H(�i)
 E(�i)

 H(�i)
=

nX

i=1

vi(�
2
i /8)(1 +Ri)

=
nX

i=1

vi ·
2 log(2/↵)

8bn�2
i�1

· (1 +Ri)

=
nX

i=1

vi ·
2 log(2/↵)

8n�2
· (1 +R0

i) · (1 +Ri)

=
nX

i=1

4(Xi � bµi�1)
2 · 2 log(2/↵)

8n�2
· (1 +Ri +R0

i +RiR
0
i).

Defining R00
i
= Ri + R0

i
+ RiR0

i
for brevity, and noting that R00

i
! 0 almost surely,

the above expression becomes
nX

i=1

vi E(�i) =
nX

i=1

(Xi � bµi�1)
2 · log(2/↵)

n�2
· (1 +R00

i )

=
log(2/↵)

�2

"
1

n

nX

i=1

(Xi � bµi�1)
2 · (1 +R00

i )

#

=
log(2/↵)

�2

2

666664

1

n

nX

i=1

(Xi � bµi�1)
2

| {z }
a.s.��!�2 by Lemma 6

+
1

n

nX

i=1

(Xi � bµi�1)
2R00

i

| {z }
a.s.��!0 by Lemma 5

3

777775

a.s.��! log(2/↵),

which completes the proof of Lemma 7. 2

Now, consider the denominator in (65).

Lemma 8. Continuing with the same notation,

1p
n

nX

i=1

�i
a.s.��!

r
2 log(2/↵)

�2
.
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Proof. Let R0
i
be as in (67). Then,

1p
n

nX

i=1

�i =
1p
n

nX

i=1

s
2 log(2/↵)

nb�2
i�1

=
1p
n

nX

i=1

r
2 log(2/↵)

n�2
·
�
1 +R0

i

�

=

r
2 log(2/↵)

�2
· 1

n

nX

i=1

�
1 +R0

i

�

| {z }
a.s.��!1 by Lemma 4

a.s.��!
r

2 log(2/↵)

�2
,

completing the proof of Lemma 8. 2

We are now able to combine Lemmas 7 and 8 to prove the main result.

Proposition 9. Denoting the half-width of CPrPl-EB(n)
n as Wn, and assuming

the data are drawn iid from a distribution Q 2 Qµ with variance �2, we have

p
nWn ⌘

p
n

✓
log(2/↵) +

P
n

i=1 vi E(�i)P
n

i=1 �i

◆
a.s.��! �

p
2 log(2/↵). (68)

Thus, the width is asymptotically proportional to the standard deviation.

Proof. By direct rearrangement of the left hand side, we see that

p
n

✓
log(2/↵) +

P
n

i=1 vi E(�i)P
n

i=1 �i

◆
=

log(2/↵) +
P

n

i=1 vi E(�i)
1p
n

P
n

i=1 �i

a.s.��! log(2/↵) + log(2/↵)

��1
p

2 log(2/↵)
= �

p
2 log(2/↵),

which completes the proof of Proposition 9. 2

E.4. aGRAPA sublevel sets need not be intervals: a worst-case example
In the proof of Theorem 3, we demonstrated that the hedged capital process with
predictable plug-in bets yielded convex confidence sets, making their construction
more practical. However, this proof was made simple by taking advantage of the
fact that the sequences before truncation (�̇+

t
)1
t=1 and (�̇�

t
)1
t=1 did not depend on

m 2 [0, 1]. This raises the natural question, of whether there are betting-based
confidence sets which are nonconvex when these sequences depend on m. Here, we
provide a (somewhat pathological) example of the aGRAPA process with nonconvex
sublevel sets.

Consider the aGRAPA bets,

�aGRAPA

t
:=

bµt�1 �m

b�2

t�1
+ (bµt�1 �m)2

where bµt :=
1/2 +

P
t

i=1
Xi

t+ 1
, b�2

t
:=

1/20 +
P

t

i=1
(Xi � bµi)2

t+ 1
.

(69)
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Furthermore, suppose that the observed variables are X1 = X2 = 0. Then it can be
verified that

KaGRAPA
2 (m) =

�
1 + �aGRAPA

1 (X1 �m)
� �

1 + �aGRAPA
2 (X2 �m)

�

=

✓
1 +

1/2�m

1/20 + (1/2�m)2
(�m)

◆✓
1 +

1/4�m

0.05625 + (1/4�m)2
(�m)

◆
,

which does not yield convex sublevel sets. For example, KaGRAPA
2 (0.08) < 0.85 and

KaGRAPA
2 (0.4) < 0.85 but KaGRAPA

2 (0.03) > 0.85. In particular, the sublevel set,
�
m 2 [0, 1] : KaGRAPA

2 (m) < 0.85
 

is not convex. In our experience, however, situations like the above do not arise
frequently. In fact, we needed to actively search for these examples and use a rather
small “prior” variance of 1/20 which we would not use in practice. Furthermore, the
sublevel set given above is at the 0.85 level while confidence sets are compared against
1/↵ which is always larger than 1 and typically larger than 10. We believe that it may
be possible to restrict (�aGRAPA

t )1
t=1 and/or the confidence level, ↵ 2 (0, 1) in some

way so that the resulting confidence sets are convex. One reason to suspect that this
may be possible is because of the intimate relationship between �aGRAPA

t , �GRAPA
t ,

and the optimal hindsight bets, �HS. Specifically, we show in Section E.6 that the
optimal hindsight capital KHS

t is exactly the empirical likelihood ratio [Owen, 2001]
which is known to generate convex confidence sets for the mean [Hall and La Scala,
1990]. We leave this question as a direction for future work.

E.5. Betting confidence sequences for non-iid data
The CSs presented in this paper are valid under the assumption that each observation
is bounded in [0, 1] with conditional mean µ. That is, we require that X1, X2, . . . are
[0, 1]-valued with E(Xt | Ft�1) = µ for each t, which includes familiar regimes such
as independent and identically-distributed (iid) data from some common distribution
P with mean µ. Despite the generality of our results, we made matters simpler by
focusing the simulations in Section C on the iid setting. For the sake of completeness,
we present a simulation to examine the behavior of our CSs in the presence of some
non-iid data.

In this setup, we draw the first several hundred or thousand observations indepen-
dently from a Beta(10, 10) — a distribution whose mean is 1/2 but whose variance is
small (⇡ 0.012) — while the remaining observations are independently drawn from
a Bernoulli(1/2) whose mean is also 1/2 but with a maximal variance of 1/4. We
chose to start the data off with low-variance observations in an attempt to “trick” our
betting strategies into adapting to the wrong variance. Empirically, we find that the
hedged capital (Theorem 3) and ConBo (Corollary 1) CSs start off strong, adapting
to the small variance of a Beta(10, 10). After several Bernoulli(1/2) observations,
the CSs remain tight, but seem to shrink less rapidly. Nevertheless, we find that the
hedged capital and ConBo CSs greatly outperform the Hoeffding (Proposition 1) and
empirical Bernstein (Theorem 2) predictable plug-in CSs (see Figure 20). Regardless
of empirical performance, all methods considered produce valid CSs for µ.
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250 observations from Beta(10, 10), followed by all Bernoulli(1/2)

2500 observations from Beta(10, 10), followed by all Bernoulli(1/2)

Figure 20. CSs for the true mean µ = 1/2 for non-iid data. In top pair of plots, the first
250 observations were independently drawn from a Beta(10, 10) while the subsequent
observations are drawn from a Bernoulli(1/2). The bottom pair of plots is similar, but with
2500 initial draws from a Beta(10, 10) instead of 250. In both cases, the betting-based CSs
(Hedged and ConBo) tend to outperform those based on supermartingales.

E.6. Owen’s empirical likelihood ratio and Mykland’s dual likelihood ratio
Let x1, . . . , xt 2 [0, 1] and recall the optimal hindsight capital process KHS

t (m),

KHS

t (m) :=
tY

i=1

(1 + �HS(xi �m)) where �HS solves
tX

i=1

xi �m

1 + �HS(xi �m)
= 0.

Now, let Qm ⌘ Qm(xt1) be the collection of discrete probability measures with
support {x1, . . . , xt} and mean m. Let Q ⌘ Q(xt1) :=

S
m2[0,1]Qm and define the

empirical likelihood ratio [Owen, 2001],

ELt(m) :=
supQ2Q

Q
t

i=1Q(xi)

supQ2Qm

Q
t

i=1Q(xi)
.

Owen [2001] showed that the numerator equals (1/t)t and the denominator equals
tY

i=1

(1 + �EL(xi �m))�1 where �EL solves
tX

i=1

xi �m

1 + �EL(xi �m)
= 0.

Notice that the above product is exactly the reciprocal of KHS
t and that �EL = �HS.

Therefore for each m 2 [0, 1],

ELt(m) = (1/t)tKHS

t (m).

Furthermore, given the connection between the empirical and dual likelihood ratios for
independent data [Mykland, 1995], the hindsight capital process is also proportional
to the dual likelihood ratio in this case.
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F. An extended history of betting and its applications

(This is an expanded version of Section 6 and Figure 9.)
The use of betting-related ideas in probability, statistics, optimization, finance

and machine learning has evolved in many different parallel threads, emanating
from different influential early works and thus having different roots and evolutions.
Since these threads have had little interaction for many decades now, we consider it
worthwhile to mention them in some detail. Two notes of caution:

• We anticipate missing some authors and works in our broad strokes below, but a
thorough coverage would be better suited to a longer survey paper on the topic.
For example, we entirely skip the field of mathematical finance, since betting is
literally a foundation of the entire field (and theoretical and applied progress
on martingales, betting strategies, and related topics has been phenomenal).

• Many of the authors listed below have used the language of betting in their
works explicitly, but others have not — and may even prefer (or have preferred)
not to do so. Thus, our references should be treated with a pinch of salt, as
some connections that we draw to betting may be more apparent in hindsight
(to us) than foresight (to the authors).

If we had to pick the most critical early authors without whom our work would have
been impossible, it would be Ville, Wald, Kelly and Robbins; later influences on
us have been via Lai, Cover, Shafer, Vovk, Grunwald and the second author’s own
earlier works [Howard et al., 2020, 2021]. These authors stand out below.

Probability. Ville’s 1939 PhD thesis [Ville, 1939] contained an important and
rather remarkable result of its time that connected measure-theoretic probability
with betting, and indeed brought the very notion of a martingale into probability
theory. In brief, Ville proved that for every event of measure zero, there exists a
betting strategy for which a gambler’s wealth process (a nonnegative martingale)
grows to infinity if that event occurs. For example, the strong law of large numbers
(SLLN) and the law of the iterated logarithm (LIL) are two classic measure-theoretic
statements that occur on all sequences of observations, except for a null set according
to some underlying probability measure (where the two null sets for the two laws are
different). Ville proved that it is possible to bet on the next outcome such that if
the LIL were false for that particular sequence of observations, then the gambler’s
wealth would grow in an unbounded fashion.

Doob’s monumental papers and book Doob [1953] in the following decades stripped
martingales of their betting roots and presented them as some of the most power-
ful tools of measure-theoretic probability theory, with applications to many other
branches of mathematics. (However, betting could be viewed as instances of “Doob’s
martingale transform”.) These betting roots were revived in the 1960s with the
renewed interest in algorithmic definitions of randomness, due to Kolmogorov, Martin-
Löf [1966] and many others.

More recently, Shafer and Vovk [2001, 2019] have produced two seminal books that
aim bring betting and martingales to the front and center of probability and finance,
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aiming to derive much (if not all) of probability theory from purely game-theoretic
principles based on betting strategies. The product martingale wealth process that
appears in our work also appears in theirs (indeed, it is a fundamental process),
but Shafer and Vovk did not explore the topics in our paper (confidence sequences,
explicit computationally efficient betting strategies, sampling without replacement,
thorough numerical simulations, and so on). Indeed, their book has a thorough
treatment of probability and finance, but with respect to statistical inference, there is
little explicit methodology for practice. Perhaps they were aware of such a statistical
utility, but they did not explicitly recognize or demonstrate the excellent power of
betting in practice (when properly developed) for problems such as ours.

Statistical inference. Using the power of hindsight, we now know that Wald’s
influential work on the sequential probability ratio test was implicitly based on
martingale techniques Wald [1945]. Wald derived many fundamental results that he
required from scratch without having the general language that was being set up by
Doob in parallel to his work. In the case of testing a simple null H0 : ✓ = ✓⇤ against
a composite alternative H0 : ✓ 6= ✓⇤, Wald [1945, Eq (10:10)] suggests forming the
likelihood ratio process

Q
n

i=1 f✓i�1
(Xi)/

Q
n

i=1 f✓⇤(Xi), where ✓i�1 is a mapping from
X1, . . . , Xi�1 to ⇥; in other words, ✓i�1 is predictable. In the language of our paper,
this is a predictable plug-in, and the first appearance of betting-like ideas in the
statistical literature. However, beyond this passing equation in a parametric setup,
the idea appears to have lain dormant.

Robbins (along with students and colleagues Siegmund, Darling, and Lai) quickly
realized the power of Wald’s and Ville’s ideas as well as martingales more generally,
and pursued a rather broad agenda around sequential testing and estimation, including
the introduction and extensive study of confidence sequences and the method of
mixtures [Darling and Robbins, 1967c,a,b, Robbins and Siegmund, 1968, 1969, 1970,
1972, 1974, Lai, 1976]. Robbins and Siegmund also analyzed Wald’s “betting” test,
and proved in some generality that its behavior is similar to a mixture likelihood ratio
test [Robbins and Siegmund, 1974, Section 6]. Most of Wald’s and Robbins’ work
was parametric, but Robbins did explicitly study the sub-Gaussian setting in some
detail [Robbins, 1970]. Building on a vast literature of Chernoff-style concentration
inequalities that exploded after Robbins’ time, Howard et al. [2020, 2021] recently
extended mixture methods of Robbins to derive confidence sequences under a large
class of nonparametric settings using exponential supermartingales. Howard et al.
[2020, 2021] recognized Wald’s betting idea, but did not develop it nonparametrically
beyond a brief mention in the paper as a direction for future work. The current work
takes this natural next step in some thorough detail.

Information and coding theory. Soon after the seminal work of Shannon [1948],
another researcher at AT&T Bell Labs, John Larry Kelly Jr. wrote a paper titled “A
New Interpretation of Information Rate” which explicitly connected betting with the
new field of information theory, complementing the work of Shannon [Kelly Jr, 1956].
In short, he proved that it is possible to bet on the symbols in a communication
channel at odds consistent with their probabilities in order to have a gambler’s
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wealth grow exponentially, with the exponent equaling the rate of transmission over
the channel. More explicitly, given a sequence of Bernoulli random variables with
probability p > 1/2, Kelly proved that betting a (2p � 1) fraction of your current
wealth on the next outcome being 1 is the unique strategy that maximizes the
expected log wealth of the gambler.

When the probability p changes at each step in an unknown manner, the “universal
coding” work of Krichevsky and Trofimov [1981] showed that a mixture method
involving the Jeffreys prior and maximum likelihood can achieve nearly the optimal
wealth in hindsight, with the expected log wealth of their strategy only being worse
than the optimal oracle log-wealth by a factor that is logarithmic in the number of
rounds; these observations work for any discrete alphabet, not just a binary. Cover’s
interest in these techniques spans several decades [Cover, 1974, 1984, 1987, Bell and
Cover, 1980, 1988], culminating in his famous universal portfolio algorithm [Cover,
1991], that today forms a standard textbook topic in information theory.

There are other parts of information/coding theory that could be seen as related
in some ways to betting through the use of (what are now called) e-variables: these
include the topics of prequential model selection and minimum description length;
see works by Rissanen [1984, 1998], Dawid [1984, 1997], Grünwald [2007], Grünwald
et al. [2019], Li [1999] and references therein.

Online learning and sequential prediction under log loss. In the 1990s, the problems
studied by Krichevsky, Trofimov, and Cover continued to be extended — often
dropping the information theoretic context — under the title of sequential prediction
under the logarithmic loss. In the active subfield of online learning, the previous
results were effectively “regret bounds” against potentially adversarial sequences
of observations, with a chapter devoted to the problem in the book on prediction,
learning and games by Cesa-Bianchi and Lugosi [2006]. More recently, Orabona and
colleagues such as Pal and Jun have found powerful implications of these ideas in
deriving parameter-free algorithms for online convex optimization [Orabona and Pal,
2016, Orabona and Tommasi, 2017, Jun et al., 2017, Jun and Orabona, 2019].

Rakhlin and Sridharan [2017] found that deterministic regret inequalities can be
used to derive concentration inequalities for martingales, connecting the two rich
fields. Later, Jun and Orabona [2019] also derive concentration inequalities using
their betting-based regret bounds, with explicit bounds derived in the sub-Gaussian
and bounded settings. However, because regret bounds could be tight in rate but
are typically loose in constants, the resulting concentration inequalities are not
tight in practice. Thus, we view this line of work as important and complementary
to our explorations, which are different in their motivation, derivation and practicality.

Typically, none of these lines of literature have cited the others. For example, the
important paper of Rakhlin and Sridharan [2017] does not mention the work of Ville,
Wald or Robbins, or even of Vovk and Shafer. Similarly, despite the books of Shafer
and Vovk having a wonderful coverage of the history of probability and martingales
stemming back hundreds of years, even their recent 2019 book [Shafer and Vovk,
2019] does not cite the coding theory and online learning literature very much,
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including the works of Orabona and coauthors [Orabona and Pal, 2016, Orabona and
Tommasi, 2017, Jun et al., 2017, Cutkosky and Orabona, 2018, Jun and Orabona,
2019], Krichevsky and Trofimov [1981], or Rakhlin and Sridharan [2017]. Recent
work of Orabona and colleagues also in turn has no mention of the books of Shafer
and Vovk [2001, 2019], or works of Ville, Wald, Robbins, Howard, their coauthors
and other recent authors. The work of Howard et al. [2020, 2021] does cite the Wald
and Robbins literatures, as well as the books of Shafer and Vovk and pioneering work
of Ville, but does not form connections to information/coding theory nor to online
learning. The excellent book of Cesa-Bianchi and Lugosi [2006] does not cite Ville,
the seminal martingale works of Robbins, or the 2001 book by Shafer and Vovk. k

The reason for the lack of intersection of these parallel threads is likely manifold,
and definitely far from malicious: (a) these works were and continue to be published
in different literatures, (b) these works had different goals in mind, meaning that
they were addressing different problems and often using different techniques, (c) our
understanding of these literatures and their relationships is constantly evolving and
far from complete; it is likely that no author has a command over all these parallel
literatures, and indeed this should not be expected.

In the preface of their 2006 book, Cesa-Bianchi and Lugosi write

Prediction of individual sequences, the main theme of this book, has been
studied in various fields, such as statistical decision theory, information
theory, game theory, machine learning, and mathematical finance. Early
appearances of the problem go back as far as the 1950s, with the pio-
neering work of Blackwell, Hannan, and others. Even though the focus
of investigation varied across these fields, some of the main principles
have been discovered independently. Evolution of ideas remained parallel
for quite some time. As each community developed its own vocabulary,
communication became difficult. By the mid-1990s, however, it became
clear that researchers of the different fields had a lot to teach each other.
When we decided to write this book, in 2001, one of our main purposes
was to investigate these connections and help ideas circulate more fluently.
In retrospect, we now realize that the interplay among these many fields
is far richer than we suspected. ... Today, several hundreds of pages later,
we still feel there remains a lot to discover. This book just shows the first
steps of some largely unexplored paths. We invite the reader to join us in
finding out where these paths lead and where they connect.

Thus it is clear that Cesa-Bianchi and Lugosi already foresaw that there were
many connections between the fields that have been unstated, underappreciated,
undiscovered and underutilized. The connections we briefly point out above between
these literatures, both historical and modern, are themselves new in their own right
(not existing in any of the aforementioned books or papers) and may be considered a
small contribution of this paper. A more thorough investigation of these connections
may be the topic of a future survey paper, or indeed, a book on these topics.
kAuthors like like Rissanen [1984, 1998] and Dawid [1984, 1997] are not cited in most of

these works, perhaps because the connections of their works to betting are indirect.
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