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Abstract

The global decline of biodiversity, driven by habitat degradation and climate breakdown, is a significant concern.

Accurate measures of change are crucial to provide reliable evidence of species’ population changes. Meanwhile

citizen science data have witnessed a remarkable expansion in both quantity and sources and serve as the

foundation for assessing species’ status. The growing data reservoir presents opportunities for novel and improved

inference but often comes with computational costs: computational efficiency is paramount, especially as regular

analysis updates are necessary. Building upon recent research, we present illustrations of computationally efficient

methods for fitting new models, applied to three major citizen science data sets for butterflies. We extend a

method for modelling abundance changes of seasonal organisms, firstly to accommodate multiple years of

count data efficiently, and secondly for application to counts from a snapshot mass-participation survey. We

also present a variational inference approach for fitting occupancy models efficiently to opportunistic citizen

science data. The continuous growth of citizen science data offers unprecedented opportunities to enhance our

understanding of how species respond to anthropogenic pressures. Efficient techniques in fitting new models are

vital for accurately assessing species’ status, supporting policy-making, setting measurable targets, and enabling

effective conservation efforts.
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Introduction

An existential crisis of our time is the alarming decrease of biodiversity, due to anthropogenic factors such

as climate breakdown and loss of habitat. Producing robust measures of change is vital for evaluating

species’ status, understanding rates of change, and monitoring responses to pressures, as well as progress

of conservation actions, such as towards biodiversity targets (Butchart et al., 2010). Both data and

appropriate statistical models are critical for measuring biodiversity change. Citizen (or community) science

(CS) data, where information is gathered by voluntary participants, are increasingly used for this purpose

(Silvertown, 2009; Chandler et al., 2017).

CS data from systematic, designed surveys and monitoring schemes, collected by skilled and committed

volunteers, have long been used to produce estimates of species’ status, whereas observations of species from

less structured, opportunistic or mass-participation sampling, attracting contributions from wider society,

are increasingly gathered (Pocock et al., 2017), broadening the scope to measure changes in populations

from extensive geographic areas and for a variety of taxa. The many sources of CS data provide vast

opportunities for biodiversity monitoring, but require suitable analytical approaches, for example to deal

with sources of bias (Isaac and Pocock, 2015). Johnston et al. (2023) outlined a diversity of challenges

for biodiversity monitoring using CS data, relating to dealing with observer behaviour, data structures,

statistical models, and communication. This paper focuses upon one such key challenge, which is in the

computational cost of analysing CS data, particularly with increasing data and complex models, leading

to the “necessity to identify and develop suitable modifications to improve computational efficiency and

scalability, adapting traditional (and developing new) methods to big data” (McCrea et al., 2023).

In this paper we present illustrations of computationally efficient methods for analysing CS data. Our

work is motivated by applications to data for British butterflies, to model changes in both abundance

and distribution, but the methods and overall need for efficiency applies to CS data for a range of taxa

and locations. The global decline of insects has been widely reported, particularly in western Europe and

North America (Wagner et al., 2021), yet there is an ongoing need for robust data and rigorous analysis

methods (Thomas et al., 2019; Didham et al., 2020). Many taxa and geographic regions are lacking in

sufficient data to appropriately assess trends, but there is a wealth of data gathered on butterflies in the

UK. Butterflies are the most comprehensively monitored invertebrate taxon and their population status

provides a valuable indicator for changes in biodiversity as they respond rapidly to environmental change.

We demonstrate efficient analysis methods for three sources of CS data for UK butterflies: (i) The UK

Butterfly Monitoring Scheme (UKBMS) began in 1976 and is one of the longest-running insect monitoring

schemes in the world. Counts of butterflies are made each year by recorders walking transects for six

months from the 1st of April, according to a strict protocol (Pollard and Yates, 1993). (ii) The annual

Big Butterfly Count (BBC) launched in 2010 and is a UK-wide mass-participation CS project in which

members of the public record how many individual butterflies are seen for 15-minute periods during 23-24

days in late July and early August. It is the largest CS project of its kind in the world, with almost 95,000

participants in 2023. (iii) The Butterflies for the New Millenium (BNM) data base collates opportunistic

records of where butterflies are seen, and consists of over 14 million records (Fox et al., 2023). These data

are unstandardised, and more than 80 similar recording schemes exist for various taxa in the UK (BRC,

2022; Pocock et al., 2015) and are typically used for describing changes in species’ distributions.

Analyses of UKBMS and BNM data feed in to regular reporting such as the “State of the UK’s

Butterflies” (Fox et al., 2023), Red List assessments of extinction risk (Fox et al., 2022), government

biodiversity indicators (JNCC, 2022), and multi-taxa outputs such as the State of Nature (Burns et al.,

2023), all of which contribute to providing robust evidence for conservation, policy development and the

wider state of biodiversity.

During a time of biodiversity change, frequent analysis updates are essential for monitoring species’

populations, and for understanding responses to both pressures and conservation action. Efficient

computational methods are therefore vital, especially in CS surveys, which typically involve data sets

that are large and continuously growing in size.

We are motivated by the need to measure population changes, by modelling abundance and distribution

using the data sets mentioned above. In this paper we summarise our recent research, describe new methods
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and applications, and suggest avenues for future development. We start with models for abundance, where

we demonstrate how in certain circumstances it is possible to greatly reduce the dimensionality of the

effective model parameter space, considerably reducing computation time. We then consider opportunistic

data, where we show how variational inference (VI) can provide an efficient alternative to Markov chain

Monte Carlo (MCMC) for Bayesian inference when fitting occupancy models.

Generalised abundance index: GAI

Models for abundance data, such as from the UKBMS, need to account for two key features: seasonality

and missing data. Seasonality results in counts that vary throughout the season according to the emergence

of one or more generations of adult insects over time in any year. Missing data arise in two ways. Firstly,

some visits are missed by volunteers. UKBMS transects are sampled by committed and skilled volunteers,

walking transects weekly across six months of the year, but inevitably some weeks are missed: Dennis

et al. (2013) estimated that this occurs for roughly 8 of 26 weeks of the transect season. Secondly, there

is turnover in transects sampled each year; for example transects may cease to be monitored, and new

transects continue to be introduced to the scheme.

A variety of methods have produced analyses of these data. Dennis et al. (2013) presented a method

based on using generalised additive models (GAMs) to model seasonality, followed by a generalised linear

model (GLM) analysis to account for the annual variation in the transects sampled. This approach produced

annual indices of abundance for each species, which can be used to estimate time trends in abundance.

Alternatively, Matechou et al. (2014) proposed a stopover model approach, which enables estimation of

within-season survival probabilities. Dennis et al. (2016) then proposed the generalised abundance index

(GAI) approach, which provides a framework for both of these types of models, as well as a third alternative,

which describes seasonality parametrically using an appropriate mixture of distributions, such as Normal

(see Dennis et al., 2022, for examples).

In outline, for a given species, in any year we suppose that counts are obtained at S sites, each visited

on at most V occasions. Each count, ys,v, for site s and visit v is regarded as the realisation of a random

variable, such as Poisson, with expectation λs,v = Nsas,v, where the likelihood then takes the form

L(N , θ;y) ∝
S∏
s=1

V∏
v=1

exp(−Nsas,v)(Nsas,v)ys,v . (1)

Here the Ns are parameters describing site abundance, and as,v denotes a function determined by

parameters, θ, describing seasonal variation. Here and later the product over visits only includes terms

corresponding to when visits are made. Background is provided by Dennis et al. (2016), who derive a

concentrated-likelihood approach that substantially reduces the number of parameters to estimate via

maximimum likelihood. Briefly, using maximum likelihood, the site parameters can be estimated by

Ns =
ys,.

as,.
, (2)

where we use the dot notation to indicate summation corresponding to visited sites. The total observed

count for each site is therefore re-scaled to account for incomplete sampling within the season. Substitution

of the estimates of Equation (2) into Equation (1) results in a Poisson likelihood which can be maximised

with respect to only the parameters θ. Counts can be expected to be over-dispersed relative to the

Poisson and/or contain additional zeros, for example due to small counts at the ends of the season.

Alternative discrete distributions such as negative binomial and zero-inflated Poisson, respectively, may

then be appropriate, as described in Dennis et al. (2016).

Two adaptations of the GAI

We now provide two new adaptations of the GAI. Firstly, the model is extended to include appropriate

site and year effects using an annual model integrated within the GAI, combined with the use of
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concentrated likelihood. Secondly, we adapt the GAI to improve the analysis of BBC data, a “snapshot”,

mass-participation CS scheme.

An extended GAI with site and time effects

The basic GAI, described above, is a static model, where data for each year are analysed separately.

However, to deal with the turnover of sites surveyed in the UKBMS each year, the Poisson GLM stage

of Dennis et al. (2013), based on the annual model of ter Braak et al. (1994), is typically used. Here the

abundance estimates {N̂s,r}, for sites s and now year r, are the dependent values for an additive model

with year and site effects and the estimated year effects are then used to form abundance indices. Use of

log-linear regression in this way is widely used in ecology, for example using TRIM (Trends and Indices

for Monitoring Data, van Strien et al., 2004; Bogaart et al., 2020). This two-stage GAI approach is now a

valuable tool for analysing seasonal count data in the UK (UKBMS, 2023; JNCC, 2022; Fox et al., 2021,

2023) and beyond (Schmucki et al., 2016; Van Swaay et al., 2020). In practice, the proportion of the species’

flight period surveyed for a given site and year is typically included as a weighting in the GLM stage, such

that better sampled sites have a higher contribution to the estimated species’ abundance indices (Brereton

et al., 2018).

A drawback of the two-stage GAI approach is the need to bootstrap to account for variance propagation

between the two model stages. Bootstrapping is time consuming for large data sets, and can also be

problematic when re-sampling small data sets, for example for rare species. We now describe an alternative

approach which effectively incorporates the annual model within the GAI, extending the model to consider

all years at once, and thus solving the issue of variance propagation.

In brief we expand the Poisson likelihood of Equation (1) to counts ys,v,r where r denotes one of Y

successive years, with a corresponding expansion to as,v,r. We then incorporate the expression for the

annual model Ns,r = eαs+βr - see ter Braak et al. (1994) - which results in the following expression for

the log-likelihood, ignoring an additive constant.

ℓ(α,β, θ; y) =
∑
r

∑
s

∑
v

{−e(αs+βr)as,v,r + ys,v,r(αs + βr) + ys,v,rlog(as,v,r)}. (3)

Here {αs} and {βr} are respectively site and year effects to be estimated. As above, we use a concentrated

likelihood approach to form maximum-likelihood parameter estimates efficiently, by concentrating out the

parameters α, resulting in the log-likelihood

ℓ(β, θ; y) =
∑
r

∑
s

∑
v

−ys,.,.eβras,v,r∑
j e
βjas,.,j

+ ys,v,r{βr − log(
∑
j

eβjas,.,j)}

 , (4)

which we can maximise efficiently with respect to the parameters θ and β. Full details are given in Section

S1 of the Supplementary Material.

The aim here is to produce a new model which can be fitted efficiently and produce estimates of

uncertainty. From the above modelling, estimates of error result from inverting the estimated Hessian

at the maximum-likelihood estimates, which is far more efficient than bootstrapping. Profile confidence

intervals are also easily obtained.

We illustrate this extended GAI approach with application to UKBMS data spanning 1976-2022 for

two species: Chalk Hill Blue Polyommatus coridon and Gatekeeper Pyronia tithonus. Chalk Hill Blue is

a species confined to calcareous grassland in southern England, with UKBMS counts of around 900,000

individuals from ∼ 460 sites, whereas Gatekeeper is a widespread butterfly species across southern Britain,

with UKBMS counts from more than 4,300 sites, counting over 3.3 million individuals.

Options for describing seasonal variation (parameters associated with θ) are flexible, as in the original

GAI, but here we use a Normal distribution, since both species are univoltine (one generation per year),

and thus parameters {µr} and {σr} are estimated for each year, which describe the mean flight dates and

length of the flight period, respectively (see Figure S1 where we see the tendency for earlier emergence

over time). Flight periods are thus assumed to be fixed over sites within each year.
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Figure 1 shows the estimates of {βr} from the extended GAI, with 95% confidence intervals (CI)

produced from the estimated Hessian at the maximum-likelihood estimates. Error estimates were scaled

to account for overdispersion in the Poisson GAI formulation.

Fig. 1: Results from applying the extended GAI to two species: Chalk Hill Blue (A) and Gatekeeper (B).

Plots (i) show the estimates of {βr} (black) with 95% confidence intervals (CI). Linear trend estimates

for {βr} from the extended GAI are shown in green (with 95% CI). The trend line from a posthoc

linear regression through the estimates of {βr} is also shown (purple dashed line). Plots (ii) compare

abundance indices from the extended GAI (black) and two-stage GAI (blue), with 95% CI produced

from the estimated Hessian at the maximum-likelihood estimates and from non-parametric bootstrapping

respectively. Abundance indices correspond to {βr} converted to the log10 scale with a mean of 2, as is

standard practice for UKBMS indices.

In order to estimate a linear trend over time, the parameters β may also be expressed by a linear form,

where we set βr = γr, ∀r, in Equation (4) and maximise the resulting log likelihood with respect to the

parameters θ and γ. The intercept parameter for a linear regression on year cannot be estimated due to

confounding. This is also the case for the annual model (McCullagh and Nelder, 1989, p.63, van Strien

et al., 2004), where we therefore set β1 = 0. Trend lines based on the extended GAI with the linear form

are shown in Figures 1(i), and due to the lack of intercept, for ease of comparison we equate the ordinate

at the middle year to that from a posthoc linear regression (also shown).

Abundance indices produced from the extended GAI are virtually indistinguishable from indices

produced from the two-stage GAI (Figure 1(ii)). The two-stage GAI was based on the implementation

used for annual analyses of UKBMS data, where a GAM is used for the first stage. Despite the similarity

in the indices, the 95% CI produced from bootstrapping the two-stage GAM are much wider than those
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estimated from the Hessian for the extended GAI. This difference is due to differences between the models,

rather than due to differences in the methods of error estimation. For example the extended GAI does

not make a distributional assumption (Poisson) about the site abundance estimates, N, as is the case in

the GLM of two-stage GAI. The standard errors from the extended GAI may also be underestimated if

the data are overdispersed relative to the Poisson distribution assumed, which could be explored in future

work using alternative discrete distributions.

The implementation of the two-stage GAI includes a weighting in the GLM, accounting for the

proportion of the flight period sampled, whereas the extended GAI does not. Interestingly, the close

resemblance of the two indices in Figure 1(ii) implies that the new extended GAI effectively has this

weighting built-in, by modelling the counts directly so that better-sampled sites have a greater contribution

to the likelihood.

The extended model took 42 minutes to run for the Chalk Hill Blue, whereas the non-parametric

bootstrap (with 1000 replicates) for the two-stage GAI took 98 minutes. For the more widespread

Gatekeeper, the extended GAI took 1.3 hours, whereas the two-stage GAI bootstrap took approximately

7 hours, but based on only 200 replicates. Analyses were parallelised across four CPUs on a computer

equipped with Intel Core i7-8700@3.2GHz with 32GB of RAM. Clearly there are substantial time savings

to be had for the 59 UK butterfly species, and potentially far more for more numerous taxa. We have

seen that the advantages of the extended GAI are not confined to efficiency, but may also involve greater

parameter precision provided the model and distributional assumptions are appropriate. In the Discussion

we outline the potential contributions of future work on the extended GAI.

Analysis of Big Butterfly Count data

The Big Butterfly Count (BBC; https://bigbutterflycount.org) is an annual survey of common butterfly

species which encourages wide participation particularly from members of the general public. The BBC

has a high media profile and attracts a large number of participants, many of whom may have limited

or no prior experience of biodiversity monitoring. The sampling protocol is minimal: participants simply

count numbers of individuals seen of widespread butterfly (and day-flying moth) species for 15 minutes

from any location.

The BBC generates a large amount of data for the UK’s widespread butterfly species - more than 11

million butterflies have been counted since 2011 - but to date few analyses have been undertaken and

annual reporting of BBC results is based on simple comparisons with respect to the previous year only.

Using data for 2011-2014, Dennis et al. (2017a) demonstrated that estimates of change in abundance from

BBC were comparable to those estimated from standardised monitoring (UKBMS data), but that the short

snapshot sampling period of three weeks results in bias caused by the inter-annual variation in species’

flight periods.

This is demonstrated in Figure 2A which shows the estimated flight period for Marbled White

Melanargia galathea for four example years. This species is a univoltine (single-generation), summer-flying

species, which is therefore likely to be particularly susceptible to phenological bias (in the estimation of

timing) with respect to the BBC sampling period. Flight periods were estimated from UKBMS data using

the GAI with a spline formulation for {av}, which is fixed across sites within a given year. The timing

of peak emergence varies year-to-year, and thus the proportion of the flight period sampled by the BBC

varies annually (see Figure 2B). For example in 2011 the BBC only captures the tail end of the flight

period, whereas in 2012 more than half of the flight period is captured.

Here we describe a modification of the GAI for producing abundance indices and trends from BBC data.

The GAI was developed for standardised monitoring data, typically collected along transects, where sites

are clearly defined and revisited many times within and across years. Mass-participation CS data such as

from the BBC does not have such a structure; it consists of many locations, which often only have one

count undertaken. Hence we define a BBC “site” to be a 1km x 1km square and pool BBC data to this

spatial scale. BBC sites may then have counts across multiple days within the BBC sampling period, and

potentially multiple entries (15 minute counts) on a given day.

https://bigbutterflycount.org
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Fig. 2: Demonstration of the phenology adjustment approach for the Marbled White butterfly: A) flight

period curves estimated from UKBMS data for four years. The blue shaded areas represents the BBC

sampling period each year. B) the proportion of the Marbled White flight period covered by the BBC

sampling period each year. C) relative abundance indices produced from the GAI applied to UKBMS

data (black), from BBC data without phenology adjustment (i, blue squares), and from BBC data with

phenology adjustment (ii, green triangles). Indices are on the log10 scale with a mean value of 2 (indicated

by the horizontal dashed lines).

To accommodate these multiple entries the GAI likelihood for a given year now takes the form

L ∝
M∏
m=1

V∏
v=1

exp(−Nmam,vκm,v)(Nmam,v)ym,v,. , (5)

where κm,v is the number of entries for site m and visit v, and ym,v,. =
∑
κ ym,v,κ is the sum of the

counts over those entries.

The number of sites in a mass-participation CS dataset such as BBC is high, and we adopt a concentrated

likelihood approach to reduce the functional size of the parameter space, as in the previous section, where

Equation (2) becomes

Nm =
ym,.,.∑V

v=1 am,vκm,v
(6)
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The BBC sampling period represents just a snapshot of most species’ flight periods, therefore accurate

flight period estimation from applying the GAI to BBC data is not possible for all species. Instead, for each

species and year, we produce estimates of {Nm} for each BBC site (1km x 1km square) from Equation (6)

using daily flight period estimates of {av} from the GAI applied to UKBMS data, where flight periods are

assumed to be the same across sites. The average of {Nm} provides an overall measure of BBC abundance

per year and species (Dennis et al., 2016).

Figure 2C demonstrates the benefit of the phenology adjustment approach for the Marbled White

butterfly. Fluctuations in the BBC abundance index produced without phenology adjustment (Figure

2C(i)) largely reflect year-to-year variation in the proportion of the flight period captured by the BBC

each year, whereas adjusting for phenology produces an index that shows a pattern more similar to the

UKBMS abundance index (Figure 2C(ii))). Applying the phenology adjustment approach is less influential

for a multivoltine species such as the Comma Polygonia c-album (Figure S2), for which the BBC sampling

period covers a smaller, and less variable, proportion of the overall flight period each year.

Dennis et al. (2024) describe the new phenology adjustment approach for snapshot citizen science data

in full, including the use of bootstrapping to estimate uncertainty. The approach is applied to BBC data

for 17 species and explored further via simulation. The method enables data from snapshot CS schemes

such as BBC to contribute to monitoring biodiversity. BBC results receive high-profile media coverage and

are already beginning to reflect the advantages of the new analyses outlined here.

Efficient occupancy model fitting

Occupancy models (MacKenzie et al., 2018; Altwegg and Nichols, 2019) are widely used for inferring species

distributions from presence/absence data at multiple sites, across a single or multiple seasons. They have

been employed to extract meaningful species distribution trends from opportunistic citizen science data,

addressing challenges associated with non-systematic sampling and variable observation effort (Kéry et al.,

2010; Isaac et al., 2014). However, as the size of the corresponding presence/absence data increases,

occupancy models can be computationally demanding, especially in a Bayesian framework.

We start by defining the standard occupancy model that we fit in this section. We assume that there

are n sampling units, where each sampling unit corresponds to a site in a specific year. In each sampling

unit, we have a set of observations yi, equal to 1/0 if the species was detected/not detected. The sampling

unit to which observation i belongs is denoted by ki. The hierarchical model representation is

logit(ψj) = Xψj βψ

zj ∼ Be(ψj)

logit(pi) = Xpi βp

yi ∼

{
Be(pi) if zki = 1

0 if zki = 0

(7)

where:

• zj is the occupancy state of sampling unit j

• βψ are the covariate coefficients of the occupancy probability ψ

• βp are the covariate coefficients of the detection probability p

• Xψj and Xpi are the available covariates for sampling unit j and observation i, respectively.

Similar versions of this model have been considered in Diana et al. (2023) and in Doser et al. (2023), who

employed Gaussian processes to account for spatio-temporal autocorrelation in the occupancy probability.

Bayesian inference for these occupancy models can be easily performed using Markov chain Monte Carlo

(MCMC) (see Diana et al., 2023; Doser et al., 2023, who employed a Pólya-Gamma sampling scheme for

logistic regression models (Polson et al., 2013)). In this MCMC framework, the z terms from Equation

(7), indicating species presence/absence at each site, are treated as latent variables and hence inferred and

updated, typically at each MCMC iteration. Inferring the latent variables z allows us to easily write the
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complete data likelihood - see for example King (2014) and Newman et al. (2023) - for the observations in

y, as shown in Equation (7). However, when the number of sites is large, this leads to a computationally

intensive MCMC, even when efficient model-fitting approaches, such as the Pólya-Gamma scheme, are

employed for updating the model parameters. In addition when the complete data likelihood is used there

may be correlations between estimators which can also slow down MCMC - see Newman et al. (2023) and

Borowska and King (2022), where a subset of latent states are not treated as auxiliary variables but are

integrated out numerically to reduce the correlation between latent variables. Therefore, MCMC-based

inference can be prohibitively slow, which limits its application to large data sets such as CS data. For

example, for the data sets considered in Diana et al. (2023), obtaining acceptable effective sample sizes

from the posterior distributions of all parameters requires running times of around 19 hours (on an Intel

Core i7-10610U@1.8GHz). An obvious alternative is to use classical inference to fit occupancy models

since it can be much faster (see for example the approach of Dennis et al., 2017b). In this case, the

likelihood function is written by marginalising over the z variables and hence the observed data likelihood

is used for inference. Expressions for the complete and observed data likelihood for occupancy models are

given in Section S2 of the Supplementary Material. However, quantifying uncertainty around functions

of parameters can sometimes be computationally intensive, relying on bootstrap methods when closed

form expressions of variances are not available. Bayesian inference also offers the potential to more readily

account for spatio-temporal autocorrelation in the occupancy probabilities.

Variational inference (VI) has been proposed as an alternative tool to overcome the computational

issues of MCMC (Jordan et al., 1999). VI is traditionally faster than MCMC-based approaches because

it transforms the problem from sampling (from a posterior distribution) to optimization. Therefore, VI

combines the speed of classical inference, with the interpretability of Bayesian inference. However, while

MCMC-based inference always recovers the true posterior (given enough MCMC iterations), in VI the

true posterior distribution p(θ|y) is approximated using an appropriate flexible family of distributions,

which is called the variational family. We denote the variational distributions by qλ(θ), where λ is the set

of variational parameters, the observed data likelihood by p(y|θ) and the prior distribution by p(y|θ).
The parameters λ corresponding to the optimal variational distribution can be found by minimizing

the Kullback-Leibler (KL) divergence between the true posterior distribution p(θ|y) and the variational

distribution qλ(θ). It can be proved that this is equivalent to finding the qλ(θ) that minimizes the quantity

Eθ∼qλ(θ) [log p(y, θ)− log qλ(θ)] (8)

which is known as the Evidence Lower BOund (ELBO), and forms the basis of VI inference. We note that

log p(y, θ) = log {p(y|θ)p(θ)} and more details on VI can be found in Blei et al. (2017).

In VI, it is common to assume that parameters are a-posteriori independent, which is equivalent

to assuming a variational family of the form q(θ) =
∏
j qj(θj) (the mean-field assumption) since this

assumption considerably simplifies the inference. However, if the assumption is not valid, then posterior

variance is underestimated (Wang and Titterington, 2005). In the case of occupancy models, occupancy

and detection probability are independent conditionally on z, but not independent of z. Hence, assuming

(according to the mean field assumption) that they are independent of z implies that ψ and p are

independent of each other a-posteriori, which clearly does not hold. If the dependence structure of the

model is ignored, then it leads to underestimation of the posterior variance of the occupancy and detection

probability parameters, (βψ, βp) (Clark et al., 2016).

However, if the observed data likelihood is used for inference, instead of the complete data likelihood,

with the latter being common practice in a Bayesian framework, then we do not need to assume that

(βψ, βp) are independent of z, or of each other. In the observed data likelihood case, we assume, as is

standard in VI (Titsias and Lázaro-Gredilla, 2014), that qλ(θ) is a multivariate normal distribution, that

is, if θ = (βψ, βp) are the model parameters, we assume θ ∼ qλ(θ) = N(µ,Σ), where the variational

parameters are λ = (µ,C), with µ the mean of the variational distribution and C the Cholesky factor of

the covariance matrix Σ.

We perform inference using stochastic gradient descent. Computing the gradient of Equation (8) with

respect to λ is complicated by the fact that λ itself appears in the expectation. To overcome this issue, we
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use the reparameterisation trick (Kingma and Welling, 2013), which is a cornerstone of variational inference

as it allows us to easily obtain these types of gradients. More details on the inference are presented in Section

S2 of the Supplementary Material.

To investigate the efficacy of our novel VB approach, we have performed a small preliminary simulation

study to assess the coverage of Bayesian credible intervals generated using our procedure. Across the

simulations, we varied the number of sites and the average occupancy and detection probability. We have

chosen n, the number of sites, to be 500, 1000 and 2000 and ψ and p to be 0.25, 0.5 and 0.75. For

each simulation, we ran 500 replications. The coverage was computed across 4 covariate coefficients for

occupancy and 4 covariate coefficients for detection, with the coefficients randomly set to be either -1 or 1.

Results are reported in Table 1 where it is seen that the 95% posterior credible intervals have the nominal

coverage.

Table 1. Coverage of the 95% Bayesian credible intervals generated using variational Bayes, for varying n, the number of sites,

and values of ψ and p.

n / ψ=p .25 .5 .75

500 0.950 0.949 0.961

1000 0.961 0.953 0.952

2000 0.951 0.948 0.951

We also analyzed the dataset of Ringlet butterflies collated through the Butterflies for the New

Millennium (BNM) recording scheme run by Butterfly Conservation, using records collected between 1970

and 2014, which is also used in Diana et al. (2023). The data set consists of > 2 million records from

∼ 140,000 unique 1 km2 (defined as sites), of which > 218,000 detections of Ringlet have been made,

and non-detections were produced using observations of other butterfly species (Kéry et al., 2010). In this

case, we do not account for spatial autocorrelation, but we model year as a factor variable and assume

independence between sites, a point which we discuss in the next section. We also use relative list length,

obtained by dividing the list length, which is the number of species recorded for a given site/date, divided

by the maximum recorded list length in a neighboring area of 50 km, as a covariate for detection probability

and model the effect of the day of the year using a second polynomial of Julian date.

In this case, convergence was determined by assessing when parameter updates were smaller than a pre-

specified tolerance, which required approximately 1 hour of computation time (results were again obtained

on an Intel Core i7-10610U@1.80GHz). In Figure 3, we present the posterior distribution of the occupancy

index, which is the year-specific occupancy probability, here assumed the same for all sites. The increase

in precision over time reflects the growth of the underlying opportunistic CS data set, which has shown

ongoing expansion, particularly since the mid 1990s (Fox et al., 2023).

The occupancy probabilities show similarities with results presented in Diana et al. (2023), in particular

an increasing trend in recent years reflecting an expansion in the range of Ringlet in the UK and similar

drops in the species’ prevalence in mid 70s and early and late 90s are identified. However, in this case, the

pattern is less smooth, as expected, since the effect of year is not constrained in any way. Furthermore,

a direct comparison cannot be made, since Diana et al. (2023) fit a more complex model accounting for

spatio-temporal correlation, and plot an occupancy index rather than the annual occupancy probabilities.

In Figure 4, we present the posterior distribution of the detection probability throughout the year which

can be interpreted as an estimate of species’ flying time. Unlike in Diana et al. (2023), in this example

detection probability does not vary with year, and thus represents an average for 1970-2014. We also note

here that we do not account for spatial effects on the probability of detection. However, the species’ flight

patterns are likely to vary in space, and hence the curve in Figure 4 represents a mixture of spatially-

varying curves. Additionally, we note that the peak of detection probability in this case is lower than that

obtained by Diana et al. (2023), which is due to the different model structure for detection and occupancy

probabilities, as discussed above. The 95% posterior credible interval of the coefficient of relative list length

is (0.881, 0.883). We have shown that using a VI framework to fit occupancy models efficiently to CS data
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Fig. 3: 95% posterior credible intervals of the occupancy probabilities of each year for Ringlet. The dots

represent the posterior medians.

Fig. 4: Posterior median and 95% posterior credible intervals of the detection probability in each week for

Ringlet.

shows promising results, with various avenues for future development - some of which we discuss in the

next section.
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Discussion

CS data have an important rôle in the future of biodiversity monitoring, but the ongoing growth of

such data requires novel statistical models along with efficient inference methods and available computer

code. In this paper, we have built upon recent work and demonstrated that concentrated likelihoods can

greatly reduce the dimensionality of the effective model parameter space and that variational inference can

substantially reduce computational time for large CS data sets. The approaches proposed in this paper

address computational problems, but also lead to model developments for CS data.

The GAI is efficient due to the use of concentrated likelihood (Dennis et al., 2016). There is a broad

analogy here with the efficiency that can result from adopting a hidden Markov model, when appropriate,

and forming a forward algorithm for likelihood construction; see for example Cowen et al. (2017). We have

shown concentrated likelihood to be useful in the new extension of the GAI to incorporate the annual

model which conveniently allows for formal variance propagation, negating the need for time-consuming

bootstrapping. A similar approach is given in Bravington et al. (2021), where the two stages for density

surface models, one involving a detection probability and the other a GAM, are combined into one.

The extended GAI has been introduced in this paper, with application to two univoltine species, but

future work will test wider application to more species, in particular with varying quantities of data and

life histories, including species with two or more generations per year, requiring more complex functions

to describe seasonal variation (Dennis et al., 2016). As mentioned, alternative distributions to the Poisson

may also be explored, in particular to assess for effects of overdispersion and the associated impact on

estimates of uncertainty.

In both adaptations of the GAI presented, species’ flight periods were assumed to be the same across sites

within each year, as is typical in the production of abundance trends for UK butterflies (UKBMS, 2023).

However, greater flexibility in the seasonal variation function a can be readily accounted for through the

inclusion of appropriate spatial covariates. For example this is done by Schmucki et al. (2016) and Dennis

et al. (2022). This is similarly a future direction to explore for occupancy models, accounting for spatial

variation in detection probabilities, for example due to spatial variation in species’ phenologies, via spatial

covariates or spatial effects. See also for example Clark and Altwegg (2019) and Dennis et al. (2019) for

models with spatial variation in occupancy.

The extended GAI also provides a basis for further extensions within this computationally efficient

approach, such as formal data integration by maximising a joint likelihood; see Besbeas et al. (2002)

and Schaub and Kéry (2021). For example, UKBMS (count data from standardised monitoring) and BBC

(mass-participation CS data) could be used to produce new urban butterfly indicators. Integrated modelling

approaches can optimise the use of available CS data sets, but present outstanding questions and challenges

(Isaac et al., 2020; Zipkin et al., 2021; Johnston et al., 2023), including the need for computationally efficient

approaches for data integration.

We have introduced the basic occupancy model within a VI framework and have discussed the use of

the observed, instead of the complete, data likelihood for avoiding the standard issue of underestimated

posterior variances when parameters are assumed to be independent. In this case, the dependence structure

in the model parameters and latent variables was such that the use of the observed data likelihood allowed

us to use VI without having to assume that parameters are a-posteriori independent. Intuitively, the same

approach could be employed in other ecological models within a VI framework, although at the moment

this is only an intuition and future work would need to explore the quality of inference for different types

of data and corresponding models.

We believe that VI provides a powerful and versatile framework for efficiently fitting a wide range

of ecological models. The advantage of VI is that it combines the speed of classical inference with the

interpretability of Bayesian inference. VI relies on the ability to obtain the gradient of the likelihood

function, which might seem like an obstacle. However, it is possible to take advantage of recent

developments of deep learning methodologies such as the use of automatic differentiation, which can

automatically compute gradients of this type (as long as the likelihood function is tractable), such as

for example using the package TMB (Kristensen et al., 2016). We envisage that analyses currently based

on hidden Markov models for likelihood computation - see for example Cowen et al. (2017), Besbeas and
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Morgan (2019), Besbeas and Morgan (2020) and McClintock et al. (2020) - can be a fruitful research avenue,

since automatic differentiation engines would allow us to compute gradients by differentiating through the

forward recursion used to compute the likelihood in this case. The use of automatic differentiation also

enables us to consider highly non-linear extensions, such as neural networks, to be introduced in the model.

However, as discussed, particular attention needs to be paid to the chosen variational family, since that

will determine the accuracy of the approximation.

We have considered a simple occupancy model, in comparison to models that have been employed

previously for data of this type, as a means of discussing VI and the use of observed data likelihood

within the VI framework. The flexible spatio-temporal models, for example based on Gaussian processes

(Doser et al., 2022; Diana et al., 2023), which have been developed within an MCMC framework could be

considered within this VI framework in future work. However, since this leads to a regression with as many

covariates as the number of support of points, assuming a variational approximation with a full covariance

matrix is computationally prohibitive, since the number of parameters of the Cholesky factor C scales

quadratically with the number of covariates. One option to overcome this problem is to induce sparsity on

the inverse of the covariance matrix by zeroing elements of the Cholesky factor C (Tan and Nott, 2018). For

example, it is possible to assume a variational approximation where the covariate coefficients for the spatial

approximation are independent in the posterior. Although this step can potentially reintroduce bias in the

model, since it assumes a-posteriori independence of parameters, it leads to a substantial reduction in the

number of parameters, making the model feasible to estimate. Finally, in cases where the observed data

likelihood cannot be obtained, for example in complex data-generating processes or models with individual

random effects, then the complete data likelihood and efficient MCMC inference (see for example King

et al., 2023, who devise an importance sampling approach for ecological models with random effects) may

provide the only viable alternative, at least at the moment.

To some extent formal design considerations do not arise with the data that we have considered, however

there is an issue of non-random sampling (Boyd et al., 2023b; Johnston et al., 2023) and the need to

account for issues such as preferential sampling and spatial and temporal biases (Altwegg and Nichols,

2019; Boersch-Supan et al., 2019; Conn et al., 2017; Pati et al., 2011). See for example papers by King

et al. (2023) and by Lahoz-Monfort et al. (2014), respectively on sampling the data, and on how to design

studies when resources are limited.

We have demonstrated efficient analysis methods for sources of CS data for UK butterflies, but efficient

statistical inference methods are needed for understanding population changes from CS data for a wide

range of taxa and locations. For example the GAI approach, or related models, has been applied to moths,

bees and beetles (Fox et al., 2021; Matechou et al., 2018; Dennis et al., 2021). Development of efficient

inference for occupancy models is also vital given their application to various taxa (for example Burns et al.,

2023; Outhwaite et al., 2019; Boyd et al., 2023a). The need for efficiency will continue to increase with the

growth of data sets such as the Global Biodiversity Information Facility (GBIF), which has amassed more

than 2.5 billions occurrences of more than one million species (GBIF.org, 2023).

CS data are increasingly “big”, not only in terms of volume, but also involving characteristics such as

variety. Farley et al. (2018) and McCrea et al. (2023) discuss the “Four Vs Framework” in which data

may be characterised as “big”. Analysing CS data for biodiversity monitoring presents various challenges

(Johnston et al., 2023), but methods also need to be suitably scalable for these increasingly large data sets.

The examples in this paper are based upon analyses of data featuring observations of species submitted

by citizen scientists, but computational challenges also arise from other data types, for example with

the growth of data from technological advances such as automated interpretation of images submitted by

citizen scientists (Terry et al., 2020; van Klink et al., 2022).

It may be argued that high performance computing (HPC) and cloud computing can be used to address

the challenge of fitting computationally demanding models to CS data (Farley et al., 2018). For example, a

supercomputer has enabled the production of occupancy trend estimates for thousands of UK species using

Bayesian occupancy models (Outhwaite et al., 2019; Boyd et al., 2023a). However ultimately, as data sets

continue to grow, and models become increasingly complex, we argue that a trade off is needed, and that

using more and more computing resources is not a simple solution. Fitting computationally demanding
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methods can make appropriate model validation and inference difficult: for example variable selection may

become impractical (Johnston et al., 2023), as well as suitable goodness-of-fit assessment. Achieving model

convergence for all parameters in MCMC may also become difficult (Outhwaite et al., 2019; Boyd et al.,

2023a).

Furthermore, to maximise the use of CS data in biodiversity monitoring, there is a need for statistical

approaches that are appropriately disseminated and accessible for use in practice. Johnston et al. (2023)

suggest that “accessible communication of novel methods could democratise analysis of these data and

thus enable CS data to reach their broadest potential”. Statistical methods that depend upon HPC may

be a barrier for analysis to those without easy or affordable access to such resources, thus hindering the

potential of biodiversity monitoring with CS data globally (Pocock et al., 2018).

Efficient methods are also crucial for producing frequent analysis updates for reporting on the status

of species, particularly as time lags in data availability continue to reduce. The need for accurate

reporting is ever necessary in monitoring species’ status, measuring against biodiversity targets, supporting

policy-making and guiding effective conservation effort. This paper has presented examples for fitting

computationally efficient models to CS data, but, as also suggested by Johnston et al. (2023), with the

growth of such data and its importance for biodiversity monitoring (Pocock et al., 2018; Callaghan et al.,

2021), there is an ongoing need to develop efficient statistical inference methods, with the potential to

learn from developments in mainstream statistics.
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