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A Notation, estimands, and acronyms

Table A1: Notation

N ≜ Full sample size

i ≜ Index of unit, i = 1, ..., N

G ≜ Number of treatments

g ≜ Index of treatment group, g = 1, 2, ..., G

ng ≜ Size of treatment group g

k ≜ Number of baseline covariates

X i ≜ Observed vector of baseline covariates of unit i

X full ≜ N × k matrix of covariates in the full sample

X̃ full ≜ N × k + 1 design matrix in the full sample

X̄full ≜ k × 1 vector of means of the baseline covariates in the
full sample

Sfull ≜ k× k covariance matrix of the baseline covariates in the
full sample

Yi(g) ≜ Potential outcome of unit i under treatment g

Y (g) ≜ Vector of potential outcomes under treatment g,
(Y1(g), ..., YN(g))

⊤

Zi ≜ Treatment assignment indicator of unit i, Zi ∈
{1, 2, ..., G}

Z ≜ Vector of treatment assignment indicators, (Z1, ..., ZN)
⊤

Y obs
i ≜ Observed outcome of unit i, Y obs

i =
∑G

g=1 1(Zi =
g)Yi(g)

Table A2: Estimands

Yi(g
′)− Yi(g

′′) ≜ Unit level causal effect of treatment g′ relative to treat-
ment g′′ for unit i; g′, g′′ ∈ {1, 2, ..., G}

SATEg′,g′′ ≜ 1
N

∑N
i=1{Yi(g

′)−Yi(g
′′)}, the Sample Average Treatment

Effect of treatment g′ relative to treatment g′′

PATEg′,g′′ ≜ E{Yi(g
′) − Yi(g

′′)}, the Population Average Treatment
Effect of treatment g′ relative to treatment g′′
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Table A3: Acronyms

ASMD Absolute Standardized Mean Difference

CRD Completely Randomized Design

FSM Finite Selection Model

HIE Health Insurance Experiment

OLS Ordinary Least Squares

PATE Population Average Treatment Effect

RBD Randomized Block Design

RR Re-Randomization

SATE Sample Average Treatment Effect

SCOMARS Sequentially Controlled Markovian Random Sampling

SOM Selection Order Matrix

B Proofs of theoretical results

Lemma A1. Let treatment 1 be the choosing group at the rth stage. Also, let X̃r−1 be the

ñr−1 × (k + 1) design matrix in treatment group 1 after the (r− 1)th stage, where ñr−1 ≥ 1

and rank(X̃r−1) = k + 1. The D-optimal selection function chooses unit i′ with covariate

vector Xi′ ∈ Rk, where

i′ ∈ arg max
i∈Rr−1

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
(A1)

Proof. We follow the notations outlined in Section 4. At the rth stage, D-optimal selection

function selects unit i′ ∈ Rr−1, where i′ ∈ arg max
i∈Rr−1

det(X̃
⊤
r,iX̃r,i). Now, for i ∈ Rr−1,

det(X̃
⊤
r,iX̃r,i) = det

{
X̃

⊤
r−1X̃r−1 +

(
1
Xi

)
(1,X⊤

i )
}

(A2)

= det(X̃
⊤
r−1X̃r−1) det

{
I + (X̃

⊤
r−1X̃r−1)

− 1
2

(
1
Xi

)
(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

− 1
2

}
(A3)

= det(X̃
⊤
r−1X̃r−1)

{
1 + (1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

)}
, (A4)
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where the final equality holds since for two matrices Am×n and Bn×m, det(Im + AB) =

det(In+BA). Equation A4 implies that the selected unit i′ maximizes (1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
.

This completes the proof.

Proof of Theorem 4.1

Proof. We use the notations in Section 3.1 and Table A1. We first consider the case where

ñr−1 = 0. The selected unit i′ satisfies,

i′ ∈ arg max
i∈Rr−1

(1,X⊤
i )(X̃

⊤
fullX̃ full)

−1
(

1
Xi

)
. (A5)

Now, denoting e1 = (1, 0, ..., 0) as the k × 1 first standard unit vector, we have

(1,X⊤
i )(X̃

⊤
fullX̃ full)

−1
(

1
Xi

)
= (1,X⊤

i )(X̃
⊤
fullX̃ full)

−1
(

1
X̄full

)
+ (1,X⊤

i )(X̃
⊤
fullX̃ full)

−1
(

0
Xi−X̄full

)
= (1,X⊤

i )(X̃
⊤
fullX̃ full)

−1X̃
⊤
fullX̃ full

e1

N
+ (1,X⊤

i )(X̃
⊤
fullX̃ full)

−1
(

0
Xi−X̄full

)
=

1

N
+ {0, (Xi − X̄full)

⊤}(X̃⊤
fullX̃ full)

−1
(

0
Xi−X̄full

)
=

1

N
+

1

N
(Xi − X̄full)

⊤(Sfull)
−1(Xi − X̄full). (A6)

Here the last equality holds since, by the formula for the inverse of a partitioned matrix,

(X̃
⊤
fullX̃ full)

−1 =
(

B11 B12
B21 B22

)
, where B−1

22 = X⊤
fullX full−NX̄fullX̄

⊤
full = NSfull. This completes

the proof of the ñr−1 = 0 case. The proof for the case where ñr−1 ≥ 1 and X̃
⊤
r−1X̃r−1 is

invertible follows similar steps and hence is omitted.

We now consider the case where ñr−1 ≥ 1 and X̃
⊤
r−1X̃r−1 is not invertible. We denote

X̄∗
r−1 = X̄r−1+ϵX̄full

1+ϵ
and S∗

r−1 = ( 1
ñr−1

X⊤
r−1Xr−1 +

ϵ
N
X⊤

fullX full) − (1 + ϵ)X̄∗
r−1X̄

∗⊤
r−1. The

selected unit i′ satisfies,

i′ ∈ arg max
i∈Rr−1

(1,X⊤
i )
( 1

ñr−1

X̃
⊤
r−1X̃r−1 +

ϵ

N
X̃

⊤
fullX̃ full

)−1 (
1
Xi

)
(A7)
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Denoting G̃ =

(√
1

ñr−1
Xr−1√

ϵ
N
Xfull

)
, we have

(1,X⊤
i )
( 1

ñr−1

X̃
⊤
r−1X̃r−1 +

ϵ

N
X̃

⊤
fullX̃ full

)−1 (
1
Xi

)
= (1,X⊤

i )(G̃
⊤
G̃)−1

(
1
Xi

)
= (1,X⊤

i )(G̃
⊤
G̃)−1

(
0

Xi−X̄∗
r−1

)
+ (1,X⊤

i )(G̃
⊤
G̃)−1

(
1

X̄∗
r−1

)
= (0, (Xi − X̄∗

r−1)
⊤)(G̃

⊤
G̃)−1

(
0

Xi−X̄∗
r−1

)
+

1

1 + ϵ

= (Xi − X̄∗
r−1)

⊤(S∗
r−1)

−1(Xi − X̄∗
r−1) +

1

1 + ϵ
. (A8)

Here, the third equality holds since
(

1
X̄∗

r−1

)
= 1

1+ϵ
G̃

⊤
G̃e1 and the fourth equality holds since

(G̃
⊤
G̃)−1 =

(
B11 B12
B21 B22

)
, where B−1

22 = ( 1
ñr−1

X⊤
r−1Xr−1 +

ϵ
N
X⊤

fullX full)− (1 + ϵ)X̄∗
r−1X̄

∗⊤
r−1 =

S∗
r−1. This completes the proof.

Proof of Theorem 4.2

Proof. (a) We first consider the setting of a standard block design where N = BG (i.e.,

c = 1). The blocks are labelled 1, 2, ..., B. Here, the SOM is constructed by stacking B

independent random permutations of the ‘chunk’ (1, 2, ..., G). We will show that the choices

made by the treatment groups in the FSM follow the assignment mechanism of an RBD.

Consider the first randomized chunk of the SOM, i.e., a random permutation of (1, 2, ..., G).

At the first stage of this randomized chunk, the choosing treatment group aims to maximize

(1,X⊤
i )(X̃

⊤
fullX̃ full)

−1
(

1
Xi

)
. Note that we can write X̃ full as X̃ full =

(
D

...
D

)
, where DB×B = 1 1 0 ... 0 0

1 0 1 ... 0 0
...
...
... ...

...
...

1 0 0 ... 0 1
1 0 0 ... 0 0

. Now, consider a transformation of the rows of the design matrix given by

˜̃Xi = (D⊤)−1
(

1
Xi

)
. The transformed design matrix is ˜̃X full = X̃ fullD

−1 =

(
IB

...
IB

)
. We note
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that the ˜̃Xis nothing but standard unit vectors. Now,

(1,X⊤
i )(X̃

⊤
fullX̃ full)

−1
(

1
Xi

)
= ˜̃X⊤

i (
˜̃X

⊤
full

˜̃X full)
−1 ˜̃Xi. (A9)

Therefore, the selection function remains the same under the above transformation. Now,

˜̃X⊤
i (

˜̃X
⊤
full

˜̃X full)
−1 ˜̃Xi = 1

G
˜̃X⊤

i
˜̃Xi = 1

G
for all i, which essentially implies that the choos-

ing group has no preference among the units for selection and hence chooses any one of

the N units randomly. Similarly, at the subsequent stages of this randomized chunk, the

corresponding choosing groups select one of the remaining units randomly.

Next, we consider the second randomized chunk of the SOM. Without loss of generality,

suppose treatment 1 gets to choose first in this chunk. Also, without loss of generality,

suppose that in its first choice, treatment 1 had selected a unit from block 1. We claim that

in this selection, treatment 1 will choose one of the remaining units randomly from any block

other than block 1, which respects the assignment mechanism of an RBD.

To prove the claim, we first consider the objective function at this stage. Treatment 1 aims

to maximize (1,X⊤
i )
(

1
ñr−1

X̃
⊤
r−1X̃r−1 +

ϵ
N
X̃

⊤
fullX̃ full

)−1 (
1
Xi

)
. Here, we denote the current

stage by r. Using the same transformation as in the case of the first chunk, we can write the

objective function as ˜̃X⊤
i

(
1

ñr−1

˜̃X
⊤
r−1

˜̃Xr−1 +
ϵ
N

˜̃X
⊤
full

˜̃X full

)−1
˜̃Xi, where

˜̃Xr−1 = X̃r−1D
−1.

Since ˜̃X
⊤
full

˜̃X full = GIB, it is equivalent to maximize

˜̃X⊤
i

(
Ib +

B

ñr−1ϵG
˜̃X

⊤
r−1

˜̃Xr−1

)−1
˜̃Xi =

˜̃X⊤
i

(
Ib + δ ˜̃X

⊤
r−1

˜̃Xr−1

)−1
˜̃Xi (A10)

= ˜̃X⊤
i

{
Ib − δ ˜̃X

⊤
r−1(I ñr−1

+ δ ˜̃Xr−1
˜̃X

⊤
r−1)

−1 ˜̃Xr−1

}
˜̃Xi.

(A11)

Here, δ = B
ñr−1ϵG

. The final equality holds by the Woodbury matrix identity. Now, in this

case, ˜̃Xr−1 = (1, 0, ..., 0) (since treatment 1 has only selected one unit from block 1 up to this

stage). So, the objective function in Equation A11 equals 1− δ
1+δ

˜̃X⊤
i (

˜̃X
⊤
r−1

˜̃Xr−1)
˜̃X⊤

i . Since
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δ > 0, it is equivalent to minimize ˜̃X⊤
i (

˜̃X
⊤
r−1

˜̃Xr−1)
˜̃X⊤

i = ˜̃X⊤
i

(
1 0⊤

1×(B−1)

0(B−1)×1 0(B−1)×(B−1)

)
˜̃Xi,

which takes the value 0 for a unit in any block other than block 1 and 1 for a unit in block

1. This proves the claim for treatment 1. Moreover, by similar reasoning, the claim holds

for all the other treatment groups in this randomized chunk.

Next, we consider a general randomized chunk of the SOM. Once again, without loss of

generality, suppose treatment 1 gets to choose first in this chunk. Also, for simplicity of

exposition and without loss of generality, suppose treatment 1 has already selected from

blocks 1, 2, ..., b, implying that ñr−1 = b and ˜̃Xr−1 = ( Ib 0b×(B−b) ). This form of ˜̃Xr−1,

along with Equation A11 implies that it is equivalent to minimize ˜̃X⊤
i (

˜̃X
⊤
r−1

˜̃Xr−1)
˜̃X⊤

i =

˜̃X⊤
i

(
Ib 0b×(B−b)

0⊤
(B−b)×b

0(B−b)×(B−b)

)
˜̃Xi, which is minimized for any unit i belonging to the blocks

b+1, ..., B. This shows that at this stage, treatment 1 randomly chooses a unit from a block

other than the blocks it has already chosen from. By similar reasoning, at subsequent stages

of this randomized chunk, the choosing group follows the same selection strategy for their

own group. This completes the proof of the theorem for the setting of a standard block

design.

We now prove the theorem for the general block design setting with N = cBG, c > 1. The

proof strategy is exactly the same as the c = 1 setting. Here the SOM is generated by

randomly permuting the chunk (1, 2, ..., G) B × c times. Once the selections are completed

for the the first B chunks, the resulting assignment resembles that of a standard RBD (by

the previous proof), where each treatment group randomly chooses exactly one unit from

each block. For the (B + 1)th chunk, suppose, without loss of generality, that treatment 1

gets to choose first. At this stage (denoted by stage r), treatment 1 tries to maximize,

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
= ˜̃X⊤

i (
˜̃X

⊤
r−1

˜̃Xr−1)
−1 ˜̃Xi

= ˜̃X⊤
i
˜̃Xi = 1, (A12)

where the penultimate equality holds since ˜̃Xr−1 = IB. Thus, similar to the first randomized
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chunk in the setting of c = 1, treatment 1 (and the other treatments) randomly chooses one

of the available units.

Finally, we consider a general chunk. Without loss of generality, suppose treatment 1 gets to

choose first in this chunk. We can write the corresponding transformed design matrix ˜̃Xr−1

as

˜̃Xr−1 =


IB
IB

...
IB

Ib 0b×(B−b)

 . (A13)

Here, without loss of generality, we have assumed that treatment 1 has chosen c0 + b times

from the first b blocks and c0 times from the remaining blocks, where c0 < c. This implies

that treatment 1 aims to maximize.

˜̃X⊤
i (

˜̃X
⊤
r−1

˜̃Xr−1)
−1 ˜̃Xi =

˜̃X⊤
i

{
c0IB +

(
Ib

0⊤
(B−b)×b

)
( Ib 0b×(B−b) )

}−1
˜̃Xi, (A14)

which has the same form as the objective function in Equation A10 in the c = 1 setting.

Thus, following similar arguments as in the c = 1 setting, we conclude that at this stage,

treatment 1 selects a unit randomly from blocks b+1, ..., B, which conforms to the assignment

mechanism of an RBD. Also, at subsequent stages of the randomized chunk, the choosing

group follows the same selection strategy for their own group. This completes the proof of

the theorem.

(b) With two groups of equal sizes, the SOM consists of successive random permutations

of the ‘chunk’ (1, 2). By Theorem 4.1, for the first pair of stages of selection, the objective

function (to maximize) is given by

(Xi − X̄full)
⊤(Sfull)

−1(Xi − X̄full). (A15)

Under the assumption of identical twins and continuous data generating distributions, with
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probability 1, there are exactly two units (one being a twin of the other), whose common

covariate value X(1) (say) maximizes the objective function in Equation A15. Therefore, the

choosing group at the first stage selects one of these two identical twins randomly, and in

the next stage, the other treatment selects the remaining twin. This respects the assignment

mechanism of a matched-pair design.

Consider the next pairs of stages. The objective function of the choosing treatment group

is given by:

(Xi −
1

1 + ϵ
X(1))⊤

{
X(1)X(1)⊤ +

ϵ

N
X⊤

fullX full − (1 + ϵ)X(1)X(1)⊤
}−1

(Xi −
1

1 + ϵ
X(1))

(A16)

Similar to the previous case, here also we have (with probability 1) exactly two units, one

being a twin of the other, whose common covariate value X(2) maximizes the objective

function in Equation A16. Thus, the choosing group at the first stage of this pair selects

one of these two twins randomly, and in the next stage, the other treatment chooses the

remaining twin. Proceeding in this manner, it follows that, at the end of the selection

process, each treatment group ends up selecting one twin randomly from N
2
identical twins,

which is equivalent to a matched-pair design. This completes the proof.
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Proof of Proposition 5.1

With equal-sized groups, by symmetry, every unit has an equal chance of belonging to one

of the G treatment groups. That is, P (Zi = g) = 1
G
for all g ∈ {1, 2, ..., G}. Therefore,

E
{ 1

ng

∑
i:Zi=g

Y obs
i

∣∣∣Y (g)
}
= E

{G

N

N∑
i=1

1(Zi = g)Yi(g)
∣∣∣Y (g)

}
=

G

N

N∑
i=1

P (Zi = g)Yi(g)

=
1

N

N∑
i=1

Yi(g). (A17)

Using linearity of expectations, the proposition follows from Equation A17.

Next, we derive the randomization-based variance of the estimated SATE. For simplicity,

and without loss of generality, we consider the case with G = 2 treatment groups of equal

size, and focus on the estimand SATE2,1. Let the corresponding unbiased estimator be

denoted by ŜATE2,1. Let Wi = 1(Zi = 2) be the indicator that unit i belongs to group 2.

Following the Neymanian decomposition in Mukerjee et al. (2018), Proposition A1 presents

the closed-form expression of the variance of ŜATE2,1.

Proposition A1.

Var(ŜATE2,1)

= − 1

N(N − 1)

N∑
i=1

(Yi(2)− Yi(1)− τ)2 +
1

N2

(
N∑
i=1

2{Y 2
i (1) + Y 2

i (2)}+

+ 2
∑∑

i<i′

[
Yi(2)Yi′(2)

{
4πii′(2, 2)−

N

N − 1

}
+ Yi(1)Yi′(1)

{
4πii′(1, 1)−

N

N − 1

}]

− 2
∑∑

i<i′

[
Yi(2)Yi′(1)

{
4πii′(2, 1)−

N

N − 1

}
+ Yi(1)Yi′(2)

{
4πii′(1, 2)−

N

N − 1

}])
,

where πi,i′(z, z
′) = P (Zi = z, Zi′ = z′), for z, z′ ∈ {1, 2}.

Moreover, if πi,i′(z, z
′) > 0 for all i, i′ and z, z′, then a conservative estimator of this variance
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is given by,

V̂ar(ŜATE2,1) =
1

N2

(
N∑
i=1

4(Y obs
i )2

+ 2
∑∑

i<i′

[
WiWi′Y

obs
i Y obs

i′

πii′(2, 2)

{
4πii′(2, 2)−

N

N − 1

}
+

(1−Wi)(1−Wi′)Y
obs
i Y obs

i′

πii′(1, 1)

{
4πii′(1, 1)−

N

N − 1

}]
− 2

∑∑
i<i′

[
Wi(1−Wi′)Y

obs
i Y obs

i′

πii′(2, 1)

{
4πii′(2, 1)−

N

N − 1

}
+

(1−Wi)Wi′Y
obs
i Y obs

i′

πii′(1, 2)

{
4πii′(1, 2)−

N

N − 1

}])
,

This estimator is unbiased when treatment effect is constant across units, i.e., Yi(2)−Yi(1) =

c for all i ∈ {1, 2, ..., N}, where c is a constant.

When the condition πi,i′(z, z
′) > 0 is violated for some i, i′, z, z′, we can still obtain a con-

servative variance estimator. For instance, suppose πii′(1, 1) = 0. In this case, following

Aronow and Samii (2013), we can upper bound the term Yi(2)Yi′(2)
{
4πii′(2, 2)− N

N−1

}
=

−Yi(2)Yi′(2)
N

N−1
by N

2(N−1)
{Y 2

i (2) + Y 2
i′ (2)}, which admits an unbiased estimator given by

N
N−1

Wi{(Y obs
i )2 + (Y obs

i′ )2}.

C Properties of D-optimal selection function

C.1 Affine invariance and covariate balance

Theorem A2. (a) The FSM with the D-optimal selection function is invariant under

affine transformations of the covariate vector.

(b) For continuous, symmetrically distributed covariates and two groups of equal size, the

FSM with the D-optimal selection function almost surely produces exact mean-balance

on all even transformations of the centered covariate vector.
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Proof of Theorem A2

Proof. (a) We consider the case where ñr−1 ≥ 1 and X̃
⊤
r−1X̃r−1 is invertible. The proofs for

the other two cases are similar. By Theorem 4.1, in this case, the chosen unit i′ satisfies,

i′ ∈ arg max
i∈Rr−1

(Xi − X̄r−1)
⊤(Sr−1)

−1(Xi − X̄r−1). (A18)

Consider an affine transformation of the covariate X given by U = AX + b, where A is a

k × k invertible matrix and b is a vector of dimension k. Let the corresponding values of

X̄r−1 and Sr−1 be Ūr−1 and SU,r−1, respectively. We observe that,

(Ui − Ūr−1)
⊤(SU,r−1)

−1(Ui − Ūr−1) = {A(Xi − X̄r−1)}⊤(ASr−1A
⊤)−1A(Xi − X̄r−1)

= (Xi − X̄r−1)
⊤(Sr−1)

−1(Xi − X̄r−1). (A19)

This shows that the D-optimal selection function remains unchanged under affine transfor-

mations and hence, FSM with the D-optimal selection function is affine invariant.

(b) The in-sample symmetry of the data essentially implies that if X belongs to the sample,

then −X also belongs to the sample. Moreover, by the assumption of a continuous data

generating distribution, with probability 1, the covariate values are different up to reflection.

Now, consider an even transformation g(·), i.e., g(−X) = g(X). With two groups of equal

sizes, the SOM consists of successive random permutations of the ‘chunk’ (1, 2). By Theorem

4.1, for the first pair of stages of selection, the objective function (to maximize) is given by

(Xi − X̄full)
⊤(Sfull)

−1(Xi − X̄full) = X⊤
i (Sfull)

−1Xi. (A20)

It follows that, if a unit in the sample with covariate X(1) maximizes the objective function

in Equation A20, then so does the unit with covariate −X(1). Moreover, due to the con-

tinuous data generating distribution, with probability 1, these are the only two units that
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maximize this objective function. Therefore, if treatment 1 selects the unit with covariate

X(1), treatment 2 selects the unit with covariate −X(1), and vice-versa. This preserves exact

balance on g(X).

Now, consider the next pair of stages. Without loss of generality, suppose treatment 1 had

chosen a unit with covariate X(1) and treatment 2 had chosen a unit with covariate −X(1)

in their respective previous choices. Also, without loss of generality, assume that in this pair

of stages, treatment 1 gets to choose first. By Theorem 4.1, treatment 1 aims to maximize,

(Xi − X̄∗
r−1)

⊤(S∗
r−1)

−1(Xi − X̄∗
r−1)

= {Xi −
1

1 + ϵ
X(1)}⊤

{
X(1)X(1)⊤ +

ϵ

N
X⊤

fullX full − (1 + ϵ)X(1)X(1)⊤
}−1

{Xi −
1

1 + ϵ
X(1)}.

(A21)

Also, during treatment 2’s turn in this pair of stages, it tries to maximize

(Xi +
1

1 + ϵ
X(1))⊤

{
X(1)X(1)⊤ +

ϵ

N
X⊤

fullX full − (1 + ϵ)X(1)X(1)⊤
}−1

(Xi +
1

1 + ϵ
X(1))

= {(−Xi)−
1

1 + ϵ
X(1)}⊤

{
X(1)X(1)⊤ +

ϵ

N
X⊤

fullX full − (1 + ϵ)X(1)X(1)⊤
}−1

{(−Xi)−
1

1 + ϵ
X(1)}.

(A22)

Equations A21 and A22 imply that if treatment 1 chooses a unit with covariate value X(2),

then with probability 1, treatment 2 chooses the unit with covariate value −X(2), and vice

versa. This shows that, at the end of the second pair of stages in the SOM, exact mean

balance on g(X) is preserved. Proceeding in this manner it follows that, at the end of the

selection process, with probability 1, both the treatment groups will have exact balance on

g(X). This completes the proof.

It follows from Theorem A2(a) that, for any SOM, the choices made by each treatment group

remain unchanged even if the covariate vectors are transformed via an affine transformation
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(e.g., changing the units of measurement of the covariates). Therefore, the FSM with the

D-optimal selection function self-standardizes the covariates. In addition, if the covariate

vector is symmetrically distributed in the sample, then by Theorem A2(b), the FSM exactly

balances even transformations such as the second, fourth order moments, and the pairwise

products of the centerd covariates. An implication of Theorem A2(b) is that, for covari-

ates drawn from symmetric continuous distributions (such as the Normal, t, and Laplace

distributions), the FSM tends to balance all these transformations due to the approximate

symmetry of the covariates in the sample. The choice of the D-optimal selection function is

thus robust in the sense that it allows the FSM to balance a family of transformations of the

covariate vector by design, without explicitly including them in the assumed linear model

nor requiring the specification of tuning parameters.

C.2 Connection to A-optimality

The original FSM used a criterion based on A-optimality as the selection function (see Morris

1979). In this section, we compare the A-and D-optimal selection functions. The A-optimal

selection function requires prespecifying a policy matrix P p×(k+1) and a corresponding vector

of policy weights wp×1. Here, P transforms the original vector of regression coefficients to

a vector of p linear combinations that are of policy interest, and w assigns weights to each

combination according to their importance. Thus, the A-optimal selection function requires

p(k + 2) tuning parameters.

If treatment 1 gets to choose at the rth stage, then this criterion selects the unit that

minimizes the resulting trace
{
T (X̃

⊤
r,iX̃r,i)

−1
}
, where T = P⊤diag(w)P . Proposition A3

shows an equivalent characterization of the A-optimal selection function.

Proposition A3. Let treatment 1 be the choosing group at the rth stage. Assume that

ñr−1 ≥ 1 and X̃
⊤
r−1X̃r−1 is invertible. The A-optimal selection function chooses unit i′ with

covariate vector Xi′ ∈ Rk, where i′ ∈ arg max
i∈Rr−1

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1T (X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

)
1+(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

) .

The A-optimality criterion provides a family of selection functions depending on P and w.
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For some choices of P and w, the selection function is not affine invariant , e.g., P = I

and w = (1, 1, ..., 1)⊤, while for other choices it is, e.g., P = X̃ full and w = (1, 1, ..., 1)⊤.

In particular, the A-optimal selection function with P = X̃ full and w = (1, 1, ..., 1)⊤ is

closely related to the D-optimal selection function. To see this, consider a case where in

the selection process, the design matrices in each treatment group scale similarly relative

to the design matrix in the full sample, i.e., (X̃
⊤
r−1X̃r−1)

−1 = cr(X̃
⊤
fullX̃ full)

−1 for some

constant cr > 0. In this case, the A-optimal selection function chooses unit i′ such that i′ ∈

arg max
i∈Rr−1

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
⇐⇒ i′ ∈ arg max

i∈Rr−1

(Xi−X̄r−1)
⊤(Sr−1)

−1(Xi−X̄r−1),

which is equivalent to the D-optimal selection function. Hence, in this case, the FSM under

the D-optimal and A-optimal selection functions make similar choices of units.

Proof of Proposition A3

Proof. The A-optimal selection function aims to minimize

trace
{
T (X̃

⊤
r,iX̃r,i)

−1
}

(A23)

= trace
[
T {X̃⊤

r−1X̃r−1 +
(

1
Xi

)
(1,X⊤

i )}−1
]

= trace
{
T (X̃

⊤
r−1X̃r−1)

−1 − T
(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1

1 + (1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

) }
= trace{T (X̃

⊤
r−1X̃r−1)

−1} − trace
{
T
(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1

1 + (1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

) }
= trace{T (X̃

⊤
r−1X̃r−1)

−1} − trace
{(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1T (X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

)
1 + (1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

) }
(A24)

Here the second equality holds due to the Sherman-Morrison-Woodbury formula, the third

and fourth equality hold due to the linearity and cyclicality of trace(·), respectively. Equation

A24 shows that it is equivalent to maximize trace
{

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1T (X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

)
1+(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

) }
.

This completes the proof.
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D Optimal covariance design theorem and D-optimality

In this section, we focus on the setting with G = 2 treatment groups. Under a model-based

approach, we first connect the notion of covariate balance to efficiency using the optimal

covariance design theorem (Morris and Hill 2000, see also Chattopadhyay et al. 2021)

Theorem A4. Consider the linear regression model Y obs
i = α + β⊤Xi + τ1(Zi = 2) + ϵi,

where ϵis are the uncorrelated error terms with mean zero and variance σ2. Let τ̂OLS be the

ordinary least squares estimator of τ . Then,

Var(τ̂OLS) =
σ2

Ns22(1−R2)
,

where s22 =
n1n2

N2 and R2 is the square of the multiple correlation coefficient of 1(Zi = 2) with

the covariates.

Here, τ̂OLS is used to estimate the average treatment effect of treatment 2, relative to treat-

ment 1. Theorem A4 implies that, under this model, the most efficient design minimizes R2.

In other words, the optimal design satisfies R2 = 0 (if feasible), which equivalently means

that the covariates Xi are exactly mean-balanced across the two treatment groups. Indeed,

the optimality of this design is optimal depends heavily on the correctness of the outcome

model. With model misspecification, this design may no longer be efficient. For instance,

if the outcome model is linear in second-order transformations of the covariates, the design

may perform poorly due to potential lack of balance on these transformations. In this sense,

deterministic optimal designs lack robustness against model misspecification.

Next, we consider the global D-optimal design, i.e., the design that selects the D-optimal

assignment among all possible assignments. If there are multiple D-optimal assignments, one

of them is chosen randomly by the design. Proposition A5 shows that, with k = 1 covariate,

the global D-optimal design aims to balance the means of the covariate exactly between the

two treatment groups.
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Proposition A5. Consider the linear model Y obs
i = α + β⊤Xi + τ1(Zi = 2) + ϵi, where

ϵis are the uncorrelated error terms with mean zero and variance σ2. Under this model,

the global D-optimal design minimizes |X̄1 − X̄2|, where X̄1 and X̄2 are the means of Xi in

treatment groups 1 and 2, respectively.

Proposition A5 and Theorem A4 imply that, if the outcome model is linear in the covariates

and the treatment, then the global D-optimal design is the most efficient.

Proof of Proposition A5

By definition, the D-optimal design maximizes det(D⊤D), where D = (1,X,Z) is the

design matrix. Without loss of generality, we assume that the covariates are scaled so that

their variance in the full sample is 1, i.e., 1
N

∑N
i=1(Xi − X̄full)

2 = 1. Then,

det(D⊤D) = det


N NX̄full n1

NX̄full N +NX̄full n1X̄1

n1 n1X̄1 n1


= N2n1 −Nn2

1 −Nn2
1(X̄

2
full + X̄2

1 − 2X̄fullX̄1)

= Nn1n2 −
n2
1n

2
2

N
(X̄1 − X̄2)

2, (A25)

where the last equality holds since X̄full = n1X̄1+n2X̄2

N
. Thus, maximizing det(D⊤D) is

equivalent to minimizing |X̄1 − X̄2|. This completes the proof.

E Algorithms for constructing an SOM

E.1 The SCOMARS algorithm

Consider a setting with G = 2 treatment groups of arbitrary sizes n1 and n2. Let Wr be the

binary indicator for selection of group 1 stage r, r ∈ {1, 2, . . . , N}, with pr := P (Wr = 1)

being the marginal probability of selection at stage r. Write Sr :=
∑r

j=1Wj and Fr :=

E(Sr) =
∑r

j=1 pj. A treatment assignment is sequentially controlled if |Sr − Fr| < 1 for all
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r ∈ {1, 2, . . . , N}.

The SCOMARS algorithm proceeds as follows:

• Stage 1, P (W1 = 1) = p1.

• Stage r ≥ 2, P (Wr = 1|Sr−1 = sr−1) = P
{
U ≤ pr−max(0,sr−1−Fr−1)

1−|sr−1−Fr−1|

}
, where U ∼

Unif(0, 1).

This algorithm satisfies the sequentially controlled condition, |Sr − Fr| < 1 for all r ∈

{1, 2, . . . , N} (Morris 1983). It is Markovian because the probability of selection at stage r

depends solely on stage r − 1.

E.2 SOM for multi-group experiments

We first define the randomized chunk algorithm for generating an SOM for multi-group

experiments with equal group sizes.

Definition 1 (Randomized chunk algorithm). Suppose n1 = n2 = ... = nG. The random-

ized chunk algorithm generates an SOM by generating and stacking N
G

independent random

permutations of the ‘chunk’ (1, 2, ..., G).

For example, with N = 12, g = 3, n1 = n2 = n3 = 4, one instance of an SOM generated

using randomized chunk is (2, 1, 3︸ ︷︷ ︸, 1, 2, 3︸ ︷︷ ︸, 2, 1, 3︸ ︷︷ ︸, 2, 3, 1︸ ︷︷ ︸)⊤.
The following proposition shows that the randomized chunk algorithm is sequentially con-

trolled.

Proposition A6. For G ≥ 2 and n1 = n2 = ... = nG, the randomized chunk algorithm

satisfies |Sig − Fig| ≤ G−1
G

< 1 for all g ∈ {1, 2, ..., G}.

Proof. Let Sig and Fig be the same as defined in Section 8.1 (i ∈ {1, 2, ..., N}, g ∈ {1, 2, ..., G}).

For equal sized treatment groups, Fig =
i
G
. Now, without loss of generality, it suffices to show

that |Si1 − Fi1| ≤ G−1
G

for all i ∈ {1, 2, ..., N}. Consider the first chunk in the SOM, which

is a random permutation of (1, 2, ..., G). If treatment 1 appears in position i∗ ∈ {1, 2, ..., G}
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the permutation (j ∈ {1, 2, ..., G}), then

|Si1 − Fi1| =


i
G

if i ∈ {1, ..., i∗ − 1}

1− i
G

if i ∈ {i∗, ..., G}.
(A26)

In each case, |Si1 − Fi1| ≤ G−1
G

for all i ∈ {1, 2, ..., G}. Moreover, since |SG1 − FG1| = 0, the

SOM restarts itself after the first chunk. Hence, we can conclude that |Si1 − Fi1| ≤ G−1
G

for

all i ∈ {1, 2, ..., G}. This completes the proof.

Below we describe two algorithms to generate an SOM for multi-group experiments and

show that they are sequentially controlled. The key idea in these algorithms is the formation

of ‘supergroups’, i.e., combination of one or more treatment groups. For example, with

g = 3, n1 = 10, n2 = 20, n3 = 30, one can consider two supergroups, namely {1, 2} of size

10 + 20 = 30 and {3} of size 30.

Theorem A7. For 1 ≤ G1 ≤ G − 1, let n1 = n2 = ... = nG1 ̸= n(1), and nG1+1 = nG1+2 =

... = nG = n(2), where n(1) ̸= n(2). Consider the following three-stage algorithm.

1. Run SCOMARS with supergroups {1, ..., G1} and {G1 +1, ..., G} to generate an SOM

at the supergroup level.

2. Consider the locations of the SOM in step 1 where supergroup {1, ..., G1} chooses.

Then, use randomized chunk to obtain the selection orders at the levels of the original

groups in those locations.

3. Consider the locations of the SOM in step 1 where supergroup {G1+1, ..., G} chooses.

Then, use randomized chunk to obtain the selection orders at the levels of the original

groups in those locations.

The above SOM generating algorithm is sequentially controlled.
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We first prove a special case of Theorem A7, given below in Lemma A2

Lemma A2. The algorithm in Theorem A7 is sequntially controlled for the special case of

G1 = 1.

Proof. The first step of the algorithm in Theorem A7 runs SCOMARS with treatment group

1 and the supergroup {2, 3, ..., G}. Thus, the first step itself determines the locations of the

SOM where treatment 1 gets to choose. Since SCOMARS is sequentially controlled, we

immediately have |Si1 − Fi1| < 1 for all i ∈ {1, 2, ..., N}.

It remains to show that for g ∈ {2, 3, ..., G}, |Sig − Fig| < 1 for all i ∈ {1, 2, ..., N}. By

symmetry, it suffices to show this for g = 2. Now, the randomized chunk algorithm on

the supergroup {2, 3, ..., G} determines the locations of the SOM where treatment 2 gets to

choose. We will prove the result by first mapping this SOM to an SOM where treatment 1

is absent, and then by using the sequential controlled property of randomized chunk.

Let us first denote 1 ≤ r1 < r2 < ... < rn1−1 < rn1 ≤ N as the stages or locations of the

SOM where treatment 1 gets to choose. We consider the following cases,

(i) Case-1: i ∈ {1, 2, ..., r1 − 1}. In this case, by stage i, treatment 1 has not made any

choices. Now,

|Si2 − Fi2| = |Si2 −
in(2)

N
|

≤ |Si2 −
i

G− 1
|+ | i

G− 1
− in(2)

N
|

≤ G− 2

G− 1
+ i

n1

N(G− 1)

<
G− 2

G− 1
+

1

G− 1
= 1. (A27)

Here the first inequality holds due to triangle inequality. To see that second inequality,

consider a new experiment with treatment groups {2, ..., G} of size n(2) each and an SOM

generated by randomized chunk as in the second step of the algorithm in Theorem A7. Let
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S̃i2 be the number of selections made by treatment 2 up to stage i in this new experiment

and F̃i2 =
i

G−1
be its expectation. By Proposition A6, |S̃i2− F̃i2| ≤ G−2

G−1
. Now, |Si1− i

G−1
| =

|S̃i1 − i
G−1

|, which gives us the second inequality. Finally, the last inequality holds since

in1

N
= Fi1 < 1.

(ii) Case-2: i ∈ {rt, rt + 1, ...., rt+1 − 1} for some t ∈ {1, 2, ..., n1 − 1}. In this case, by stage

i, treatment 1 has made exactly t choices. Now,

|Si2 − Fi2| = |Si2 −
in(2)

N
|

≤ |Si2 −
i− t

G− 1
|+ | i− t

G− 1
− in(2)

N
|

≤ G− 2

G− 1
+

1

G− 1
|t− in1

N
|

<
G− 2

G− 1
+

1

G− 1
= 1. (A28)

Here, the first inequality is due to triangle inequality. To see the second inequality, we

again consider the new experiment described in Case-1. Notice that, |Si2 − i−t
G−1

| = |S̃(i−t)2 −

F̃(i−t)2| ≤ G−2
G−1

, where the last inequality holds by Proposition A6. Finally, the final inequality

in Equation A28 holds since |t − in1

N
| = |Si1 − Fi1| < 1. This completes the proof of the

lemma.

We now prove Theorem A7.

Proof. We first show that, for g ∈ {1, 2, ..., G1},

|Sig − Fig| < 1 ∀i ∈ {1, 2, ..., N}. (A29)

To show this, we consider steps 1 and 2 of the algorithm as these two steps are sufficient

to determine the location of treatments 1, ..., G1 in the SOM. We note that, steps 1 and

2 generate an SOM for an experiment with G1 + 1 treatment groups, namely supergroup

{G1 + 1, ..., G} (of size (G − G1)n
(2)) and groups 1, 2, ..., G1 (each of size n(1)). Thus, by
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Lemma A2, it follows that Equation A29 holds for g ∈ {1, 2, ..., G1}.

To show that Equation A29 holds for g ∈ {G1 + 1, ..., G}, we first notice that steps 2 and

3 of the algorithm are completely independent and hence can be performed in any order.

Therefore, by changing the order of steps 2 and 3 and applying the same argument as before,

we get that Equation A29 holds for g ∈ {G1 + 1, ..., G}. This completes the proof of the

theorem.

Theorem A8. Let G1, ..., Gm be such that 1 ≤ Gj ≤ G − 1 for all j ∈ {1, 2, ...,m} and

G1 + G2 + ... + Gm = G. Moreover, for j ∈ {1, 2, ...,m}, let n(j) be the group size of Gj

many treatment groups, with n(1)G1 = n(2)G2 = ... = n(m)Gm. Denote the collection of Gj

treatment groups with group sizes n(j) as supergroup Gj. Consider the following multi-stage

algorithm.

1. Run randomized chunk on supergroups G1,G2, ...,Gm to generate an SOM at the su-

pergroup level.

2. For j ∈ {1, 2, ...,m}, consider the locations of the SOM in step 1 where supergroup Gj

chooses. Then, use randomized chunk to obtain the selection orders at the levels of

the original groups in those locations.

The above SOM generating algorithm is sequentially controlled.

To prove this theorem, we first use the following Lemma.

Lemma A3. Let n1 = n2 = ... = nG = n. Consider the following SOM generating algorithm.

1. Consider the supergroups {1} (of size n) and {2, 3, ..., G} (of size (G− 1)n). Generate

an SOM at the superpopulation level using SCOMARS.

2. Consider the locations of the SOM in step 1 where supergroup {2, 3, ..., G} chooses.

Then, use randomized chunk to obtain the selection orders at the levels of the original

groups in those locations.
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This algorithm is equivalent to the randomized chunk algorithm.

Below we prove this lemma.

Proof. To show that the algorithm is equivalent to randomized chunk, we have to show

that it generates a random permutation of (1, 2, ..., G) for the first G stages, a fresh random

permutation of (1, 2, ..., G) for the next G stages, and so on. Since the locations of groups

{2, ..., G} are chosen using randomized chunk, it thus suffices to show that, treatment 1 gets

to choose once (in a random location) in the first G stages, once in the next G stages, and

so on.

We use the notation as in Section E.1. Now, suppose among the first G stages, treatment 1

gets to choose at stage r∗ first. Notice that r∗ cannot be greater than G as

P (WG = 1|SG−1 = 0) = P
{
U ≤

1
G
−max(0, 0− FG−1)

1− |0− FG−1|

}
= P

{
U ≤ 1

G− (G− 1)

}
= 1.

(A30)

Now, for r ∈ {1, 2, ..., r∗ − 1} we have,

P (Wr = 1|Sr−1 = 0) = P
{
U ≤

1
G
−max(0, 0− Fr−1)

1− |0− Fr−1|

}
= P

{
U ≤ 1

G− (r − 1)

}
=

1

G− (r − 1)
.

(A31)

For r∗ + 1 ≤ r ≤ G,

P (Wr = 1|Sr−1 = 1) = P
{
U ≤ pr −max(0, 1− Fr−1)

1− |1− Fr−1|

}
= P

{
U ≤

1
G
− 1 + r−1

G
r−1
G

}
= 0.

(A32)

Finally,

P (WG+1 = 1|SG = 1) = P
{
U ≤ pG+1 −max(0, 1− FG)

1− |1− FG|

}
= P

(
U ≤ 1

G

)
=

1

G
. (A33)
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Therefore, by Equation A32, if treatment 1 selects at the r∗th stage, it never selects again

2, 3, ..., G. Also, by Equation A31, before the r∗th stage, the conditional probabilities of

treatment 1 selecting are same as what it would have been under random permutation of

the group labels. Finally, by Equation A33, the process restarts itself at the (G+1)th stage,

which is equivalent to starting a fresh new random permutation of the group labels. This

completes the proof of the lemma.

We now prove Theorem A8.

Proof. By the symmetry of the problem, it suffices to show that |Si1 − Fi1| < 1 for all

i ∈ {1, 2, ..., N}. Without loss of generality, we assume that G1 = {1, 2, ..., G1}, which

implies that treatment 1 belongs to supergroup G1. Now, it suffices to focus on the following

to steps of the algorithm:

1. Run randomized chunk on supergroups G1,G2, ...,Gm to generate an SOM at the su-

pergroup level.

2. Consider the locations of the SOM in step 1 where supergroup G1 chooses. Then, use

randomized chunk to obtain the selection orders at the levels of the original groups in

those locations.

This is because, these two steps completely determine the locations of treatment 1 in the

SOM. By Lemma A3, these two steps can be equivalently performed as follows.

1. Consider the supergroups G1 (of size n(1)G1) and {G2, ...,Gm} (of size (m− 1)n(1)G1).

Generate an SOM at this supergroup level using SCOMARS.

2. Consider the locations of the SOM in step 1 where supergroup {G2, ...,Gm} chooses.

Then, use randomized chunk to obtain the selection orders at the levels of Gj in those

locations.

3. Consider the locations of the SOM in step 1 where supergroup G1 chooses. Then, use
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randomized chunk to obtain the selection orders at the levels of the original groups in

those locations.

We note that this above algorithm is exactly equivalent to the SOM generating algorithm in

Theorem A7 for an experiment withG1+m−1 treatment groups, namely, 1, 2, ..., G1,G2,G3, ...,Gm.

Thus, by Theorem A7, we have |Si1 − Fi1| < 1 for all i ∈ {1, 2, ..., N}.

F FSM for stratified experiments

In this section, we discuss two potential approaches to use an FSM for stratified experiments.

We consider stratified experiments where the treatment group sizes within each stratum are

set by the investigator beforehand. To accommodate the FSM to such experiments, we again

need to carefully construct an SOM. In particular, we append the SOM with an additional

column of stratum labels, indicating which stratum the treatment group selects from at each

stage of the selection process. This column of stratum labels is specified in such a way that

the resulting SOM satisfies the group size requirements within each stratum.

Conceptually, the most straightforward approach is to generate a separate SOM for each stra-

tum. This is equivalent to setting the column of stratum labels as (1, ..., 1︸ ︷︷ ︸
m1

, 2, ..., 2︸ ︷︷ ︸
m2

, ..., S, ...., S︸ ︷︷ ︸
mS

)⊤,

where S is the number of strata and ms is the size of sth stratum, s ∈ {1, 2, ..., S}. This

approach is easy to implement and can be useful if, e.g., data on each stratum is available

at different stages of the experiment, akin to a sequential experiment. However, in this ap-

proach, the treatment groups only get to explore the covariate space of a single stratum for a

number of successive stages of selection and hence may not make the most efficient choices.

We address this issue with an alternative approach. For ease of exposition, we consider two

strata: 1 and 2. Let n1g and n2g be the (fixed) sizes of treatment group g ∈ {1, 2, ..., G}

in strata 1 and 2, respectively, where n1g + n2g = ng. In this approach, we first generate

a usual SOM with group sizes n1, ..., nG. For g ∈ {1, 2, ..., G}, we then select the order of

the strata that treatment g chooses from by running a SCOMARS algorithm with group
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sizes n1g and n2g. By allowing the treatment groups to select units from different strata in

a balanced manner, this approach mimics the unstratified FSM where the covariate space of

the entire sample is explored for choosing units. Also, by design, this approach satisfies the

size requirement of each treatment group within each stratum.

G FSM for sequential experiments

In this section, we describe our approach to using the FSM for sequential experiments.

Suppose treatment 1 gets to choose at the first stage of selection for the new batch. Let

X̃old be the design matrix based on units already assigned to treatment 1. Also, for each

unit i in the new batch, let X̃new,i :=
(

X̃old

(1,X⊤
i )

)
be the resulting design matrix in treatment

group 1 if unit i is selected. Treatment 1 selects the unit that maximizes det(X̃
⊤
new,iX̃new,i).

In other words, we use the design matrix based on all the units already assigned to the

choosing treatment group to evaluate the D-optimal selection function for each unit in the

new batch, and select the unit that maximizes the selection function. By carrying over the

existing design matrix to the new batch, this approach tends to correct for any existing

covariate imbalances.

H A simulation study

H.1 Setup

We now compare the performance of the FSM to complete randomization and rerandomiza-

tion in a simulation study. Here, N = 120, G = 2, n1 = n2 = 60, and k = 6. The covariates

are generated following the design of Hainmueller (2012):

(
X1
X2
X3

)
∼ N3

{(
0
0
0

)
,
(

2 1 −1
1 1 −0.5
−1 −0.5 1

)}
, X4 ∼ Unif(−3, 3), X5 ∼ χ2

1, X6 ∼ Bernoulli(0.5).

(A34)

In this design, X4, X5, and X6 are mutually independent and separately independent of

(X1, X2, X3)
⊤. We draw a sample of 120 units once from the data generating mechanism in

(A34). Conditional on this sample, we compare four different assignment methods, namely

26



a completely randomized design (CRD), rerandomization with 0.01 acceptance rate (RR

0.01), rerandomization with 0.001 acceptance rate (RR 0.001), and the FSM. Both RR

0.01 and RR 0.001 use as rerandomization criteria the Mahalanobis distance between the

two treatment groups on the original covariates. The FSM uses a linear potential outcome

model on the original covariates and the D-optimal selection function. For each design we

draw 800 independent assignments. The assignments under the FSM are generated using

the open source R package FSM available on CRAN. The total runtime of the FSM for the

800 simulated experiments was about one and a half minutes on a Windows 64-bit computer

with an Intel(R) Core i7 processor. See Chattopadhyay et al. (2021) for detailed step-by-step

instructions and vignettes on the use of FSM package.

H.2 Balance

We evaluate balance on the main and transformed covariates. Figures A1(a) and A1(b)

show density plots of the Absolute Standardized Mean Differences (ASMD; Rosenbaum and

Rubin 1985, Stuart 2010) of the six main covariates and their second-order transformations

(including squares and pairwise products), respectively. A smaller ASMD for a covariate

indicates better mean-balance on that covariate between the two treatment groups. Figure

A1(a) indicates that both rerandomization methods improve balance on the means of the

original covariates over CRD. As expected, the ASMD distribution under RR 0.001 is more

concentrated than that of RR 0.01, with 32% smaller mean ASMD than RR 0.01. Both the

FSM and RR 0.001 have similar distributions of the ASMD with FSM having moderately

(9%) smaller mean ASMD. See Table A10 for a comparison of the average ASMD of each

covariate.

Figure A1(b) shows that the imbalances of covariate transformations are substantially smaller

with the FSM than with CRD, RR 0.01, and RR 0.001. In fact, the FSM achieves a 70%

reduction in the mean ASMD with respect to RR 0.001. Thus, although the FSM and

RR 0.001 exhibit comparable balance in terms of the main covariates, the FSM balances
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Figure A1: Panels (a) and (b) show distributions of absolute standardized mean differences
(ASMD) of the main covariates and all their second-order transformations across 800 ran-
domizations. For each plot, the legend presents the average ASMD across simulations for the
four methods. Panel (c) shows distributions of discrepancies between the correlation matri-
ces of the covariates in the treatment and the control group (as measured by the Frobenius
norm, ||R1−R2||F ). On average the FSM achieves better covariate balance. In terms of the
main covariates, the FSM marginally outperforms RR 0.001. In terms of the second-order
transformations and correlation matrices, the FSM substantially outperforms RR 0.001.
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these transformations of the covariates much better than RR 0.001. This highlights the

improved robustness of the FSM against model misspecification. Moreover, reducing the

tuning parameter of rerandomization from 0.01 to 0.001 yields only 2% improvement in the

mean ASMD.1 In Figure A1(b), both RR 0.01 and RR 0.001 often produce ASMD larger

than 0.1, and in some cases, larger than 0.5, indicative of substantial imbalances on these

covariate transformations.

For each method, we also compare balance in the overall correlation structure of the co-

variates. Figure A1(c) shows the boxplots of the distributions of ||R1 − R2||F . The FSM

outperforms the other three designs with at least 75% smaller average ||R1−R2||F . In partic-

ular, among the 800 randomizations, the highest value of ||R1−R2||F under FSM is smaller

than the corresponding lowest value under the other three designs, indicating that in terms

1In fact, for some covariate transformations, reducing this tuning parameter exacerbates imbalance (see
Table A11).
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of the correlation structure (and hence the interactions) of the covariates, the least balanced

realization of the 800 FSMs exhibits better balance than the best balanced realization of the

800 complete randomizations and rerandomizations.

H.3 Efficiency

We now compare the efficiency of the methods under both model- and randomization-based

approaches to inference. Under the model-based approach, we consider a potential outcome

model where E{Yi(g)|Xi} is linear in Xi (Model A1), and another model where E{Yi(g)|Xi}

is linear in Xi and all its second-order transformations (Model A2). In each case, we assume

homoscedasticity, i.e., Var{Yi(g)|Xi} = σ2. For each potential outcome model, we fit the

corresponding observed outcome model by OLS and estimate PATE2,1 using the regression

imputation method described in Section 5.

More concretely, consider a specific treatment assignment vector Z. Under Model A1,

we fit a linear regression model Y obs
i = (1,Xi)

⊤βg + ϵig in treatment group g ∈ {1, 2}

and estimate PATE2,1 by the regression imputation estimator P̂ATE2,1 = β̂⊤
2
¯̃X − β̂⊤

1
¯̃X,

where ¯̃X⊤ = 1
N

∑N
i=1(1,X

⊤
i ). The model-based standard error of this estimator is SEZ =

σ

√
¯̃X⊤{(X̃⊤

1,ZX̃1,Z)
−1 + (X̃

⊤
2,ZX̃2,Z)

−1} ¯̃X, where X̃g,Z is the design matrix in group g, for

the given treatment assignment Z.

Now, for a design d, the average and maximum model-based standard error relative to

the FSM is given by

1
M

∑M
r=1 SEZ

(r)
d

1
M

∑M
r=1 SEZ

(r)
FSM

and
max

r
SE

Z
(r)
d

max
r

SE
Z
(r)
FSM

, respectively, where Z
(1)
d , ...,Z

(M)
d are M

independent assignment vectors generated under design d, and Z
(1)
FSM, ...,Z

(M)
FSM are generated

under the FSM. These measures do not depend on σ2 and can be computed exactly from

the observed data. Tables A4(a) and A4(b) show the average and maximum model-based

standard error (SE) of the regression imputation estimator relative to the FSM across M =

800 randomizations under the two models.
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Table A4: Average and maximum model-based standard errors relative to the FSM across
randomizations. Under Model A1 (linear model on the main covariates), the FSM and
RR exhibit similar performance, improving over CRD. Under Model A2 (linear model on
the main covariates and their second-order transformations), the FSM is considerably more
efficient than both CRD and RR.

(a) Model A1

Designs

CRD RR 0.01 RR 0.001 FSM

Average SE 1.03 1.00 1.00 1.00

Maximum SE 1.13 1.00 1.00 1.00

(b) Model A2

Designs

CRD RR 0.01 RR 0.001 FSM

Average SE 1.39 1.27 1.26 1.00

Maximum SE 3.61 1.97 1.80 1.00

Under Model A1, since both rerandomization and the FSM are able to adequately balance the

means of the original covariates, they lead to lower SE (hence, higher efficiency) than CRD.

Across randomizations, the worst case SE under RR 0.01, RR 0.001, and the FSM are 13%

smaller than under CRD. Under Model A1, the FSM has similar model-based SE as the two

rerandomization methods. However, under Model A2, the FSM uniformly outperforms the

other three designs, with a 26% reduction in average SE and an 80% reduction in maximum

SE than RR 0.001. This improvement in efficiency can be attributed to the balance achieved

by the FSM on the main covariates and their squares and pairwise products. In sum,

when the model assumed at the design stage is correct and is used at the analysis stage,

the FSM is as efficient as the two rerandomizations for estimating the treatment effect.

However, when the model assumed at the design stage is misspecified and later corrected

by augmenting transformations of the covariates (e.g., squares and pairwise products), the

FSM is considerably more efficient and robust than the other designs.

Under the randomization-based approach, we compare the standard errors of the difference-

in-means statistic under each design. Following Hainmueller (2012), the potential outcomes

are generated using the models: Y (1) = X1+X2+X3−X4+X5+X6+η, Y (2) = Y (1) (Model

B1) and Y (1) = (X1 +X2 +X5)
2 + η, Y (2) = Y (1) (Model B2), where η ∼ N (0, 1). Both

generative models satisfy the sharp-null hypothesis of zero treatment effect for every unit

and hence, SATE2,1 = 0. Conditional on these potential outcomes, SATE2,1 is estimated
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under each design using the standard difference-in-means estimator. The corresponding

randomization-based SE of this estimator is obtained by generating 800 randomizations of

the design and computing the standard deviation of the difference-in-means estimator across

these 800 randomizations. Table A5 shows the randomization-based SE of the difference-in-

means statistic for SATE2,1 under each model.

Table A5: Randomization-based standard errors relative to the FSM. The standard error for
the FSM is 0.2 under Model B1 (linear model on the main covariates) and 0.43 under Model
B2 (linear model on the main covariates and their second-order transformations). Especially
under Model B2, the FSM is considerably more efficient than both CRD and RR.

(a) Model B1

Designs

CRD RR 0.01 RR 0.001 FSM

SE 2.72 1.26 1.08 1

(b) Model B2

Designs

CRD RR 0.01 RR 0.001 FSM

SE 5.69 4.56 4.47 1

Under Model B1, the potential outcomes depend linearly on the covariates and therefore

balancing the means of the covariates improves efficiency. This is reflected in Table A5 as

the FSM has the smallest SE, closely followed by RR 0.001. Under Model B2, the potential

outcomes depend linearly on the squares and pairwise products of the covariates. By better

balancing these transformations, the FSM yields a considerably smaller SE than the other de-

signs. In particular, under Model B2, the SE under the FSM is 67% smaller than the SE under

RR 0.001. Therefore, as in the model-based approach, in the randomization-based approach

the FSM exhibits comparable efficiency to rerandomization under correct-specification of the

outcome model and considerable robustness under model misspecification.

H.4 Comparison with the global D-optimal design

In this section, we compare the performance of the FSM with the global D-optimal design

(or simply, the D-optimal design), as defined in Section H.4. Obtaining the exact D-optimal

assignment is an NP-hard problem in general, so we consider two alternatives. First, we

randomly sample a large number (20000) of assignment vectors from the space of all possible
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assignments and obtain the D-optimal assignment among them. Due to random sampling,

this assignment is expected to have similar properties (e.g., balance) as the exact D-optimal

assignment. Second, we consider a random subsample of 20 units from the original sample

of 120 units. For this subsample, we compare FSM with the D-optimal assignment. In this

case, both the designs assign units into two groups of size 10 each.

Tables A6 and A7 display the average ASMD values for the original covariates, as well as

their squares and interactions, respectively, under the first scenario. Correspondingly, Tables

A8 and A9 present these ASMD values under the second scenario.

Table A6: ASMD of the original covariates under the D-optimal design (D-opt), and the average ASMD
of the original covariates under the FSM. The ASMD for the D-optimal design is approximated based on
20000 randomizations.

Covariates
Designs

D-opt FSM

X1 0.031 0.029

X2 0.008 0.025

X3 0.020 0.042

X4 0.004 0.029

X5 0.041 0.029

X6 0.033 0.034

Mean 0.023 0.031
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Table A7: ASMD of the squares and pairwise products of the covariates under the D-optimal design (D-
opt), and the average ASMD of the same transformations under the FSM. The ASMD for the D-optimal
design is approximated based on 20000 randomizations.

Covariate
transformations

Designs

CRD RR 0.01

X1X2 0.029 0.041

X1X2 0.038 0.041

X1X2 0.206 0.024

X1X2 0.074 0.035

X1X2 0.223 0.030

X1X2 0.057 0.051

X1X2 0.090 0.027

X1X2 0.027 0.030

X1X2 0.075 0.026

X1X2 0.329 0.032

X1X2 0.147 0.096

X1X2 0.087 0.035

X1X2 0.064 0.037

X1X2 0.091 0.027

X1X2 0.036 0.024

X2
1 0.029 0.031

X2
2 0.085 0.038

X2
3 0.110 0.041

X2
4 0.060 0.053

X2
5 0.047 0.013

Mean 0.095 0.037
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Table A8: ASMD of the original covariates in the sampled dataset under the D-optimal design (D-opt),
and the average ASMD of the original covariates under the FSM.

Covariates
Designs

D-opt FSM

X1 0.022 0.191

X2 0.071 0.142

X3 0.036 0.213

X4 0.016 0.147

X5 0.054 0.194

X6 0.000 0.051

Mean 0.033 0.156

Table A9: ASMD of the squares and pairwise products of the covariates in the sampled dataset under the
D-optimal design (D-opt), and the average ASMD of the same transformations under the FSM.

Covariate
transformations

Designs

CRD RR 0.01

X1X2 0.825 0.353

X1X2 1.231 0.210

X1X2 0.484 0.162

X1X2 0.588 0.388

X1X2 0.727 0.230

X1X2 1.526 0.248

X1X2 0.765 0.095

X1X2 0.625 0.363

X1X2 0.477 0.264

X1X2 0.638 0.269

X1X2 0.740 0.392

X1X2 0.440 0.263

X1X2 0.559 0.404

X1X2 0.609 0.147

X1X2 0.238 0.063

X2
1 0.952 0.200

X2
2 0.116 0.365

X2
3 0.833 0.313

X2
4 0.566 0.167

X2
5 0.019 0.233

Mean 0.648 0.256
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From the above tables we observe that, on an average, the D-optimal design produces better

balance on the main covariates. This observation is consistent with Proposition A5, which

shows that with a single covariate, the D-optimal design aims to exactly balance its mean

across the two groups. However, akin to randomization, it produces worse balance on the

second-order transformations of the covariates.

H.5 Additional results from the simulation study

Table A10: Averages of the ASMD of the original covariates across 800 randomizations.

Covariates
Designs

CRD RR 0.01 RR 0.001 FSM

X1 0.162 0.051 0.035 0.029

X2 0.156 0.048 0.033 0.025

X3 0.158 0.049 0.033 0.042

X4 0.150 0.049 0.034 0.029

X5 0.140 0.052 0.034 0.029

X6 0.141 0.052 0.036 0.034

Mean 0.151 0.050 0.034 0.031
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Table A11: Averages of the ASMD of squares, pairwise products, and other transformations of the covari-
ates across 800 randomizations.

Covariate
transformations

Designs

CRD RR 0.01 RR 0.001 FSM

X1X2 0.144 0.153 0.148 0.041

X1X3 0.144 0.140 0.137 0.041

X1X4 0.141 0.148 0.147 0.023

X1X5 0.150 0.135 0.134 0.035

X1X6 0.152 0.109 0.101 0.030

X2X3 0.147 0.147 0.146 0.051

X2X4 0.140 0.155 0.150 0.027

X2X5 0.147 0.143 0.136 0.030

X2X6 0.152 0.115 0.104 0.026

X3X4 0.141 0.143 0.152 0.032

X3X5 0.149 0.140 0.139 0.096

X3X6 0.148 0.099 0.091 0.035

X4X5 0.148 0.132 0.130 0.037

X4X6 0.152 0.100 0.095 0.027

X5X6 0.146 0.095 0.094 0.024

X2
1 0.140 0.145 0.143 0.031

X2
2 0.151 0.155 0.150 0.038

X2
3 0.144 0.136 0.132 0.041

X2
4 0.143 0.145 0.147 0.053

X2
5 0.142 0.073 0.067 0.013

Mean 0.146 0.130 0.127 0.037

X1.5
5 0.141 0.060 0.048 0.018

X3
2 0.155 0.090 0.081 0.071

X4
4 0.140 0.143 0.147 0.072
1

4+X3
0.157 0.073 0.064 0.050

Mean 0.148 0.092 0.085 0.053
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Figure A2: Boxplot of the distribution of ||S1 −S2||F across 800 randomizations, where Sg is the sample
covariance matrix of the covariates in treatment group g ∈ {1, 2}.
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Table A12: Averages of the ASMD of the original covariates across 800 randomizations under the FSM
with differences choices of ϵ.

Covariates
Choice of ϵ

0.1 0.01 0.001 0.0001

X1 0.032 0.030 0.030 0.030

X2 0.029 0.026 0.026 0.026

X3 0.041 0.043 0.043 0.043

X4 0.026 0.028 0.028 0.028

X5 0.029 0.031 0.031 0.031

X6 0.034 0.034 0.034 0.034

Mean 0.032 0.032 0.032 0.032
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Table A13: Averages of the ASMD of squares and pairwise products of the covariates across 800 random-
izations under the FSM with different choices of ϵ.

Covariate
transformations

Choice of ϵ

0.1 0.01 0.001 0.0001

X1X2 0.044 0.038 0.038 0.038

X1X3 0.040 0.041 0.041 0.041

X1X4 0.028 0.025 0.025 0.025

X1X5 0.039 0.037 0.037 0.037

X1X6 0.031 0.030 0.030 0.030

X2X3 0.045 0.048 0.048 0.048

X2X4 0.029 0.026 0.026 0.026

X2X5 0.040 0.029 0.029 0.029

X2X6 0.028 0.026 0.026 0.026

X3X4 0.038 0.033 0.033 0.033

X3X5 0.091 0.097 0.097 0.097

X3X6 0.028 0.033 0.033 0.033

X4X5 0.046 0.038 0.038 0.038

X4X6 0.026 0.027 0.027 0.027

X5X6 0.024 0.027 0.027 0.027

X2
1 0.031 0.032 0.032 0.032

X2
2 0.038 0.036 0.036 0.036

X2
3 0.040 0.040 0.040 0.040

X2
4 0.052 0.052 0.052 0.052

X2
5 0.011 0.014 0.014 0.014

Mean 0.037 0.036 0.036 0.036

38



I Additional results from the Health Insurance Experiment

Table A14: Average ASMD of the main covariates between treatment groups 1 and 2 across 400 random-
izations.

Covariates
Designs

CRD RR Wilks RR Mahalanobis FSM

X1 : Log family size 0.052 0.039 0.038 0.012

X2 : Log family income 0.052 0.040 0.043 0.010

X3 : Max hourly wage 0.051 0.042 0.047 0.017

X4 : Adult med visits 0.049 0.043 0.041 0.014

X5 : Kid med visits 0.048 0.039 0.040 0.010

X6 : Female 0.047 0.039 0.040 0.010

X7 : Age 0 to 5 0.053 0.038 0.039 0.010

X8 : Age 6 to 17 0.051 0.041 0.039 0.011

X9 : Age 18 to 44 0.053 0.038 0.040 0.010

X10 : Male HS Grad 0.051 0.038 0.041 0.006

X11 : Male more than HS 0.048 0.037 0.041 0.006

X12 : Insured 0.049 0.040 0.038 0.010

X13 : Excellent health 0.052 0.040 0.037 0.009

X14 : Good health 0.053 0.038 0.037 0.010

X15 : Family income mis 0.052 0.038 0.041 0.011

X16 : Max hourly wage mis 0.051 0.038 0.041 0.013

X17 : Adult med visits mis 0.054 0.040 0.040 0.011

X18 : Kid med visits mis 0.057 0.041 0.039 0.011

X19 : Education male mis 0.048 0.038 0.041 0.008

X20 : Insured mis 0.048 0.039 0.038 0.011

Mean 0.051 0.039 0.040 0.011
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Table A15: Averages of the ASMD between each pair of treatment groups across the original covariates
and across 400 randomizations.

Treatment group
Designs

CRD RR Wilks RR Mahalanobis FSM

1, 2 0.051 0.039 0.040 0.011

1, 3 0.055 0.041 0.043 0.011

1, 4 0.049 0.038 0.039 0.010

2, 3 0.056 0.043 0.045 0.012

2, 4 0.053 0.040 0.041 0.010

3, 4 0.056 0.042 0.044 0.012

Mean 0.053 0.040 0.042 0.011

Table A16: Averages of the ASMD of the squares and pairwise products of the (demeaned) covariates
X1,..., X5 between treatment groups 1 and 2 across 400 randomizations.

Covariates
Designs

CRD RR Wilks RR Mahalanobis FSM

X1X2 0.053 0.039 0.041 0.020

X1X3 0.053 0.047 0.046 0.027

X1X4 0.054 0.045 0.045 0.020

X1X5 0.049 0.040 0.041 0.013

X2X3 0.054 0.049 0.053 0.038

X2X4 0.050 0.045 0.048 0.017

X2X5 0.052 0.039 0.039 0.015

X3X4 0.054 0.043 0.045 0.022

X3X5 0.050 0.042 0.046 0.022

X4X5 0.054 0.044 0.045 0.015

X2
1 0.053 0.041 0.040 0.026

X2
2 0.051 0.041 0.042 0.015

X2
3 0.057 0.055 0.058 0.026

X2
4 0.053 0.053 0.053 0.012

X2
5 0.051 0.043 0.044 0.004

Mean 0.053 0.044 0.046 0.019
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Table A17: Averages of the ASMD between each pair of treatment groups across the squares and pairwise
products of the (demeaned) covariates X1,..., X5 and across 400 randomizations.

Treatment group
Designs

CRD RR 0.01 RR 0.001 FSM

1, 2 0.053 0.044 0.046 0.019

1, 3 0.056 0.046 0.048 0.020

1, 4 0.051 0.043 0.044 0.017

2, 3 0.058 0.049 0.049 0.021

2, 4 0.054 0.046 0.046 0.018

3, 4 0.058 0.048 0.049 0.023

Mean 0.055 0.046 0.047 0.020

Figure A3: Distributions of ASMD of all cubes and three-way interactions of the non-binary
covariates across randomizations.
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Figure A4: Distributions of discrepancies of the correlation matrices of the covariates in the treatment
groups of the HIE data across randomizations. The discrepancies are measured by ||Rg −Rg′ ||F , where Rg

is the sample correlation matrix of the covariates in treatment group g and || · ||F is the Frobenius norm. The
FSM systematically produces lower discrepancies than the other methods, exhibiting substantially improved
balance on the correlations of the covariates.
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Figure A5: Boxplot of the distribution of ||Sg −Sg′ ||F across 400 randomizations, where Sg is the sample
covariance matrix of the covariates in treatment group g ∈ {1, 2, 3, 4}.
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We now compare the efficiency of the designs in the randomization-based approach with four

additional potential outcome models given below.

• Model B3: Y (3) = 5− 3X1 +X2 +X3 − 0.2X4 + 0.8X5 + η, Y (3) = Y (2).

• Model B4: Y (3) = 5− 2X2
1 + 0.5X2

3 + 0.5X2
5 + 5X1X2 − 0.8X3X5 + η, Y (3) = Y (2).

• Model B5: Y (3) = 10 + 8X1X2 + 3X2X5 − 0.5X3X5 + η, Y (3) = Y (2).

• Model B6: Y (3) = 0.8X1X2 − 3X2
3 +

1
1+X4

− 4X3
1 + η

For each model, the error term η ∼ N (0, 1.52). Under each design, SATE3,2 is estimated

using the standard difference-in-means estimator and the corresponding randomization-based

SE is obtained by generating 400 randomizations and computing the standard deviation of

the estimator across these 400 randomizations. The average randomization-based standard

errors (across 500 simulations) are presented in Table A18.

Table A18: Average randomization-based standard errors relative to the FSM under Models
B3, B4, B5, B6

Designs

CRD RR Wilks RR Mahalanobis FSM

Model B3 2.36 1.80 1.90 1

Model B4 2.14 1.75 1.81 1

Model B5 2.99 2.40 2.44 1

Model B6 1.61 1.42 1.44 1

We finish this section by evaluating and comparing the covariate balance on the main co-

variates and the second-order transformations, for CRD, RR, and the FSM, where RR uses

the Mahalanobis distance based on the main covariates only and accepts 0.1% of the assign-

ments.
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Figure A6: Distributions of absolute standardized mean differences (ASMD) of the main
covariates (panel (a)) and the squares and pairwise products of the scaled covariates (panel
(b)) across randomizations. For each plot, the legend presents the average ASMD across
simulations for the four methods. Panel (c) shows distributions of discrepancies between
the correlation matrices of the covariates in treatment groups 1 and 2 (as measured by the
Frobenius norm, ||R1 −R2||F ). In terms of the main covariates, second-order transforma-
tions, and correlation matrices, the FSM substantially outperforms CRD and RR.

(a) Main covariates (b) Squares and pairwise products (c) Frobenius norm

Figure A6 shows a pattern of performances of the designs akin to those illustrated in Section

6. The FSM, outperforms CRD and RR in terms of balancing both the main covariates

and their second-order transformations. As compared to the previous version, this version

of RR reduces the average imbalance on the main covariates, while increasing the average

imbalance on the second-order transformations. This behavior aligns with our expectations,

since this version of RR specifically targets balance on the main covariates, not on their

second order transformations.

J Additional figures from the case studies
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Figure A7: Distributions of the absolute standardized mean differences of the main covariates
and their squares and interactions, and the Frobenius norms of R1−R2 under complete ran-
domization, rerandomization, and the FSM, for the five studies: (1) Angrist, (2) Blattman,
(3) Durocher, (4) Finkelstein, (5) Lalonde.
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Figure A8: Distributions of the absolute standardized mean differences of the main covariates
and their squares and interactions, and the Frobenius norms of R1 − R2 under complete
randomization, rerandomization, and the FSM, for the five studies: (6) Ambler, (7) Crepon,
(8) Dupas, (9) Karlan, (10) Wantchekon.
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