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Abstract

The Finite Selection Model (FSM) was developed by Carl Morris in the 1970s for
the design of the RAND Health Insurance Experiment (HIE) (Morris 1979, Newhouse
et al. 1993), one of the largest and most comprehensive social science experiments con-
ducted in the U.S. The idea behind the FSM is that each treatment group takes turns
selecting units in a fair and random order to optimize a common assignment criterion.
At each of its turns, a treatment group selects the available unit that maximally im-
proves the combined quality of its resulting group of units in terms of the criterion. In
the HIE and beyond, we revisit, formalize, and extend the FSM as a general tool for
experimental design.

Leveraging the idea of D-optimality, we propose and analyze a new selection
criterion in the FSM. The FSM using the D-optimal selection function has no tuning
parameters for covariate balance, is affine invariant, and when appropriate, retrieves
several classical designs such as randomized block and matched-pair designs. For multi-
arm experiments, we propose algorithms to generate a fair and random selection order
of treatments. We demonstrate FSM’s performance in a case study based on the HIE
and in ten randomized studies from the health and social sciences. On average, the
FSM achieves 68% better covariate balance than complete randomization and 56%
better covariate balance than rerandomization in a typical study. We recommend the
FSM be considered in experimental design for its conceptual simplicity, efficiency, and
robustness.

Keywords: Causal inference; Covariate balance; Experimental design; Multi-valued
treatments

∗We thank John Golden, Angela Lee, and Bijan Niknam for helpful research assistance and comments.
We also thank participants at Euro-CIM 2023 for their valuable comments. This work was supported through
a grant from the Alfred P. Sloan Foundation (G-2020-13946).

†Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata, West Bengal, 700108; email:
ambarish@isical.ac.in.

‡Department of Statistics, Harvard University, 1 Oxford Street Cambridge, MA 02138; email: carl

.morris@comcast.net.
§Departments of Health Care Policy, Biostatistics, and Statistics, Harvard University, 180 Longwood

Avenue, Office 307-D, Boston, MA 02115; email: zubizarreta@hcp.med.harvard.edu.

1

ambarish@isical.ac.in
carl.morris@comcast.net
carl.morris@comcast.net
zubizarreta@hcp.med.harvard.edu


1 Introduction

1.1 The RAND Health Insurance Experiment

In the 1970’s, the challenge of financing and delivering high-quality and affordable health

care to all Americans was at the center of national policy debate. At the time, two cen-

tral questions were “How much more medical care would people use if it is provided free

of charge?” and “What are the consequences of using more medical care on their health?”

To address these and other related questions, an interdisciplinary team of researchers led

by Joseph P. Newhouse at RAND designed and conducted the Health Insurance Experi-

ment (HIE), a large-scale, multi-year, randomized public policy experiment developed and

completed between 1971 and 1982. To this day, the HIE is one of the largest and most

comprehensive social science experiments ever conducted in the U.S. Even now, four decades

after its completion, evidence from the HIE is still fundamental to the national discussion

on health care cost sharing and health care reform.

In the HIE, a representative sample of 2,750 families comprising more than 7,700 individuals

was chosen from six urban and rural sites across the United States. At the beginning of the

study, participants completed a baseline survey providing numerous demographic, medical,

and socioeconomic measurements. Families were then assigned to health insurance plans

that varied substantially in their coinsurance rates and out-of-pocket expenditure maxima,

for a total of 13 possible treatment groups. The goal of the study was to estimate the

marginal averages of health and utilization in each of the six sites under each plan.

To provide the strongest possible evidence on health utilization and outcomes, the study

had to be randomized. However, achieving balance for numerous continuous and categorical

baseline covariates through randomization is challenging in experiments with so many treat-

ment groups and different implementation sites. In the HIE the groups had to be balanced

and representative of the sites. In the health and social sciences, there is an ever-increasing
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need for methods for random assignment of units into multiple treatment groups that are

balanced, efficient, and robust.

1.2 Toward balanced, efficient, and robust experimental designs

Randomized experiments are considered to be the gold standard for causal inference, as

randomization provides an unequivocal basis for inference and control. In randomized ex-

periments, the act of randomization ensures balance on both observed and unobserved co-

variates on average. However, a given realization of the random assignment mechanism may

produce substantial imbalances on one or more covariates. This imbalance problem can be

exacerbated in settings like the HIE, where treatments are multi-valued and many baseline

covariates exist, leading to loss in efficiency of the effect estimates.

A variety of methods have been proposed in the literature to address this problem, such as

blocking (Fisher 1925, Fisher 1935, Cochran and Cox 1957), optimal pair-matching (Greevy

et al. 2004), greedy pair-switching (Krieger et al. 2019), and designs using mixed-integer pro-

gramming (Bertsimas et al. 2015). In particular, rerandomization (Morgan and Rubin 2012)

has gained popularity over the last few years and has become commonplace in experiments.

However, rerandomization may not protect against and be robust to chance imbalances in

functions of the covariates that are not explicitly addressed by the rerandomization criterion

(Banerjee et al. 2017), especially in experiments with multi-valued or multiple (>2) treat-

ments.1 Moreover, defining the rerandomization criterion requires the selection of a tuning

parameter governing the acceptable degree of imbalance, which may be difficult to choose

and require iteration in practice.

To address these and other related challenges, we revisit and extend the Finite Selection

Model (FSM) for experimental design. The original version of the FSM was proposed and

developed by Carl N. Morris in the design of the HIE (Morris 1979, Newhouse et al. 1993,

1Throughout the paper, we use the terms “multi-valued treatment” and “multiple treatment groups” to
refer to the same experimental situation.
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Morris and Hill 2000). The core concept of the FSM is to address the tension between

randomization and optimization in treatment assignment (see, e.g., Harshaw et al. 2024).

To achieve this, in the FSM each treatment group takes turns in a fair and random order

to select units from a pool of available units such that, at each stage, each treatment group

selects the unit that maximally improves the combined quality of its current group of units.

The random order for selecting units introduces randomness into the assignment mechanism,

thereby balancing unobserved covariates in expectation, and facilitating randomization-based

inference. The criterion for measuring quality is flexible. Among other contributions, in this

paper we develop a new criterion based on D-optimality, which does not require tuning

parameters for covariate balance.

To illustrate, Figure 1 exhibits the performance of complete randomization, rerandomization,

and the FSM in a version of the HIE data with four treatment groups and 20 covariates.

For rerandomization, we compute the maximum Mahalanobis distance (across all pairs of

treatment groups) based on the 20 covariates and their squares and pairwise products (i.e.,

all second-order transformations), and following Lock (2011), accept 0.1% of the assignments

with the smallest covariate distance (see Sections 6.1 and 6.4 for details). The figure displays

the distribution of absolute standardized mean differences (ASMD; Rosenbaum and Rubin

1985)2 in covariates and the second-order transformations across multiple realizations of the

randomization mechanisms for the three designs. Lower values of ASMD indicate better bal-

ance on the covariates or their transformations. Better balance can improve the validity and

credibility of a study, and can also translate into increased efficiency and robustness.

We observe that, as expected, rerandomization outperforms complete randomization in terms

of imbalances on the main covariates and the second-order transformations. The FSM,

however, markedly outperforms both methods for both types of covariates without requiring

2The absolute standardized mean difference for a single covariate X between treatment groups g and g′

is ASMD(X) = |X̄g − X̄g′ |/
√
(s2g + s2g′)/2, where X̄g and s2g are the mean and variance of X in treatment

group g, respectively. Please see Rosenbaum and Rubin (1985)) for details.
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Figure 1: Distributions of ASMD for complete randomization, rerandomization, and the
FSM, for 20 baseline covariates in the HIE data. Without tuning parameters for balance, the
FSM handles multiple (>2) treatment groups and substantially improves covariate balance
and, thereby, statistical efficiency.
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tuning parameters for covariate balance. This analysis reveals that, while rerandomization

performs well by common covariate balance standards (the majority of the ASMD is smaller

than 0.1), there is room for improvement. As we explain in Section 6, in experiments like

the HIE, the space of possible assignments is vast, and the FSM can meaningfully improve

the assignment of units into treatment groups to achieve better balance and efficiency.

In a nutshell, the FSM does better because it progressively randomizes units into treatment

groups in a controlled manner towards a criterion that is common to all groups and robust

against general outcome models. As we show in theory and in practice, the FSM is a flexible

tool for random assignment in various settings.

1.3 Contribution and outline

In this paper, we revisit, formalize, and extend the FSM for experimental design. In par-

ticular, we reexamine the FSM under the potential outcomes framework (Neyman 1923,

1990, Rubin 1974). While the FSM was proposed in the context of the HIE several decades

ago, its properties and performance for experimental design have not yet been thoroughly

investigated. In this paper, from both theoretical and practical standpoints, we demonstrate
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that the FSM can be used for balanced, efficient, and robust random treatment assignments,

outperforming common assignment methods on these three dimensions.

From a methodological standpoint, we offer several extensions of the FSM. First, we propose

a new selection criterion for treatments based on the idea of D-optimality and discuss its

theoretical properties. We show that the FSM using this selection criterion is invariant

with respect to affine transformations of the covariates. Under suitable conditions, it also

retrieves several classical experimental designs, such as randomized block and matched-pair

designs. Second, for experiments with multiple treatment groups, we propose and justify

new algorithms to determine the selection order of treatments, building on the sequentially

controlled Markovian random sampling (SCOMARS, Morris 1983) algorithm for experiments

with two groups. Third, we discuss extensions of the FSM to more complex experimental

design settings, such as stratified experiments and experiments with sequential arrival of

units. Fourth, we discuss both model- and randomization-based inference under the FSM.

While model-based inference was previously conducted in the HIE, randomization-based

inference has not yet been explored. Regarding the latter, we show that the FSM can be

used to conduct both Fisherian inference for unit-level treatment effects (Fisher 1935) and

Neymanian inference for average treatment effects (Neyman 1923, 1990). Finally, we analyze

the FSM’s performance empirically and compare it to common assignment methods. In an

accompanying paper (Chattopadhyay et al. 2021), we describe how these methods can be

implemented in the new FSM package for R, which is publicly available on CRAN.

The paper proceeds as follows. In Section 2, we describe the design of the RAND Health

Insurance Experiment, focusing on the assignment of each family to one of 13 health in-

surance plans. In Section 3, we present the setup, notation, and main components of the

FSM. In Section 4, we propose a selection criterion based on D-optimality and analyze its

properties. In Section 5, we discuss inference under the FSM. In Section 6, we evaluate the

performance of the FSM and compare it to standard methods such as complete randomiza-
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tion and rerandomization using the HIE data. In Section 7, we perform a similar comparison

using the data from ten experimental studies from the health and social sciences. Finally,

in Section 8 we consider extensions of the FSM to other settings such as multi-group, strat-

ified, and sequential experiments. In Section 9, we conclude with a summary and remarks.

In the Online Supplementary Materials, we present all the proofs of the propositions and

theorems, extended theoretical results, further empirical results based on a simulation study,

and supplemental experimenal results on the HIE study and the ten case studies.

2 Design of the Health Insurance Experiment

In the HIE, families were assigned to different health insurance plans using the original

version of the FSM. Initially, assignments were made in each of the six HIE sites to 12 or

13 fee-for-service plans with varying combinations of coinsurance (cost sharing) rates and

income-related deductibles. Coinsurance plans consisted of 0% (free care), 25%, 50%, or 95%

coinsurance rates, plus a plan with mixed coinsurance rates, and an individual deductible

plan. Within the cost sharing plans, families were further assigned to different out-of-pocket

maxima where the out-of-pocket expenditures were capped at 5%, 10%, or 15% of family

income, with an annual maximum of $1,000 (Brook et al. 2006). To ensure that the resulting

treatment groups were balanced relative to the population of each site, the FSM considered

a discard group of study non-participants as an additional treatment group.

Listed in chronological order of study initiation, the following sites were tracked for several

years: Dayton, OH; Seattle, WA; Fitchburg, MA; Franklin County, MA; Charleston, SC; and

Georgetown County, SC. The FSM was used, independently in each of the sites, to make

random assignments to improve balance on up to 22 family-level baseline covariates across

treatment groups. In each of the first two sites, the FSM was used multiple times for separate

independent subsets of families to maintain baseline data schedules. In addition to estimating

the overall marginal effects of health insurance plan design on healthcare utilization and

outcomes, the HIE team also sought to understand how the experimental results were affected
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by particular design choices, e.g., longer versus shorter enrollment duration, receiving versus

not receiving participation incentives, higher versus lower interviewing frequency. To this

end, four additional sub-experiments were conducted, and the FSM was used to randomize

families to the sub-treatment groups.

3 Foundations and overview of the FSM

3.1 Setup and notation

Consider a sample of N units indexed by i = 1, ..., N . Each of these units is to be assigned

into one of G treatment groups labeled by g, with g = 1, ..., G. Write ng for the pre-specified

size of group g. Denote Zi ∈ {1, 2, ..., G} as the assigned treatment group label of unit

i and Z = (Z1, ..., ZN)
⊤ as the vector of treatment group labels. Following the potential

outcomes framework for causal inference (Neyman 1923, 1990; Rubin 1974), each unit i has a

potential outcome under each treatment g, Yi(g), but only one of these outcomes is observed:

Y obs
i =

∑G
g=1 1(Zi = g)Yi(g). Denote Y (g) = (Y1(g), ..., YN(g))

⊤ as the vector of potential

outcomes under treatment g. Each unit has a vector of K observed covariates, X i. We write

(X full)N×k for the matrix of observed covariates, and X̄full and Sfull for the mean vector and

covariance matrix of these covariates in the full sample, respectively. Denote (X̃ full)N×(k+1)

as the design matrix in the full sample.3 We assume that X̃ full has full column rank. In

Table A1 of the Online Supplementary Materials we provide a list of the notation used in

this paper.

Based on this notation, Yi(g
′) − Yi(g

′′) is the causal effect of treatment g′ relative to treat-

ment g′′ for unit i. We are interested in estimating the sample average treatment ef-

fect SATEg′,g′′ = 1
N

∑N
i=1{Yi(g

′) − Yi(g
′′)} and the population average treatment effect

PATEg′,g′′ = E{Yi(g
′) − Yi(g

′′)}. For this, we will randomly assign the units into treatment

groups using the FSM.

3The design matrix includes a column of all 1’s (for the intercept) and k columns of covariates.
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3.2 Components of the FSM

In the FSM, the G treatment groups take turns selecting units in a random but controlled

order while optimizing a common criterion. This is accomplished by the two components of

the FSM, namely, the selection order matrix and the selection function.

1. Selection order matrix (SOM): An SOM is a matrix that determines the order in which

the treatment groups select the units. Typically, an SOM has two columns; the first

specifies the stages of selection (from 1 to N), and the second specifies the treatment

group that selects first at that stage.

2. Selection function: A selection function is a function that determines which unit gets

selected by the choosing treatment group at each stage. Typically, a selection function

is based on an optimality criterion that is common to all treatment groups.

A good SOM guarantees that the selection of units is fair, so that no single treatment group

selects all the units of a given type, and random, so that both observed and unobserved

covariates are balanced in expectation and there is a basis for inference. A good selection

function will produce efficient and robust inferences under a wide class of possible outcome

functions.

To illustrate, Table 1(a) presents an example data set with 12 observations and one covariate,

age. We consider assigning these 12 units into two groups of equal sizes using the FSM. Table

1(b) shows an example of an SOM in this setting. The SOM determines the order in which

each treatment selects a unit at each stage. In the example, treatment group 2 selects first

in stage 1, treatment group 1 selects in stage 2, and so on. Treatment groups select units

based on the selection function.

9



Table 1: (a) Example data set; (b) selection order matrix and an assignment using the FSM.

(a) Data set

Index Age

1 24

2 30

3 34

4 36

5 40

6 41

7 45

8 46

9 50

10 54

11 56

12 60

Mean 43

(b) Selection order matrix and assignment

Selection order matrix Unit selected

Stage Treatment Index Age

1 2 1 24

2 1 12 60

3 1 2 30

4 2 11 56

5 1 3 34

6 2 10 54

7 1 9 50

8 2 4 36

9 1 5 40

10 2 8 46

11 2 6 41

12 1 7 45

In general, it is crucial that the order of selection is random, but that no group chooses in

a disproportionate manner. For two treatment groups of arbitrary sizes, this can be accom-

plished by means of the Sequentially Controlled Markovian Random Sampling (SCOMARS)

algorithm (Morris 1983). In the FSM, SCOMARS specifies the probability of a treatment

group selecting at stage r (r ∈ {1, 2, ..., N}), conditional on the number of selections made by

that group up to stage r−1. See the Online Supplementary Materials for a formal description

of the algorithm. SCOMARS satisfies the sequentially controlled condition (Morris 1983),

which requires the deviation of the observed number of selections made by a treatment group

up to stage r from its expectation to be strictly less than one. Intuitively, this condition

ensures that throughout the selection process, no treatment group departs too much from its

expected fair share of choices. Moreover, SCOMARS is Markovian because for each group,

the probability of selection at stage r depends solely on the number of selections made up

to stage r − 1. For two groups of equal sizes (as in the example in Table 1), generating

an SOM under SCOMARS boils down to successively generating N/2 independent random

permutations of the treatment labels (1, 2). In Section 8.1 and in the Online Supplementary

Materials, we describe this and other extensions of SCOMARS to multi-group experiments.
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Unless otherwise specified, in the rest of the paper, we will use SCOMARS to generate the

SOM for experiments with two treatment groups.

The selection function gives a value to each of the units available for selection at each stage.

This value depends on the characteristics of each available unit in addition to those already

assigned to the treatment group that selects next. In principle, any criterion can be used in

the selection function. For example, if the selection function is constant, then the treatment

group selects a unit randomly from the available pool. Alternatively, the selection function

can compute the contribution of each unit to a measure of the accuracy of the estimator.

In this spirit, we propose the D-optimal selection function, which, at each stage, minimizes

the generalized variance of the estimated regression coefficients in a linear potential outcome

model (see Section 4 for details).

To build intuition, in Table 1(b) we discuss the special case of k = 1 covariate. With

the D-optimal selection function, the choosing group, in its first choice, selects the unit

whose covariate value is farthest from the full-sample mean of the covariate; and in the

subsequent choices, selects the unit whose covariate value is farthest from its current mean

of the covariate. In the example in Table 1, treatment 2 selects unit 1 with age 24, the

farthest age from the full-sample mean 43. In the next stage, treatment 1 selects unit 12

with age 60, the farthest age from 43.4 Next, treatment 1 selects unit 2 with age 30, the

farthest age from its current mean age 60. The process continues until all the 12 units are

selected.

In general, with multivariate data, the FSM first selects the units that are farthest from

the full-sample mean of the covariates and successively approaches this target, ultimately

selecting the units that are closest to it. In the FSM, the SOM produces balance out of an

optimality criterion that is common to all the treatment groups. This is crucial so that all

the choosers know the same, and as they choose, they produce groups that are balanced and

4Notice that for treatment 1’s first selection, the mean of age remains 43 (i.e., the full-sample mean of
age) and is not recalculated based on the 11 unselected units.
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equally robust against the unknown outcome model.

Another important feature of the FSM is that, in addition to several treatment groups, it

can accommodate a discard group of unassigned units. This is important, for example, in

settings where the number of available units for assignment is greater than the total number

of units that can feasibly be assigned (e.g., because of budgetary constraints). This feature

of the FSM was used in the HIE to secure the representativeness of the treatment groups

relative to the target populations.

4 The D-optimal selection function

Here, we formalize the D-optimal selection function and provide an equivalent, closed-form

characterization that explains how this criterion governs the selection of units at each stage.

Without loss of generality, assume that treatment 1 selects at stage r, r ∈ {1, 2, ..., N}. Let

ñr−1, X̄r−1, Sr−1, and X̃r−1 be the number, mean vector, covariance matrix, and the design

matrix of the units selected after the (r − 1)th stage by treatment 1, respectively.

To motivate the form of the selection function, we consider a linear potential outcome model

of Yi(1) on Xi, i.e., Yi(1) = β⊤(1,X⊤
i )

⊤+ηi, where ηi is an error term satisfying E{ηi|Xi} =

0.5 Denote Rr−1 as the set of unselected units after stage r−1. For unit i ∈ Rr−1, let X̃r,i be

the resulting design matrix in treatment group 1 if unit i is selected. We first consider the case

where X̃r−1 has full column rank. In this case, following standard notions of D-optimality

in experimental design (see, e.g., Cox and Reid 2000, Chapter 7), the D-optimal selection

function selects unit i′ ∈ Rr−1, where i
′ ∈ arg max

i∈Rr−1

det(X̃
⊤
r,iX̃r,i). In other words, at the rth

stage, the D-optimal selection function chooses the unit in Rr−1 that optimally decreases

the generalized variance of the estimated regression coefficients of the fitted linear model in

5More generally, one can consider a linear model of Yi(1) on a vector of basis functions B(Xi) of the
covariates. In principle, the functions B(Xi) can encompass a wide range, from the components of the
covariates to their higher order interactions, and extending to more complex functions such as Wavelet or
Fourier bases. Furthermore, it could incorporate basis functions corresponding to a specific kernel, similar to
those for a reproducing kernel Hilbert space. In common applications, the choice of B(Xi) is often guided by
substantive knowledge about the covariate functions that could be associated with the potential outcomes.
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treatment 1. Ties in the values of the generalized variances are resolved randomly.

Next, we consider the case where X̃r−1 does not have full column rank. In this case, however,

X̃
⊤
r,iX̃r,i may be singular, implying that the resulting determinant may be zero and hence,

non-informative. To address this issue, we revert to the preceding case and note that the

criteria arg max
i∈Rr−1

det(X̃
⊤
r,iX̃r,i) is equivalent to

i′ ∈ arg max
i∈Rr−1

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
.

See Lemma A1 in the Online Supplementary Materials for a proof. Using this representation,

we formally define the D-optimal selection function as follows.

Definition 1 (D-optimal selection function). At stage r of the selection process, for unit

i ∈ Rr−1, the D-optimal selection function is given by

(1,X⊤
i )
(
X̃

⊤
fullX̃ full

)−1 (
1
Xi

)
, if ñr−1 = 0

(1,X⊤
i )
( 1

ñr−1

X̃
⊤
r−1X̃r−1 +

ϵ

N
X̃

⊤
fullX̃ full

)−1 (
1
Xi

)
, if ñr−1 ≥ 1 and rank(X̃r−1) < k + 1

(1,X⊤
i )
(
X̃

⊤
r−1X̃r−1

)−1 (
1
Xi

)
, if ñr−1 ≥ 1 and rank(X̃r−1) = k + 1.

When X̃r−1 is not of full rank (i.e., when X̃
⊤
r−1X̃r−1 is not invertible), we augment X̃

⊤
r−1X̃r−1

in the above definition with the invertible matrix X̃
⊤
fullX̃ full. This process is similar to Ridge

augmentation and is controlled by the augmentation parameter ϵ, which is strictly greater

than zero. In practice, we opt for a small value of ϵ, such as 0.001, which in turn augments

using 0.1% of the average covariate information in the data, as measured by X̃
⊤
fullX̃ full/N .

The choice of ϵ is generally inconsequential to the overall performance of the FSM, as it

primarily influences the initial selection stages when X̃r−1 is not of full rank. To further

investigate this, we have conducted a simulation study to evaluate the performance of the
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FSM across various ϵ values. See Appendix H.5 for details. The results from this study

indicate that variations in the value of ϵ do not meaningfully alter the overall performance

of the FSM.

The following theorem provides an equivalent characterization of the D-optimal selection

function that elucidates the selection made by the choosing treatment group at each stage.

Theorem 4.1. Consider stage r of the selection process. The D-optimal selection function

chooses unit i′ such that

i′ ∈ arg max
i∈Rr−1

(Xi − X̄∗
r−1)

⊤(S∗
r−1)

−1(Xi − X̄∗
r−1),

where

X̄∗
r−1 =


X̄full if ñr−1 = 0
X̄r−1+ϵX̄full

1+ϵ if ñr−1 ≥ 1 and rank(X̃r−1) < k + 1

X̄r−1 if ñr−1 ≥ 1 and rank(X̃r−1) = k + 1

and

S∗
r−1 =


Sfull if ñr−1 = 0

( 1
ñr−1

X⊤
r−1Xr−1 +

ϵ
NX⊤

fullX full)− (1 + ϵ)X̄∗
r−1X̄

∗⊤
r−1 if ñr−1 ≥ 1 and rank(X̃r−1) < k + 1

Sr−1 if ñr−1 ≥ 1 and rank(X̃r−1) = k + 1.

Theorem 4.1 shows that at every stage, the D-optimal selection function selects the unit

among the remaining pool of available units whose covariate vector maximizes a type of Ma-

halanobis distance. In its first choice, treatment 1 maximizes the Mahalanobis distance from

the covariate distribution in the full sample (in particular, from X̄full), thereby choosing the

most outlying unit available in the full sample. For the subsequent stages where X̃
⊤
r−1X̃r−1

is not invertible, treatment 1 maximizes the Mahalanobis distance from a mixture covariate

distribution between treatment group 1 and the full sample, where ϵ determines the mixing

rate. Finally, the latter selections by treatment 1 maximize the Mahalanobis distance from

the covariate distribution in treatment group 1. Therefore, with every selection, treatment
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1 maximizes the overall separation of the covariates from its current mean, which increases

the efficiency of the estimated regression coefficients.

By definition, the D-optimal selection function improves the accuracy of the fitted linear

model in each treatment group by sequentially minimizing the generalized variance of the

estimated regression coefficients, where the sequence is governed by the randomized SOM.

Alternatively, one can simultaneously minimize the generalized variance among all possible

assignments to optimize, in a global but deterministic manner, the D-optimal criterion.

In fact, with a single covariate and two treatment groups, we show that the global D-

optimal design aims to exactly balance the mean of the covariate across the two groups

(see Proposition A5 in the Online Supplementary Materials). While such direct and global

optimization is conceptually appealing, the FSM optimizes towards the D-optimal criterion

progressively in order to build a randomization set for inference (see Section 5) and, in

expectation, balance other functions of observed and unobserved covariates. As a result, the

FSM provides robustness against adversarial outcome models (see Section 6, Appendices D

and H; see also Harshaw et al. 2024). To explore further, we compare the FSM with the

global D-optimal design using a simulation study in Appendix H.4. The results show that,

although the global D-optimal design has better balance on the functions targeted by the

D-optimal criterion, it displays inferior balance on other untargeted transformations of the

covariates relative to the FSM.

With the D-optimal selection function, we can also establish several additional desirable

properties of the FSM. In particular, leveraging the connection between D-optimality and

Mahalanobis distance, we can show that FSM with the D-optimal selection function is affine

invariant, i.e., the selections of units by the treatment groups remain unchanged even if the

covariates are transformed linearly. See Section C in the Online Supplementary Materials

for a proof. An implication of this property is that the FSM is invariant with respect to

changes in the location and scale of the covariates.
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The FSM with the D-optimal selection function is appealing also because it can encompass

several classical designs, such as randomized blocked and matched-pair designs. Theorem

4.2 formalizes this result. In the traditional randomized block design (RBD), the units

are grouped into blocks of size G according to a categorical, blocking variable, and each

treatment is randomly applied to exactly one unit within each block (see, e.g., Cox and Reid

2000, Section 3.4). Here we consider a more general version of an RBD where the blocks are

of size c × G (where c is a fixed positive integer) and each treatment is applied to c units

within each block. This is a special case of a stratified randomized experiment with strata

of equal size and equal allocation among treatments per stratum. In a matched-pair design

with G = 2 treatments, similar units are grouped into pairs, and each treatment is randomly

applied to one unit within each pair. This is also a special case of a stratified randomized

experiment with equal allocation per strata, where the size of each stratum equals two.

Theorem 4.2. (a) Consider N = cBG units belonging to B blocks of equal size that

are to be randomly assigned into G treatment groups of equal size, where c is a fixed

positive integer. Then, if the linear model in the FSM consists of an intercept and

indicators of any B − 1 levels of the blocking variable, the FSM with the D-optimal

selection function produces the same assignment as an RBD.

(b) Consider N/2 identical pairs of units in terms of baseline covariates Xi that are to

be assigned into G = 2 treatment groups of equal size. Assume Xi is drawn from a

continuous distribution. Then, if the linear model in the FSM consists of the intercept

and the covariates Xi, then the FSM almost surely produces the same assignment

mechanism as a matched-pair design.

In the first case, Theorem 4.2(a) states that, by including the levels of a blocking variable

as regressors, the FSM with the D-optimal selection function automatically blocks on that

variable. Thus, the FSM retrieves an RBD without explicitly performing separate random-

izations within each block. In the second case, Theorem 4.2(b) states that, by including the
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covariates as regressors, the FSM with the D-optimal selection function produces the same

assignment as a matched-pair experiment, without explicitly performing separate random-

izations in each pair. This phenomenon is particularly useful when the sample consists of

near-identical twins but that are difficult to identify a priori due to multiple covariates.

The properties presented in Theorem 4.2(a) and 4.2(b) are relevant because blocking and

pair-matching are two fundamental and well-known techniques used in experimental design

(see, e.g., Cox and Reid 2000, Chapter 3, and Imbens and Rubin 2015, Chapter 4). The FSM

can also retrieve standard designs with appropriate choices of the SOM and the selection

function. For instance, when the selection function is constant, and the SOM is constructed

by randomly permuting the vector (1, ..., 1, ..., G, ..., G)⊤ where each entry g = 1, ..., G is

repeated ng times, the FSM replicates complete randomization. Similarly, the FSM can

replicate various stratified randomized designs with unequal stratum sizes and unequal group

sizes within strata (see Section 8.2 and Appendix F in the Online Supplementary Materials).

Examining whether the FSM can reproduce a wider spectrum of established experimental

designs is an exciting direction for future research.

In summary, the D-optimal selection function provides a simple, interpretable, and effective

selection criterion for the FSM. It is simple because it is easy to compute, interpretable

because it connects to the well-known Mahalanobis distance, and effective because it requires

no tuning parameters for balance while also being affine invariant and capable of recovering

desirable classical designs. While other criteria, such as A-optimality, can serve as selection

functions under the FSM, they may not offer the same advantages. As discussed in Appendix

C.2 in the Online Supplementary Materials, unlike D-optimality, the A-optimality criterion

typically entails numerous tuning parameters and may not be affine invariant.

5 Inference under the FSM

Using the FSM we can make model- and randomization-based inferences. Both modes of

inference are feasible for any selection function and any randomized selection order matrix.
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In model-based inference, the sample is typically assumed to be drawn randomly from some

superpopulation, and inference for the PATE is done by modeling the observed outcome

distribution conditional on the treatment indicators and the covariates. Thus, model-based

inference is generally applicable to any design, both deterministic and randomized.

To formalize, let the potential outcome model under treatment g be Yi(g) = β⊤
g B(Xi)+ ϵig,

where B(Xi) = (B1(Xi), ..., Bb(Xi))
⊤ is a vector of b basis functions of the covariates, and

ϵig, i ∈ {1, 2, ..., N} are mutually independent errors, independent of the covariates. Under

this model, PATEg′,g′′ can be unbiasedly estimated by P̂ATEg′,g′′ = β̂⊤
g′B(X) − β̂⊤

g′′B(X),

where B(X) = 1
N

∑N
i=1B(Xi) and β̂g is the ordinary least squares (OLS) estimator of βg

obtained by fitting a linear regression of Y obs
i onB(Xi) in treatment group g = g′, g′′. We call

this the regression imputation estimator of PATEg′,g′′ . Under the given model, this estimator

is the best linear unbiased estimator for PATEg′,g′′ . The standard error of this estimator and

the corresponding confidence interval for PATEg′,g′′ can be obtained using standard OLS

theory. We note that, in model-based inference, the standard errors and confidence intervals

do not take into account the randomness stemming from the assignment mechanism.

In randomization-based inference, the potential outcomes and the covariates are typically

considered fixed and the assignment mechanism is the only source of randomness (see Chapter

2 of Rosenbaum 2002 and chapters 5–7 of Imbens and Rubin 2015 for overviews). Thus,

randomization-based inference is generally applicable to any randomized design. Inference

for causal effects can be done via exact randomization tests for sharp null hypotheses on

unit-level causal effects (Fisher 1935), or via estimation under Neyman’s repeated sampling

approach (Neyman 1923, 1990).

Under the FSM, randomness primarily arises from the selection order matrix, which in

turn facilitates randomization-based inference. In particular, under the FSM, randomization

tests for sharp null hypotheses can be performed by approximating the distribution of the

test statistic through repeated realizations of the FSM. To illustrate, consider testing the
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sharp null hypothesis of zero unit-level causal effects, i.e., H0 : Yi(2) − Yi(1) = 0 for all

i, at level α using the FSM. While any choice of test statistic preserves the validity of

the test, a common choice is the absolute difference-in-means statistic | 1
n2

∑
i:Zi=2 Y

obs
i −

1
n1

∑
i:Zi=1 Y

obs
i | = | 1

n2

∑
i:Zi=2 Yi(2) − 1

n1

∑
i:Zi=1 Yi(1)| =: T{Z,Y (1),Y (2)}. Large values

of T{Z,Y (1),Y (2)} are considered evidence against H0. Under H0, Yi(2) = Yi(1) = Y obs
i

and the vectors of potential outcomes Y (1) and Y (2) are known and fixed. The p-value

of the test is given by p = PH0 [T{Z,Y (1),Y (2)} ≥ tobs], where tobs is the value of the

test statistic for the observed realization of Z under the FSM. We can compute this p-

value by Monte Carlo approximation, i.e., we generate independent vectors of assignments

Z(m) = (Z
(m)
1 , ..., Z

(m)
N )⊤, m ∈ {1, 2, ...,M} using the FSM and approximate the p-value as

p̂ = 1
M

∑M
m=1 1

[
T{Z(m),Y (1),Y (2)} ≥ tobs

]
. We reject H0 at level α if p̂ ≤ α.

The test for the sharp null hypothesis described above is distribution-free, relying solely on

repeated randomizations under the FSM. Thus, it is valid without any distributional as-

sumptions on the outcomes. Similar tests can be applied for more general sharp hypotheses

of treatment effects (e.g., dilated and tobit effects; Rosenbaum 2002, 2010). We can invert

these tests to obtain a confidence interval for the hypothesized effect (Rosenbaum 2002, Sec-

tion 2.6.1). Moreover, we can get a point estimate of the effect by solving a Hodges-Lehmann

estimating equation corresponding to these tests (Rosenbaum 2002, Section 2.7.2).

Finally, using the FSM, we can perform randomization-based inference for the sample av-

erage treatment effect, similar to Neyman’s repeated sampling approach. To formalize,

we consider estimating an arbitrary linear combination of the average potential outcomes

µ(l) =
∑G

g=1 lg{
1
N

∑N
i=1 Yi(g)}, where l = (l1, ..., lG)

⊤ ∈ RG are constants specified by the

investigator. As a special case, when lg′ = 1, lg′′ = −1, and lg = 0 for g ̸= g′, g′′, µ(l) equals

the sample average treatment effect SATEg′,g′′ . We estimate µ(l) by

µ̂(l) =
G∑

g=1

lg{
1

ng

N∑
i:Zi=g

Y obs
i }.

19



Here, the population average of the potential outcomes under treatment g is estimated by the

sample average of the observed outcomes in treatment group g. In Proposition 5.1, we show

that under the FSM with equal group sizes, µ̂(l) is unbiased for µ(l). Here, the expectation

is taken with respect to the randomization distribution of the FSM, and thus, this property

does not rely on any distributional assumptions on the outcome.

Proposition 5.1. Let n1 = n2 = ... = nG, and consider an arbitrary linear combination of

the average potential outcomes µ(l) =
∑G

g=1 lg{
1
N

∑N
i=1 Yi(g)}, where l = (l1, ..., lG)

⊤ ∈ RG.

Then, the estimator µ̂(l) =
∑G

g=1 lg{
1
ng

∑N
i:Zi=g Y

obs
i } is unbiased for µ(l) under the FSM,

E{µ̂(l)} = µ(l).

Thus, under the FSM, we can unbiasedly estimate all possible linear combinations of the

average potential outcomes, including different treatment contrasts. In particular, an imme-

diate consequence of Proposition 5.1 is that for all g, g′ ∈ {1, 2, ..., G}, E(τ̂g′,g′′) = SATEg′,g′′ ,

where τ̂g′,g′′ = 1
ng′

∑
i:Zi=g′ Y

obs
i − 1

ng′′

∑
i:Zi=g′′ Y

obs
i . Thus, in this case, the difference-in-

means statistics between treatments g′ and g′′ is unbiased for SATEg′,g′′ . As is usual in most

settings, the randomization-based variance of this unbiased estimator is not identifiable in

general (see, e.g., Chapter 6 of Imbens and Rubin 2015); however, leveraging advances on

design-based inference in randomized experiments (e.g., Mukerjee et al. 2018), we can obtain

conservative estimators for this variance. Proposition A1 in the Online Supplementary Mate-

rials provides closed-form expressions of the variance and its corresponding estimator.

6 The Health Insurance Experiment

6.1 Data

We evaluate the performance of the FSM relative to other common treatment assignment

approaches using the baseline data of the HIE. To this end, we consider a version of the

HIE data presented in Aron-Dine et al. (2013). This dataset comprises the six cost-sharing

plans described in Section 2. To make the group sizes more homogeneous, we combine
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the groups with 25%, 50%, and mixed coinsurance plans. Thus, in our analysis, we have

G = 4 treatment groups corresponding to g = 1, “free care” (n1 = 564); g = 2, “25%, 50%, or

mixed coinsurance” (n2 = 456); g = 3, “95% coinsurance” (n3 = 372); and g = 4, “individual

deductible” (n4 = 495). In total, there are N = n1 + ...+ n4 = 1, 887 families. We assign all

N families to the four treatment groups (i.e., without a discard group of non-participants).

In this version of the HIE data, we pool the data across five of the six sites, and we randomly

assign all the families to the four treatment groups. Due to loss of data, the Dayton site is

excluded from this analysis.

We consider k = 20 family-level baseline covariates, where X1, ..., X5 are scaled non-binary

covariates, X6, ..., X14 are binary covariates, and X15, ..., X20 are binary covariates indicating

missing data (see Table A14 for a description of each baseline covariate). Using this data,

we compare complete randomization (CRD), rerandomization (RR), and the FSM in terms

of balance and efficiency. For the FSM, we generate the SOM by first using SCOMARS on

the combined groups {1, 2} and {3, 4}, and then using SCOMARS again to split each com-

bined group into its component groups. For the FSM, we also use the D-optimal selection

function based on a linear potential outcome model on the main covariates. The assignments

under the FSM are generated using the open source R package FSM available on CRAN. For

rerandomization, we consider two balance criteria, one based on the Wilks’ lambda statistic

(RR Wilks; Lock 2011, Section 5.2) and the other based on the maximum pairwise Maha-

lanobis distance between any two treatment groups (RR Mahalanobis; Morgan and Rubin

2012). The balance criteria for both RR Wilks and RR Mahalanobis are based on all the

main covariates and the squares and pairwise products of the scaled (non-binary) covariates.

Finally, for both rerandomization methods, we use an acceptance rate of 0.001 (Lock 2011).

We draw 400 independent assignments for each approach. The results under RR Wilks and

RR Mahalanobis are roughly the same (see Section I in the Online Supplementary Materi-

als), and hence, for conciseness, here we only discuss the results for RR Mahalanobis. The

runtime of each of these assignments was approximately 78 seconds with RR Mahalanobis
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and 28 seconds with the FSM on a Windows 64-bit laptop computer with an Intel(R) Core

i7 processor.

6.2 Balance

Figures 2(a) and 2(b) display the distributions of ASMD across randomizations for the

main covariates and their second-order transformations (squares and pairwise products).

RR balances the main covariates and the second-order terms better than CRD. However,

in both cases, the FSM improves considerably over CRD and RR. In fact, with the FSM,

the average imbalance is less than half (0.02) of those under CRD and RR. Also, with both

CRD and RR, it is common to see imbalances greater than 0.1 ASMD, whereas such extreme

imbalances are non-existent with the FSM.

Figure 2: Distributions of absolute standardized mean differences (ASMD) of the main
covariates (panel (a)) and their squares and pairwise products (panel (b)) across random-
izations. For each plot, the legend presents the average ASMD across simulations for each
method. Panel (c) shows the distributions of discrepancies between the correlation matri-
ces of the covariates in treatment groups 1 and 2, as measured by the Frobenius norm,
||R1−R2||F . In terms of the main covariates, second-order transformations, and correlation
matrices, the FSM substantially outperforms CRD and RR.
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A related question is how well the methods balance all second-order features of the joint

distribution of the covariates. Figures 2(c) and A4 provide an answer to this question in

the boxplots of the discrepancies between correlation matrices across randomizations. As a

measure of discrepancy, we consider the Frobenius norm of the difference between correlation
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matrices in two groups, i.e., ||Rg−Rg′||F , whereRg is the sample correlation matrix in group

g and ||·||F is the Frobenius norm.6 Smaller values of ||Rg−Rg′||F indicate better balance on

the correlation matrix of the covariates between the groups g and g′. As in the aforementioned

second-order transformations, we see a similar performance between complete randomization

and rerandomization, which is considerably improved by the FSM with a median about three

times smaller.

In Appendix I of the Online Supplementary Materials, we extend our evaluation of the FSM

with a version of RR that uses the Mahalanobis distance solely on the main covariates as the

imbalance criteria. The results show that the FSM outperforms this version of RR in terms

of balancing both the main covariates and their second-order transformations. In fact, the

average imbalance under the FSM is less than half of the average imbalance under RR.

6.3 Efficiency

In this section, we evaluate the estimation accuracy of the methods under model- and

randomization-based approaches to inference. The main differences between the model-

and randomization-based standard errors is that in the model-based approach, the variance

calculation does not explicitly take into account the variability arising through the random-

ization distribution, whereas in the randomization-based approach it does. For illustration,

here we consider estimating the average treatment effect of treatment 3 relative to treatment

2, i.e., SATE3,2 and PATE3,2. The results for the average treatment effects with other pairs

of treatment groups are similar.

Under the model-based approach, we consider two potential outcome models, one that is

linear on the main covariates (Model A1), and another that is linear on the main covariates

and the second-order transformations of the scaled covariates (Model A2). The results are

summarized in Table 2; see Appendix H.3 for computational details. While the performance

of the three methods is similar under Model A1, under Model A2 there are substantial

6The Frobenius norm of a matrix is the square root of the sum of squares of all its elements.
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differences, with the FSM outperforming both complete randomization and rerandomization.

In fact, under Model A2, there is a 14-15% reduction in the average standard error, and a

53-64% reduction in the maximum standard error, with the FSM.

Table 2: Average and maximum model-based standard errors relative to the FSM across
randomizations. In this setting, the SE is equivalent to the RMSE because the estimator
is unbiased. Under Model A1 (linear model on the covariates), the FSM is slightly more
efficient than RR and CRD. Under Model A2 (linear model on the covariates and their
second-order transformations), the FSM is considerably more efficient than CRD and RR.

(a) Model A1

Designs

CRD RR Mahalanobis FSM

Average SE 1.02 1.01 1.00

Maximum SE 1.04 1.02 1.00

(b) Model A2

Designs

CRD RR Mahalanobis FSM

Average SE 1.15 1.14 1.00

Maximum SE 1.64 1.53 1.00

Under the randomization-based approach, we consider the generative models Y (3) = 10 +

2X1 + 3X2 + 0.5X3 + 0.3X4 + η (Model B1) and Y (3) = 10 + 2X1 + 2X2X3 − X4X5 + η

(Model B2) where Y (3) = Y (2) and η ∼ N (0, 1.52). Here, both the generative models satisfy

the sharp-null hypothesis of zero treatment effect for every unit and hence, SATE3,2 = 0.

Under each design, SATE3,2 is estimated using the standard difference-in-means estima-

tor. The corresponding randomization-based standard error is obtained by generating 400

randomizations and computing the standard deviation of the estimator across these 400 ran-

domizations. Likewise, the corresponding root mean squared error is obtained by computing

the square root of the average squared difference between the estimator and the estimand,

across these 400 randomizations. We repeat this process 500 times, drawing a new set of

potential outcomes each time. The average standard errors and root mean squared errors

(across these 500 simulations) are presented in Table 3. See Appendix I for similar com-

parisons under a set of different generative models of the potential outcome. In terms of

efficiency, we see again a clear advantage of the FSM. Under both Model B1 and Model B2,

the average standard errors and root mean squared errors of complete randomization and
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rerandomization are about twice of those under the FSM.

Table 3: Average randomization-based standard errors and root mean squared errors relative
to the FSM. Both the average standard error (SE) and the average root mean squared error
(RMSE) for the FSM are 0.12 under Model B1 (linear model on the covariates) and 0.63
under Model B2 (linear model on the covariates and their second-order transformations).
Under both models, the FSM is considerably more efficient than both CRD and RR.

(a) Model B1

Designs

CRD RR Mahalanobis FSM

SE 2.37 1.94 1

RMSE 2.36 1.94 1

(b) Model B2

Designs

CRD RR Mahalanobis FSM

SE 2.70 2.31 1

RMSE 2.70 2.33 1

6.4 Intuition and further explorations

Our analysis illustrates some important differences between the FSM, CRD, and RR. With

respect to RR, these differences pertain to the specification, role, and implementation of

the assignment criterion. First, regarding the specification of the criterion, while RR uses

the Mahalanobis distance, the FSM uses the D-optimality criterion, which, coupled with a

suitable SOM, leads to robust assignments under a more general class of potential outcome

models.

Second, regarding the role of this criterion, while RR essentially constrains the allowable

treatment assignments, the FSM seeks to optimize them toward the criterion. In essence,

while RR solves a feasibility problem by resampling, the FSM aims to solve a maximiza-

tion problem by step-wise assignment. Furthermore, the feasibility problem solved by RR

depends on the balance threshold, which can be difficult to select in practice. While a very

high threshold can accept assignments with poor covariate balance, a very low one can be

computationally onerous.

Third, regarding the implementation of the criterion, while RR assigns all units in one

step and then discards imbalanced assignments, the FSM assigns units in multiple steps
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(one at a time) in a random but optimal fashion determined by the selection order and

the selection criterion. This difference is crucial because in experiments like the HIE with

several treatment groups and many covariates, the space of possible treatment assignments

is vast. As shown in our analyses, optimally selecting among these assignments in a step-wise

manner can make a substantial improvement in terms of balance, efficiency, computational

time, and, ultimately, in the use of scarce resources available for experimentation. 7

To better see this, we asked how we would need to modify RR to achieve comparable perfor-

mance to the FSM? Using the HIE data, we approximated the randomization distribution

of the imbalance criterion of RR (i.e., the maximum Mahalanobis distance M across all

pairs of treatment groups) by generating random assignments for 100 hours. See Table 4

for a summary of the results. The table displays summary statistics of the distribution of

M under CRD, RR, and the FSM. As shown in Table 4, the highest (worst-case) value of

M under the FSM is smaller than the smallest (best-case) value of M under CRD and RR.

Importantly, even if we set the RR acceptance rate to 0.0000001 (i.e., 1 over 10 million), we

still have imbalances higher than the worst-case imbalance of the FSM. In sum, even with

an acceptance rate as low as 0.0000001, RR did not perform as well as the FSM, despite

taking 100 hours on average to generate a single assignment, as opposed to the 30 seconds

of running time of the FSM.

Table 4: Distribution of the maximum pairwise Mahalanobis distance across groups (M).
For CRD, we obtain this distribution by generating over 10 million random assignments for
100 hours. For RR (0.001), we obtain this distribution using 0.1% of all these assignments
with the smallest values of M . For the FSM, we obtain this distribution using the 400
random assignments from Section 6.1.

Design Minimum 1st Quartile Median Mean 3rd Quartile Maximum

CRD 18.5 39.5 43.9 44.4 48.7 96.1

RR (0.001) 18.5 25.4 26.2 25.9 26.7 27.1

FSM 2.8 4.7 5.3 5.4 6.0 10.6

7Figures 1 and 2 show that, although RR does well under common balance standards (the mean differences
are systematically lower than the typical threshold of 0.1 ASMD), there is room to select better (more
balanced) random treatment assignments, which is achieved by the FSM.

26



7 Ten further studies in the health and social sciences

In addition to the previous study, we evaluate the performance of the FSM in ten random-

ized studies from the health and social sciences. These ten studies are labelled (1) Crepon,

which evaluates the impact of a microcredit program in rural Morocco on assets, profits, and

consumption (Crépon et al. 2015); (2) Angrist, which evaluates the impact of cash incentives

on certification rates among low-achievers in Israel (Angrist and Lavy 1999); (3) Finkelstein,

which evaluates the impact of the Camden Coalition of Healthcare Providers’ Hotspotting

program on hospital readmission rates among patients with high use of healthcare services

(Finkelstein et al. 2020); (4) Durocher, which evaluates the impact of intravenous infusion

versus intramusculur oxytocin on postpartum blood loss and hemmorhage rates (Durocher

et al. 2019); (5) Lalonde, which evaluates the impact of Nationally Supported Work pro-

gram on earnings (LaLonde 1986); (6) Karlan, which evaluates the impact of loans with

an indemnity component on demand for credit and investment decisions of farmers (Karlan

et al. 2014); (7) Dupas, which evaluates the impact of different cost provisions for allo-

cating dilute-chlorine water treatment solution on chlorine residuals in households’ stored

water (Dupas et al. 2016); (8) Blattman, which evaluates the impact of industrial job offers

and entrepreneurial programs on health, income and other measures (Blattman and Dercon

2018); (9) Ambler, which evaluates the impact of offering Salvadoran migrant maching funds

for educational remittances on educational investments and other outcomes Ambler et al.

(2015); (10) Wantchekon, which evaluates the impact of townhall meeting based on program-

matic, nonclientelist platforms on clientelism, voter turnout, and vote shares (Fujiwara and

Wantchekon 2013). Table 5 provides details on the design parameters considered in these

studies.

For each study, we generate 100 assignments of complete randomization (CRD), Rerandom-

ization with Mahalanobis distance (based on the main covariates) and 0.001 acceptance rate
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Table 5: Design parameters and balance results for ten case studies in the health and social
sciences. The second average denoted with an asterisk (∗) excludes the Wantchekon study

because X̃
⊤
r X̃r matrix is non-invertible for the first r = 22 selections.

Study
Design parameters Main covariates Second-order transformations

N G (n1, ..., nG) k CRD RR FSM CRD
FSM

RR
FSM

CRD RR FSM CRD
FSM

RR
FSM

Crepon 4465 2 (2266, 2199) 33 0.024 0.018 0.015 1.6 1.2 0.024 0.023 0.018 1.3 1.3

Angrist 3821 2 (1910,1911) 20 0.025 0.014 0.002 12.5 7.0 0.026 0.023 0.003 8.7 7.7

Finkelstein 782 2 (389,393) 10 0.062 0.020 0.010 6.2 2.0 0.059 0.048 0.013 4.5 3.7

Durocher 480 2 (239,241) 12 0.072 0.031 0.017 4.2 1.8 0.073 0.068 0.022 3.3 3.1

Lalonde 445 2 (222,223) 10 0.083 0.044 0.014 5.9 3.1 0.077 0.070 0.019 4.1 3.7

Karlan 169 2 (84, 85) 16 0.124 0.059 0.053 2.3 1.1 0.123 0.119 0.060 2.1 2.0

Dupas 1118 3 (351, 382, 385) 11 0.059 0.018 0.010 5.9 1.8 0.058 0.044 0.017 3.4 2.6

Blattman 947 3 (358,304,285) 34 0.064 0.048 0.026 2.5 1.8 0.065 0.064 0.036 1.8 1.8

Ambler 991 4 (360, 211, 203, 217) 16 0.073 0.053 0.015 4.9 3.5 0.073 0.071 0.017 4.3 4.2

Wantchekon 24 2 (12, 12) 10 0.334 0.170 0.245 1.4 0.7 0.333 0.289 0.237 1.4 1.2

Average 0.092 0.048 0.041 0.091 0.082 0.044

Average* 0.065 0.034 0.018 0.064 0.059 0.023

(RR), and the FSM (based on the main covariates). The mean ASMD of the main covariates

and their squares and interactions under each method are presented in Table 5. See figures

A7 and A8 in the Online Supplementary Materials for plots of the distributions of these

imbalances, alongside the Frobenius norms of R1 −R2.
8

Table 5 shows that for each study, CRD achieves a similar mean balance on the main

covariates and their squares and interactions. RR improves balance over CRD considerably

for the main covariates, but only mildly for the squares and interactions. By contrast, for

almost all the studies, the FSM substantially improves balance over CRD and RR in terms of

both the main covariates and their transformations. The only exception is the Wantchekon

study, where the group sizes barely exceed the number of covariates k = 10. The FSM is

not designed for settings like this, where the number of covariates is greater than or close

to the minimum treatment group size. In such settings, the matrix X̃
⊤
r X̃r is non-invertible

for almost every selection stage of the FSM, and therefore, the D-optimal selection function

in the FSM relies almost entirely on ridge augmentation to feasibly select units (see Section

8Groups 1 and 2 are chosen haphazardly as a typical pair of groups. The results for the other pairs of
groups are similar.
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4), producing suboptimal selections.

Across the ten studies, the ASMD on the main covariates are 55% (= 0.092−0.041
0.092

) and 15%

(= 0.048−0.041
0.048

) lower on average with the FSM than CRD and RR, respectively. If we ex-

clude Wantchekon, then these percent reductions in ASMD are amplified to 72% and 47%.

Similarly, across the ten studies, the ASMD on the squares and interactions of the covariates

with the FSM are about 50% smaller than both CRD and RR, and without Wantchekon,

they are at least 60% smaller. In fact, FSM has better balance on both the main covariates

and their second-order transformations over CRD and RR uniformly across the first nine

studies (as shown by the CRD
FSM

and RR
FSM

columns). For each study, the relative improvement

in balance under the FSM over RR is larger for the second-order transformations than for

the main covariates. In particular, for half of the ten studies, the mean ASMD of the second-

order transformations under RR are at least three times larger than those under the FSM,

implying substantial improvement in balance on these transformations under the FSM.

Overall, averaging the ASMD of the main covariates and their second-order transformations

across the first nine studies, we see that the FSM achieves 68% better covariate balance

than complete randomization and 56% better covariate balance than rerandomization in a

typical study. Across these studies, the FSM’s performance relative to CRD and RR is

consistent with those in the HIE study in Section 6.9 A similar pattern to the HIE study is

also noted in the plots of ||R1 − R2||F in figures A7 and A8 in the Online Supplementary

Materials, where for most studies, the worst (least balanced) assignment among all the draws

of the FSM has a better balance on the correlation matrices than the best (most balanced)

assignment among all the draws of CRD and RR. As discussed in Section 6.3, under both

model- and randomization-based approaches to inference, better balance directly translates

to more efficient estimates of treatment effects.

9Notably, the relative performances of the methods in the HIE study are comparable to those of the
Ambler study, which involves roughly half the sample size of the HIE study and similar values of the other
design parameters. For instance, the average ASMD of the main covariates under CRD, RR, and the FSM
in the Ambler study are roughly

√
2 times those in the HIE study, where

√
2 is the factor that corrects for

the difference in sample size.
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Therefore, similar to the HIE case study, these results show that across a range of randomized

experiments, the FSM is a flexible and robust approach to randomization.

8 Practical considerations and extensions

8.1 Multi-group experiments

As discussed, the FSM can readily handle experiments with multiple treatment groups. In

so doing, the key methodological consideration is the choice of an SOM. As in two-group ex-

periments, we would like to generate an SOM that is randomized and sequentially controlled,

so that at every stage of the random selection process, the number of selections made by

each treatment group up to that stage is close to its fair share. Constructing a sequentially

controlled SOM for multi-group experiments with arbitrary group sizes is an open problem.

However, such constructions are possible for several practically relevant configurations of

the group sizes, namely (a) groups of equal size, (b) groups having one of two distinct sizes,

and (c) groups of more than two distinct sizes such that when combined by groups of equal

size they have the same total size. In the Online Supplementary Materials, we provide algo-

rithms to construct an SOM for all three configurations and prove that the resulting SOM is

sequentially controlled. In practice, for more general group size configurations, one strategy

to generate an SOM is to first identify one of these three configurations that is structurally

similar to the configuration at hand, and then use the corresponding SOM-generating algo-

rithm. The resulting algorithm may not always be sequentially controlled, but is still likely

to produce a well-controlled randomized selection order.

8.2 Stratified experiments

In stratified experiments, units are grouped into two or more strata, and within each stratum,

units are randomly assigned to treatment. Here we propose a family of extensions of the FSM

to such settings. Typically, in stratified experiments the treatment group sizes within each

stratum are pre-specified by the investigator. The main challenge arises when the treatment
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group sizes differ across strata. To address this challenge, we construct an augmented SOM

with information of the treatment group that selects at each stage and the stratum that

it selects from. This construction guarantees that each treatment group is assigned the

pre-specified number of units in each stratum. In the Online Supplementary Materials, we

discuss two approaches to construct such an SOM. At a high level, one approach generates

a separate SOM for each stratum, while the other approach uses SCOMARS to determine

the order of stratum labels for each treatment.

8.3 Sequential experiments

Sequential experiments are experiments where units progressively become available for ran-

dom assignment, possibly in batches of varying sizes. Here we describe extensions of the

FSM to such settings. The simplest approach is to run an independent FSM for each new

batch of available units. However, in general, this approach fails to account for accrued

covariate imbalances between the treatment groups. To address this issue, we propose an al-

ternative approach that considers the new batch as a continuation of the previous one. More

specifically, for each unit in the new batch we evaluate the value of the D-optimal selection

function using all the units already assigned to the selecting treatment group. See the On-

line Supplementary Materials for technical details. Thus, the FSM tends to remove accrued

covariate imbalances by adaptively updating its assignment mechanism from one batch to

the next. In this sense, FSM connects to multi-arm bandits and other adaptive designs (see,

e.g., (Villar et al. 2015)). However, adaptive designs and the FSM typically pursue different

goals. Adaptive designs primarily aim to determine the optimal treatment by assigning as

many units as possible to the superior treatments (exploitation) while allocating enough

units to the inferior treatments (exploration) (Scott 2010). In contrast, the FSM primar-

ily aims to efficiently estimate and conduct inferences on the average treatment effects by

adequately balancing covariate distributions across groups. A promising direction of future

research involves extending the FSM to contextual bandit settings, where information on
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both covariates and interim outcomes are available.

9 Summary and remarks

We revisited, formalized, and extended the FSM for experimental design. We proposed a new

selection function based on D-optimality that requires no tuning parameters for covariate

balance. We showed that, equipped with this selection function, the FSM has a number of

appealing properties. First, the FSM is affine invariant and hence, it self-standardizes covari-

ates with possibly different units of measurement. Second, the FSM produces randomized

block designs without explicitly randomizing in each block. Third, the FSM also produces

matched-pair designs without explicitly constructing the matched pairs beforehand and ran-

domizing within each pair. We described how both model-based and randomization-based

inference on treatment effects can be conducted using the FSM. For a range of practically

relevant configurations of group sizes in multi-group experiments, we proposed new algo-

rithms to generate a fair and random selection order of treatments under the FSM. We also

discussed potential extensions of the FSM to stratified and sequential experiments. In a case

study on the RAND Health Insurance Experiment, and ten additional randomized studies

from the health and social sciences, we showed that the FSM is a robust approach to random-

ization, exhibiting better performance than complete randomization and rerandomization in

terms of balance and efficiency. While there are settings where complete randomization

may perform better than the FSM in terms of efficiency, such settings are less common

and involve jagged, i.e., highly non-smooth, potential outcome models. In settings where

these models are reasonably smooth, the FSM is expected to perform well. Moreover, by

virtue of randomization, the FSM ensures balance in unobserved covariates in expectation.

Although it is possible that chance imbalances may arise with unobserved covariates under

the FSM, it is important to note that this issue is an inherent risk with any randomized de-

sign. Regardless, by effectively balancing observed covariates and their transformations, the
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FSM also balances any unobserved covariate that is highly correlated with them.10 Overall,

through our extensive explorations with real and simulated experimental data, the FSM has

consistently stood out as a robust design that can handle multiple treatment groups and a

fairly large number of categorical and continuous covariates without requiring tuning param-

eters for balance and nor coarsening covariates. We recommend giving strong considerations

to the FSM in experimental design for its conceptual simplicity, practicality, balance, and

robustness.
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Supplementary Materials

A Notation, estimands, and acronyms

Table A1: Notation

N ≜ Full sample size

i ≜ Index of unit, i = 1, ..., N

G ≜ Number of treatments

g ≜ Index of treatment group, g = 1, 2, ..., G

ng ≜ Size of treatment group g

k ≜ Number of baseline covariates

X i ≜ Observed vector of baseline covariates of unit i

X full ≜ N × k matrix of covariates in the full sample

X̃ full ≜ N × k + 1 design matrix in the full sample

X̄full ≜ k × 1 vector of means of the baseline covariates in the
full sample

Sfull ≜ k× k covariance matrix of the baseline covariates in the
full sample

Yi(g) ≜ Potential outcome of unit i under treatment g

Y (g) ≜ Vector of potential outcomes under treatment g,
(Y1(g), ..., YN(g))

⊤

Zi ≜ Treatment assignment indicator of unit i, Zi ∈
{1, 2, ..., G}

Z ≜ Vector of treatment assignment indicators, (Z1, ..., ZN)
⊤

Y obs
i ≜ Observed outcome of unit i, Y obs

i =
∑G

g=1 1(Zi =
g)Yi(g)

Table A2: Estimands

Yi(g
′)− Yi(g

′′) ≜ Unit level causal effect of treatment g′ relative to treat-
ment g′′ for unit i; g′, g′′ ∈ {1, 2, ..., G}

SATEg′,g′′ ≜ 1
N

∑N
i=1{Yi(g

′)−Yi(g
′′)}, the Sample Average Treatment

Effect of treatment g′ relative to treatment g′′

PATEg′,g′′ ≜ E{Yi(g
′) − Yi(g

′′)}, the Population Average Treatment
Effect of treatment g′ relative to treatment g′′
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Table A3: Acronyms

ASMD Absolute Standardized Mean Difference

CRD Completely Randomized Design

FSM Finite Selection Model

HIE Health Insurance Experiment

OLS Ordinary Least Squares

PATE Population Average Treatment Effect

RBD Randomized Block Design

RR Re-Randomization

SATE Sample Average Treatment Effect

SCOMARS Sequentially Controlled Markovian Random Sampling

SOM Selection Order Matrix

B Proofs of theoretical results

Lemma A1. Let treatment 1 be the choosing group at the rth stage. Also, let X̃r−1 be the

ñr−1 × (k + 1) design matrix in treatment group 1 after the (r− 1)th stage, where ñr−1 ≥ 1

and rank(X̃r−1) = k + 1. The D-optimal selection function chooses unit i′ with covariate

vector Xi′ ∈ Rk, where

i′ ∈ arg max
i∈Rr−1

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
(A1)

Proof. We follow the notations outlined in Section 4. At the rth stage, D-optimal selection

function selects unit i′ ∈ Rr−1, where i′ ∈ arg max
i∈Rr−1

det(X̃
⊤
r,iX̃r,i). Now, for i ∈ Rr−1,

det(X̃
⊤
r,iX̃r,i) = det

{
X̃

⊤
r−1X̃r−1 +

(
1
Xi

)
(1,X⊤

i )
}

(A2)

= det(X̃
⊤
r−1X̃r−1) det

{
I + (X̃

⊤
r−1X̃r−1)

− 1
2

(
1
Xi

)
(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

− 1
2

}
(A3)

= det(X̃
⊤
r−1X̃r−1)

{
1 + (1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

)}
, (A4)

where the final equality holds since for two matrices Am×n and Bn×m, det(Im + AB) =

det(In+BA). Equation A4 implies that the selected unit i′ maximizes (1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
.

This completes the proof.
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Proof of Theorem 4.1

Proof. We use the notations in Section 3.1 and Table A1. We first consider the case where

ñr−1 = 0. The selected unit i′ satisfies,

i′ ∈ arg max
i∈Rr−1

(1,X⊤
i )(X̃

⊤
fullX̃ full)

−1
(

1
Xi

)
. (A5)

Now, denoting e1 = (1, 0, ..., 0) as the k × 1 first standard unit vector, we have

(1,X⊤
i )(X̃

⊤
fullX̃ full)

−1
(

1
Xi

)
= (1,X⊤

i )(X̃
⊤
fullX̃ full)

−1
(

1
X̄full

)
+ (1,X⊤

i )(X̃
⊤
fullX̃ full)

−1
(

0
Xi−X̄full

)
= (1,X⊤

i )(X̃
⊤
fullX̃ full)

−1X̃
⊤
fullX̃ full

e1

N
+ (1,X⊤

i )(X̃
⊤
fullX̃ full)

−1
(

0
Xi−X̄full

)
=

1

N
+ {0, (Xi − X̄full)

⊤}(X̃⊤
fullX̃ full)

−1
(

0
Xi−X̄full

)
=

1

N
+

1

N
(Xi − X̄full)

⊤(Sfull)
−1(Xi − X̄full). (A6)

Here the last equality holds since, by the formula for the inverse of a partitioned matrix,

(X̃
⊤
fullX̃ full)

−1 =
(

B11 B12
B21 B22

)
, where B−1

22 = X⊤
fullX full−NX̄fullX̄

⊤
full = NSfull. This completes

the proof of the ñr−1 = 0 case. The proof for the case where ñr−1 ≥ 1 and X̃
⊤
r−1X̃r−1 is

invertible follows similar steps and hence is omitted.

We now consider the case where ñr−1 ≥ 1 and X̃
⊤
r−1X̃r−1 is not invertible. We denote

X̄∗
r−1 = X̄r−1+ϵX̄full

1+ϵ
and S∗

r−1 = ( 1
ñr−1

X⊤
r−1Xr−1 +

ϵ
N
X⊤

fullX full) − (1 + ϵ)X̄∗
r−1X̄

∗⊤
r−1. The

selected unit i′ satisfies,

i′ ∈ arg max
i∈Rr−1

(1,X⊤
i )
( 1

ñr−1

X̃
⊤
r−1X̃r−1 +

ϵ

N
X̃

⊤
fullX̃ full

)−1 (
1
Xi

)
(A7)
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Denoting G̃ =

(√
1

ñr−1
Xr−1√

ϵ
N
Xfull

)
, we have

(1,X⊤
i )
( 1

ñr−1

X̃
⊤
r−1X̃r−1 +

ϵ

N
X̃

⊤
fullX̃ full

)−1 (
1
Xi

)
= (1,X⊤

i )(G̃
⊤
G̃)−1

(
1
Xi

)
= (1,X⊤

i )(G̃
⊤
G̃)−1

(
0

Xi−X̄∗
r−1

)
+ (1,X⊤

i )(G̃
⊤
G̃)−1

(
1

X̄∗
r−1

)
= (0, (Xi − X̄∗

r−1)
⊤)(G̃

⊤
G̃)−1

(
0

Xi−X̄∗
r−1

)
+

1

1 + ϵ

= (Xi − X̄∗
r−1)

⊤(S∗
r−1)

−1(Xi − X̄∗
r−1) +

1

1 + ϵ
. (A8)

Here, the third equality holds since
(

1
X̄∗

r−1

)
= 1

1+ϵ
G̃

⊤
G̃e1 and the fourth equality holds since

(G̃
⊤
G̃)−1 =

(
B11 B12
B21 B22

)
, where B−1

22 = ( 1
ñr−1

X⊤
r−1Xr−1 +

ϵ
N
X⊤

fullX full)− (1 + ϵ)X̄∗
r−1X̄

∗⊤
r−1 =

S∗
r−1. This completes the proof.

Proof of Theorem 4.2

Proof. (a) We first consider the setting of a standard block design where N = BG (i.e.,

c = 1). The blocks are labelled 1, 2, ..., B. Here, the SOM is constructed by stacking B

independent random permutations of the ‘chunk’ (1, 2, ..., G). We will show that the choices

made by the treatment groups in the FSM follow the assignment mechanism of an RBD.

Consider the first randomized chunk of the SOM, i.e., a random permutation of (1, 2, ..., G).

At the first stage of this randomized chunk, the choosing treatment group aims to maximize

(1,X⊤
i )(X̃

⊤
fullX̃ full)

−1
(

1
Xi

)
. Note that we can write X̃ full as X̃ full =

(
D

...
D

)
, where DB×B = 1 1 0 ... 0 0

1 0 1 ... 0 0
...
...
... ...

...
...

1 0 0 ... 0 1
1 0 0 ... 0 0

. Now, consider a transformation of the rows of the design matrix given by

˜̃Xi = (D⊤)−1
(

1
Xi

)
. The transformed design matrix is ˜̃X full = X̃ fullD

−1 =

(
IB

...
IB

)
. We note

that the ˜̃Xis nothing but standard unit vectors. Now,

(1,X⊤
i )(X̃

⊤
fullX̃ full)

−1
(

1
Xi

)
= ˜̃X⊤

i (
˜̃X

⊤
full

˜̃X full)
−1 ˜̃Xi. (A9)

Therefore, the selection function remains the same under the above transformation. Now,
˜̃X⊤

i (
˜̃X

⊤
full

˜̃X full)
−1 ˜̃Xi = 1

G
˜̃X⊤

i
˜̃Xi = 1

G
for all i, which essentially implies that the choos-

ing group has no preference among the units for selection and hence chooses any one of
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the N units randomly. Similarly, at the subsequent stages of this randomized chunk, the

corresponding choosing groups select one of the remaining units randomly.

Next, we consider the second randomized chunk of the SOM. Without loss of generality,

suppose treatment 1 gets to choose first in this chunk. Also, without loss of generality,

suppose that in its first choice, treatment 1 had selected a unit from block 1. We claim that

in this selection, treatment 1 will choose one of the remaining units randomly from any block

other than block 1, which respects the assignment mechanism of an RBD.

To prove the claim, we first consider the objective function at this stage. Treatment 1 aims

to maximize (1,X⊤
i )
(

1
ñr−1

X̃
⊤
r−1X̃r−1 +

ϵ
N
X̃

⊤
fullX̃ full

)−1 (
1
Xi

)
. Here, we denote the current

stage by r. Using the same transformation as in the case of the first chunk, we can write the

objective function as ˜̃X⊤
i

(
1

ñr−1

˜̃X
⊤
r−1

˜̃Xr−1 +
ϵ
N

˜̃X
⊤
full

˜̃X full

)−1
˜̃Xi, where

˜̃Xr−1 = X̃r−1D
−1.

Since ˜̃X
⊤
full

˜̃X full = GIB, it is equivalent to maximize

˜̃X⊤
i

(
Ib +

B

ñr−1ϵG
˜̃X

⊤
r−1

˜̃Xr−1

)−1
˜̃Xi =

˜̃X⊤
i

(
Ib + δ ˜̃X

⊤
r−1

˜̃Xr−1

)−1
˜̃Xi (A10)

= ˜̃X⊤
i

{
Ib − δ ˜̃X

⊤
r−1(I ñr−1

+ δ ˜̃Xr−1
˜̃X

⊤
r−1)

−1 ˜̃Xr−1

}
˜̃Xi.

(A11)

Here, δ = B
ñr−1ϵG

. The final equality holds by the Woodbury matrix identity. Now, in this

case, ˜̃Xr−1 = (1, 0, ..., 0) (since treatment 1 has only selected one unit from block 1 up to this

stage). So, the objective function in Equation A11 equals 1− δ
1+δ

˜̃X⊤
i (

˜̃X
⊤
r−1

˜̃Xr−1)
˜̃X⊤

i . Since

δ > 0, it is equivalent to minimize ˜̃X⊤
i (

˜̃X
⊤
r−1

˜̃Xr−1)
˜̃X⊤

i = ˜̃X⊤
i

(
1 0⊤

1×(B−1)

0(B−1)×1 0(B−1)×(B−1)

)
˜̃Xi,

which takes the value 0 for a unit in any block other than block 1 and 1 for a unit in block

1. This proves the claim for treatment 1. Moreover, by similar reasoning, the claim holds

for all the other treatment groups in this randomized chunk.

Next, we consider a general randomized chunk of the SOM. Once again, without loss of

generality, suppose treatment 1 gets to choose first in this chunk. Also, for simplicity of

exposition and without loss of generality, suppose treatment 1 has already selected from

blocks 1, 2, ..., b, implying that ñr−1 = b and ˜̃Xr−1 = ( Ib 0b×(B−b) ). This form of ˜̃Xr−1,

along with Equation A11 implies that it is equivalent to minimize ˜̃X⊤
i (

˜̃X
⊤
r−1

˜̃Xr−1)
˜̃X⊤

i =
˜̃X⊤

i

(
Ib 0b×(B−b)

0⊤
(B−b)×b

0(B−b)×(B−b)

)
˜̃Xi, which is minimized for any unit i belonging to the blocks

b+1, ..., B. This shows that at this stage, treatment 1 randomly chooses a unit from a block

other than the blocks it has already chosen from. By similar reasoning, at subsequent stages

of this randomized chunk, the choosing group follows the same selection strategy for their
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own group. This completes the proof of the theorem for the setting of a standard block

design.

We now prove the theorem for the general block design setting with N = cBG, c > 1. The

proof strategy is exactly the same as the c = 1 setting. Here the SOM is generated by

randomly permuting the chunk (1, 2, ..., G) B × c times. Once the selections are completed

for the the first B chunks, the resulting assignment resembles that of a standard RBD (by

the previous proof), where each treatment group randomly chooses exactly one unit from

each block. For the (B + 1)th chunk, suppose, without loss of generality, that treatment 1

gets to choose first. At this stage (denoted by stage r), treatment 1 tries to maximize,

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
= ˜̃X⊤

i (
˜̃X

⊤
r−1

˜̃Xr−1)
−1 ˜̃Xi

= ˜̃X⊤
i
˜̃Xi = 1, (A12)

where the penultimate equality holds since ˜̃Xr−1 = IB. Thus, similar to the first randomized

chunk in the setting of c = 1, treatment 1 (and the other treatments) randomly chooses one

of the available units.

Finally, we consider a general chunk. Without loss of generality, suppose treatment 1 gets to

choose first in this chunk. We can write the corresponding transformed design matrix ˜̃Xr−1

as

˜̃Xr−1 =


IB
IB

...
IB

Ib 0b×(B−b)

 . (A13)

Here, without loss of generality, we have assumed that treatment 1 has chosen c0 + b times

from the first b blocks and c0 times from the remaining blocks, where c0 < c. This implies

that treatment 1 aims to maximize.

˜̃X⊤
i (

˜̃X
⊤
r−1

˜̃Xr−1)
−1 ˜̃Xi =

˜̃X⊤
i

{
c0IB +

(
Ib

0⊤
(B−b)×b

)
( Ib 0b×(B−b) )

}−1
˜̃Xi, (A14)

which has the same form as the objective function in Equation A10 in the c = 1 setting.

Thus, following similar arguments as in the c = 1 setting, we conclude that at this stage,

treatment 1 selects a unit randomly from blocks b+1, ..., B, which conforms to the assignment

mechanism of an RBD. Also, at subsequent stages of the randomized chunk, the choosing

group follows the same selection strategy for their own group. This completes the proof of

the theorem.
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(b) With two groups of equal sizes, the SOM consists of successive random permutations

of the ‘chunk’ (1, 2). By Theorem 4.1, for the first pair of stages of selection, the objective

function (to maximize) is given by

(Xi − X̄full)
⊤(Sfull)

−1(Xi − X̄full). (A15)

Under the assumption of identical twins and continuous data generating distributions, with

probability 1, there are exactly two units (one being a twin of the other), whose common

covariate value X(1) (say) maximizes the objective function in Equation A15. Therefore, the

choosing group at the first stage selects one of these two identical twins randomly, and in

the next stage, the other treatment selects the remaining twin. This respects the assignment

mechanism of a matched-pair design.

Consider the next pairs of stages. The objective function of the choosing treatment group

is given by:

(Xi −
1

1 + ϵ
X(1))⊤

{
X(1)X(1)⊤ +

ϵ

N
X⊤

fullX full − (1 + ϵ)X(1)X(1)⊤
}−1

(Xi −
1

1 + ϵ
X(1))

(A16)

Similar to the previous case, here also we have (with probability 1) exactly two units, one

being a twin of the other, whose common covariate value X(2) maximizes the objective

function in Equation A16. Thus, the choosing group at the first stage of this pair selects

one of these two twins randomly, and in the next stage, the other treatment chooses the

remaining twin. Proceeding in this manner, it follows that, at the end of the selection

process, each treatment group ends up selecting one twin randomly from N
2
identical twins,

which is equivalent to a matched-pair design. This completes the proof.
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Proof of Proposition 5.1

With equal-sized groups, by symmetry, every unit has an equal chance of belonging to one

of the G treatment groups. That is, P (Zi = g) = 1
G
for all g ∈ {1, 2, ..., G}. Therefore,

E
{ 1

ng

∑
i:Zi=g

Y obs
i

∣∣∣Y (g)
}
= E

{G

N

N∑
i=1

1(Zi = g)Yi(g)
∣∣∣Y (g)

}
=

G

N

N∑
i=1

P (Zi = g)Yi(g)

=
1

N

N∑
i=1

Yi(g). (A17)

Using linearity of expectations, the proposition follows from Equation A17.

Next, we derive the randomization-based variance of the estimated SATE. For simplicity,

and without loss of generality, we consider the case with G = 2 treatment groups of equal

size, and focus on the estimand SATE2,1. Let the corresponding unbiased estimator be

denoted by ŜATE2,1. Let Wi = 1(Zi = 2) be the indicator that unit i belongs to group 2.

Following the Neymanian decomposition in Mukerjee et al. (2018), Proposition A1 presents

the closed-form expression of the variance of ŜATE2,1.

Proposition A1.

Var(ŜATE2,1)

= − 1

N(N − 1)

N∑
i=1

(Yi(2)− Yi(1)− τ)2 +
1

N2

(
N∑
i=1

2{Y 2
i (1) + Y 2

i (2)}+

+ 2
∑∑

i<i′

[
Yi(2)Yi′(2)

{
4πii′(2, 2)−

N

N − 1

}
+ Yi(1)Yi′(1)

{
4πii′(1, 1)−

N

N − 1

}]

− 2
∑∑

i<i′

[
Yi(2)Yi′(1)

{
4πii′(2, 1)−

N

N − 1

}
+ Yi(1)Yi′(2)

{
4πii′(1, 2)−

N

N − 1

}])
,

where πi,i′(z, z
′) = P (Zi = z, Zi′ = z′), for z, z′ ∈ {1, 2}.

Moreover, if πi,i′(z, z
′) > 0 for all i, i′ and z, z′, then a conservative estimator of this variance
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is given by,

V̂ar(ŜATE2,1) =
1

N2

(
N∑
i=1

4(Y obs
i )2

+ 2
∑∑

i<i′

[
WiWi′Y

obs
i Y obs

i′

πii′(2, 2)

{
4πii′(2, 2)−

N

N − 1

}
+

(1−Wi)(1−Wi′)Y
obs
i Y obs

i′

πii′(1, 1)

{
4πii′(1, 1)−

N

N − 1

}]
− 2

∑∑
i<i′

[
Wi(1−Wi′)Y

obs
i Y obs

i′

πii′(2, 1)

{
4πii′(2, 1)−

N

N − 1

}
+

(1−Wi)Wi′Y
obs
i Y obs

i′

πii′(1, 2)

{
4πii′(1, 2)−

N

N − 1

}])
,

This estimator is unbiased when treatment effect is constant across units, i.e., Yi(2)−Yi(1) =

c for all i ∈ {1, 2, ..., N}, where c is a constant.

When the condition πi,i′(z, z
′) > 0 is violated for some i, i′, z, z′, we can still obtain a con-

servative variance estimator. For instance, suppose πii′(1, 1) = 0. In this case, following

Aronow and Samii (2013), we can upper bound the term Yi(2)Yi′(2)
{
4πii′(2, 2)− N

N−1

}
=

−Yi(2)Yi′(2)
N

N−1
by N

2(N−1)
{Y 2

i (2) + Y 2
i′ (2)}, which admits an unbiased estimator given by

N
N−1

Wi{(Y obs
i )2 + (Y obs

i′ )2}.

C Properties of D-optimal selection function

C.1 Affine invariance and covariate balance

Theorem A2. (a) The FSM with the D-optimal selection function is invariant under

affine transformations of the covariate vector.

(b) For continuous, symmetrically distributed covariates and two groups of equal size, the

FSM with the D-optimal selection function almost surely produces exact mean-balance

on all even transformations of the centered covariate vector.

Proof of Theorem A2

Proof. (a) We consider the case where ñr−1 ≥ 1 and X̃
⊤
r−1X̃r−1 is invertible. The proofs for

the other two cases are similar. By Theorem 4.1, in this case, the chosen unit i′ satisfies,

i′ ∈ arg max
i∈Rr−1

(Xi − X̄r−1)
⊤(Sr−1)

−1(Xi − X̄r−1). (A18)

45



Consider an affine transformation of the covariate X given by U = AX + b, where A is a

k × k invertible matrix and b is a vector of dimension k. Let the corresponding values of

X̄r−1 and Sr−1 be Ūr−1 and SU,r−1, respectively. We observe that,

(Ui − Ūr−1)
⊤(SU,r−1)

−1(Ui − Ūr−1) = {A(Xi − X̄r−1)}⊤(ASr−1A
⊤)−1A(Xi − X̄r−1)

= (Xi − X̄r−1)
⊤(Sr−1)

−1(Xi − X̄r−1). (A19)

This shows that the D-optimal selection function remains unchanged under affine transfor-

mations and hence, FSM with the D-optimal selection function is affine invariant.

(b) The in-sample symmetry of the data essentially implies that if X belongs to the sample,

then −X also belongs to the sample. Moreover, by the assumption of a continuous data

generating distribution, with probability 1, the covariate values are different up to reflection.

Now, consider an even transformation g(·), i.e., g(−X) = g(X). With two groups of equal

sizes, the SOM consists of successive random permutations of the ‘chunk’ (1, 2). By Theorem

4.1, for the first pair of stages of selection, the objective function (to maximize) is given by

(Xi − X̄full)
⊤(Sfull)

−1(Xi − X̄full) = X⊤
i (Sfull)

−1Xi. (A20)

It follows that, if a unit in the sample with covariate X(1) maximizes the objective function

in Equation A20, then so does the unit with covariate −X(1). Moreover, due to the con-

tinuous data generating distribution, with probability 1, these are the only two units that

maximize this objective function. Therefore, if treatment 1 selects the unit with covariate

X(1), treatment 2 selects the unit with covariate −X(1), and vice-versa. This preserves exact

balance on g(X).

Now, consider the next pair of stages. Without loss of generality, suppose treatment 1 had

chosen a unit with covariate X(1) and treatment 2 had chosen a unit with covariate −X(1)

in their respective previous choices. Also, without loss of generality, assume that in this pair

of stages, treatment 1 gets to choose first. By Theorem 4.1, treatment 1 aims to maximize,

(Xi − X̄∗
r−1)

⊤(S∗
r−1)

−1(Xi − X̄∗
r−1)

= {Xi −
1

1 + ϵ
X(1)}⊤

{
X(1)X(1)⊤ +

ϵ

N
X⊤

fullX full − (1 + ϵ)X(1)X(1)⊤
}−1

{Xi −
1

1 + ϵ
X(1)}.

(A21)
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Also, during treatment 2’s turn in this pair of stages, it tries to maximize

(Xi +
1

1 + ϵ
X(1))⊤

{
X(1)X(1)⊤ +

ϵ

N
X⊤

fullX full − (1 + ϵ)X(1)X(1)⊤
}−1

(Xi +
1

1 + ϵ
X(1))

= {(−Xi)−
1

1 + ϵ
X(1)}⊤

{
X(1)X(1)⊤ +

ϵ

N
X⊤

fullX full − (1 + ϵ)X(1)X(1)⊤
}−1

{(−Xi)−
1

1 + ϵ
X(1)}.

(A22)

Equations A21 and A22 imply that if treatment 1 chooses a unit with covariate value X(2),

then with probability 1, treatment 2 chooses the unit with covariate value −X(2), and vice

versa. This shows that, at the end of the second pair of stages in the SOM, exact mean

balance on g(X) is preserved. Proceeding in this manner it follows that, at the end of the

selection process, with probability 1, both the treatment groups will have exact balance on

g(X). This completes the proof.

It follows from Theorem A2(a) that, for any SOM, the choices made by each treatment group

remain unchanged even if the covariate vectors are transformed via an affine transformation

(e.g., changing the units of measurement of the covariates). Therefore, the FSM with the

D-optimal selection function self-standardizes the covariates. In addition, if the covariate

vector is symmetrically distributed in the sample, then by Theorem A2(b), the FSM exactly

balances even transformations such as the second, fourth order moments, and the pairwise

products of the centerd covariates. An implication of Theorem A2(b) is that, for covari-

ates drawn from symmetric continuous distributions (such as the Normal, t, and Laplace

distributions), the FSM tends to balance all these transformations due to the approximate

symmetry of the covariates in the sample. The choice of the D-optimal selection function is

thus robust in the sense that it allows the FSM to balance a family of transformations of the

covariate vector by design, without explicitly including them in the assumed linear model

nor requiring the specification of tuning parameters.

C.2 Connection to A-optimality

The original FSM used a criterion based on A-optimality as the selection function (see Morris

1979). In this section, we compare the A-and D-optimal selection functions. The A-optimal

selection function requires prespecifying a policy matrix P p×(k+1) and a corresponding vector

of policy weights wp×1. Here, P transforms the original vector of regression coefficients to

a vector of p linear combinations that are of policy interest, and w assigns weights to each

combination according to their importance. Thus, the A-optimal selection function requires

p(k + 2) tuning parameters.
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If treatment 1 gets to choose at the rth stage, then this criterion selects the unit that

minimizes the resulting trace
{
T (X̃

⊤
r,iX̃r,i)

−1
}
, where T = P⊤diag(w)P . Proposition A3

shows an equivalent characterization of the A-optimal selection function.

Proposition A3. Let treatment 1 be the choosing group at the rth stage. Assume that

ñr−1 ≥ 1 and X̃
⊤
r−1X̃r−1 is invertible. The A-optimal selection function chooses unit i′ with

covariate vector Xi′ ∈ Rk, where i′ ∈ arg max
i∈Rr−1

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1T (X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

)
1+(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

) .

The A-optimality criterion provides a family of selection functions depending on P and w.

For some choices of P and w, the selection function is not affine invariant , e.g., P = I

and w = (1, 1, ..., 1)⊤, while for other choices it is, e.g., P = X̃ full and w = (1, 1, ..., 1)⊤.

In particular, the A-optimal selection function with P = X̃ full and w = (1, 1, ..., 1)⊤ is

closely related to the D-optimal selection function. To see this, consider a case where in

the selection process, the design matrices in each treatment group scale similarly relative

to the design matrix in the full sample, i.e., (X̃
⊤
r−1X̃r−1)

−1 = cr(X̃
⊤
fullX̃ full)

−1 for some

constant cr > 0. In this case, the A-optimal selection function chooses unit i′ such that i′ ∈
arg max

i∈Rr−1

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
⇐⇒ i′ ∈ arg max

i∈Rr−1

(Xi−X̄r−1)
⊤(Sr−1)

−1(Xi−X̄r−1),

which is equivalent to the D-optimal selection function. Hence, in this case, the FSM under

the D-optimal and A-optimal selection functions make similar choices of units.

Proof of Proposition A3

Proof. The A-optimal selection function aims to minimize

trace
{
T (X̃

⊤
r,iX̃r,i)

−1
}

(A23)

= trace
[
T {X̃⊤

r−1X̃r−1 +
(

1
Xi

)
(1,X⊤

i )}−1
]

= trace
{
T (X̃

⊤
r−1X̃r−1)

−1 − T
(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1

1 + (1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

) }
= trace{T (X̃

⊤
r−1X̃r−1)

−1} − trace
{
T
(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

)
(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1

1 + (1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1
(

1
Xi

) }
= trace{T (X̃

⊤
r−1X̃r−1)

−1} − trace
{(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1T (X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

)
1 + (1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

) }
(A24)

Here the second equality holds due to the Sherman-Morrison-Woodbury formula, the third

and fourth equality hold due to the linearity and cyclicality of trace(·), respectively. Equation
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A24 shows that it is equivalent to maximize trace
{

(1,X⊤
i )(X̃

⊤
r−1X̃r−1)

−1T (X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

)
1+(1,X⊤

i )(X̃
⊤
r−1X̃r−1)

−1
(

1
Xi

) }
.

This completes the proof.

D Optimal covariance design theorem and D-optimality

In this section, we focus on the setting with G = 2 treatment groups. Under a model-based

approach, we first connect the notion of covariate balance to efficiency using the optimal

covariance design theorem (Morris and Hill 2000, see also Chattopadhyay et al. 2021)

Theorem A4. Consider the linear regression model Y obs
i = α + β⊤Xi + τ1(Zi = 2) + ϵi,

where ϵis are the uncorrelated error terms with mean zero and variance σ2. Let τ̂OLS be the

ordinary least squares estimator of τ . Then,

Var(τ̂OLS) =
σ2

Ns22(1−R2)
,

where s22 =
n1n2

N2 and R2 is the square of the multiple correlation coefficient of 1(Zi = 2) with

the covariates.

Here, τ̂OLS is used to estimate the average treatment effect of treatment 2, relative to treat-

ment 1. Theorem A4 implies that, under this model, the most efficient design minimizes R2.

In other words, the optimal design satisfies R2 = 0 (if feasible), which equivalently means

that the covariates Xi are exactly mean-balanced across the two treatment groups. Indeed,

the optimality of this design is optimal depends heavily on the correctness of the outcome

model. With model misspecification, this design may no longer be efficient. For instance,

if the outcome model is linear in second-order transformations of the covariates, the design

may perform poorly due to potential lack of balance on these transformations. In this sense,

deterministic optimal designs lack robustness against model misspecification.

Next, we consider the global D-optimal design, i.e., the design that selects the D-optimal

assignment among all possible assignments. If there are multiple D-optimal assignments, one

of them is chosen randomly by the design. Proposition A5 shows that, with k = 1 covariate,

the global D-optimal design aims to balance the means of the covariate exactly between the

two treatment groups.

Proposition A5. Consider the linear model Y obs
i = α + β⊤Xi + τ1(Zi = 2) + ϵi, where

ϵis are the uncorrelated error terms with mean zero and variance σ2. Under this model,

the global D-optimal design minimizes |X̄1 − X̄2|, where X̄1 and X̄2 are the means of Xi in

treatment groups 1 and 2, respectively.

Proposition A5 and Theorem A4 imply that, if the outcome model is linear in the covariates
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and the treatment, then the global D-optimal design is the most efficient.

Proof of Proposition A5

By definition, the D-optimal design maximizes det(D⊤D), where D = (1,X,Z) is the

design matrix. Without loss of generality, we assume that the covariates are scaled so that

their variance in the full sample is 1, i.e., 1
N

∑N
i=1(Xi − X̄full)

2 = 1. Then,

det(D⊤D) = det


N NX̄full n1

NX̄full N +NX̄full n1X̄1

n1 n1X̄1 n1


= N2n1 −Nn2

1 −Nn2
1(X̄

2
full + X̄2

1 − 2X̄fullX̄1)

= Nn1n2 −
n2
1n

2
2

N
(X̄1 − X̄2)

2, (A25)

where the last equality holds since X̄full = n1X̄1+n2X̄2

N
. Thus, maximizing det(D⊤D) is

equivalent to minimizing |X̄1 − X̄2|. This completes the proof.

E Algorithms for constructing an SOM

E.1 The SCOMARS algorithm

Consider a setting with G = 2 treatment groups of arbitrary sizes n1 and n2. Let Wr be the

binary indicator for selection of group 1 stage r, r ∈ {1, 2, . . . , N}, with pr := P (Wr = 1)

being the marginal probability of selection at stage r. Write Sr :=
∑r

j=1Wj and Fr :=

E(Sr) =
∑r

j=1 pj. A treatment assignment is sequentially controlled if |Sr − Fr| < 1 for all

r ∈ {1, 2, . . . , N}.

The SCOMARS algorithm proceeds as follows:

• Stage 1, P (W1 = 1) = p1.

• Stage r ≥ 2, P (Wr = 1|Sr−1 = sr−1) = P
{
U ≤ pr−max(0,sr−1−Fr−1)

1−|sr−1−Fr−1|

}
, where U ∼

Unif(0, 1).

This algorithm satisfies the sequentially controlled condition, |Sr − Fr| < 1 for all r ∈
{1, 2, . . . , N} (Morris 1983). It is Markovian because the probability of selection at stage r

depends solely on stage r − 1.

E.2 SOM for multi-group experiments

We first define the randomized chunk algorithm for generating an SOM for multi-group

experiments with equal group sizes.
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Definition 2 (Randomized chunk algorithm). Suppose n1 = n2 = ... = nG. The random-

ized chunk algorithm generates an SOM by generating and stacking N
G

independent random

permutations of the ‘chunk’ (1, 2, ..., G).

For example, with N = 12, g = 3, n1 = n2 = n3 = 4, one instance of an SOM generated

using randomized chunk is (2, 1, 3︸ ︷︷ ︸, 1, 2, 3︸ ︷︷ ︸, 2, 1, 3︸ ︷︷ ︸, 2, 3, 1︸ ︷︷ ︸)⊤.
The following proposition shows that the randomized chunk algorithm is sequentially con-

trolled.

Proposition A6. For G ≥ 2 and n1 = n2 = ... = nG, the randomized chunk algorithm

satisfies |Sig − Fig| ≤ G−1
G

< 1 for all g ∈ {1, 2, ..., G}.

Proof. Let Sig and Fig be the same as defined in Section 8.1 (i ∈ {1, 2, ..., N}, g ∈ {1, 2, ..., G}).
For equal sized treatment groups, Fig =

i
G
. Now, without loss of generality, it suffices to show

that |Si1 − Fi1| ≤ G−1
G

for all i ∈ {1, 2, ..., N}. Consider the first chunk in the SOM, which

is a random permutation of (1, 2, ..., G). If treatment 1 appears in position i∗ ∈ {1, 2, ..., G}
the permutation (j ∈ {1, 2, ..., G}), then

|Si1 − Fi1| =

 i
G

if i ∈ {1, ..., i∗ − 1}

1− i
G

if i ∈ {i∗, ..., G}.
(A26)

In each case, |Si1 − Fi1| ≤ G−1
G

for all i ∈ {1, 2, ..., G}. Moreover, since |SG1 − FG1| = 0, the

SOM restarts itself after the first chunk. Hence, we can conclude that |Si1 − Fi1| ≤ G−1
G

for

all i ∈ {1, 2, ..., G}. This completes the proof.

Below we describe two algorithms to generate an SOM for multi-group experiments and

show that they are sequentially controlled. The key idea in these algorithms is the formation

of ‘supergroups’, i.e., combination of one or more treatment groups. For example, with

g = 3, n1 = 10, n2 = 20, n3 = 30, one can consider two supergroups, namely {1, 2} of size

10 + 20 = 30 and {3} of size 30.

Theorem A7. For 1 ≤ G1 ≤ G − 1, let n1 = n2 = ... = nG1 ̸= n(1), and nG1+1 = nG1+2 =

... = nG = n(2), where n(1) ̸= n(2). Consider the following three-stage algorithm.

1. Run SCOMARS with supergroups {1, ..., G1} and {G1 +1, ..., G} to generate an SOM

at the supergroup level.
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2. Consider the locations of the SOM in step 1 where supergroup {1, ..., G1} chooses.

Then, use randomized chunk to obtain the selection orders at the levels of the original

groups in those locations.

3. Consider the locations of the SOM in step 1 where supergroup {G1+1, ..., G} chooses.

Then, use randomized chunk to obtain the selection orders at the levels of the original

groups in those locations.

The above SOM generating algorithm is sequentially controlled.

We first prove a special case of Theorem A7, given below in Lemma A2

Lemma A2. The algorithm in Theorem A7 is sequntially controlled for the special case of

G1 = 1.

Proof. The first step of the algorithm in Theorem A7 runs SCOMARS with treatment group

1 and the supergroup {2, 3, ..., G}. Thus, the first step itself determines the locations of the

SOM where treatment 1 gets to choose. Since SCOMARS is sequentially controlled, we

immediately have |Si1 − Fi1| < 1 for all i ∈ {1, 2, ..., N}.

It remains to show that for g ∈ {2, 3, ..., G}, |Sig − Fig| < 1 for all i ∈ {1, 2, ..., N}. By

symmetry, it suffices to show this for g = 2. Now, the randomized chunk algorithm on

the supergroup {2, 3, ..., G} determines the locations of the SOM where treatment 2 gets to

choose. We will prove the result by first mapping this SOM to an SOM where treatment 1

is absent, and then by using the sequential controlled property of randomized chunk.

Let us first denote 1 ≤ r1 < r2 < ... < rn1−1 < rn1 ≤ N as the stages or locations of the

SOM where treatment 1 gets to choose. We consider the following cases,

(i) Case-1: i ∈ {1, 2, ..., r1 − 1}. In this case, by stage i, treatment 1 has not made any

choices. Now,

|Si2 − Fi2| = |Si2 −
in(2)

N
|

≤ |Si2 −
i

G− 1
|+ | i

G− 1
− in(2)

N
|

≤ G− 2

G− 1
+ i

n1

N(G− 1)

<
G− 2

G− 1
+

1

G− 1
= 1. (A27)

Here the first inequality holds due to triangle inequality. To see that second inequality,
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consider a new experiment with treatment groups {2, ..., G} of size n(2) each and an SOM

generated by randomized chunk as in the second step of the algorithm in Theorem A7. Let

S̃i2 be the number of selections made by treatment 2 up to stage i in this new experiment

and F̃i2 =
i

G−1
be its expectation. By Proposition A6, |S̃i2− F̃i2| ≤ G−2

G−1
. Now, |Si1− i

G−1
| =

|S̃i1 − i
G−1

|, which gives us the second inequality. Finally, the last inequality holds since
in1

N
= Fi1 < 1.

(ii) Case-2: i ∈ {rt, rt + 1, ...., rt+1 − 1} for some t ∈ {1, 2, ..., n1 − 1}. In this case, by stage

i, treatment 1 has made exactly t choices. Now,

|Si2 − Fi2| = |Si2 −
in(2)

N
|

≤ |Si2 −
i− t

G− 1
|+ | i− t

G− 1
− in(2)

N
|

≤ G− 2

G− 1
+

1

G− 1
|t− in1

N
|

<
G− 2

G− 1
+

1

G− 1
= 1. (A28)

Here, the first inequality is due to triangle inequality. To see the second inequality, we

again consider the new experiment described in Case-1. Notice that, |Si2 − i−t
G−1

| = |S̃(i−t)2 −
F̃(i−t)2| ≤ G−2

G−1
, where the last inequality holds by Proposition A6. Finally, the final inequality

in Equation A28 holds since |t − in1

N
| = |Si1 − Fi1| < 1. This completes the proof of the

lemma.

We now prove Theorem A7.

Proof. We first show that, for g ∈ {1, 2, ..., G1},

|Sig − Fig| < 1 ∀i ∈ {1, 2, ..., N}. (A29)

To show this, we consider steps 1 and 2 of the algorithm as these two steps are sufficient

to determine the location of treatments 1, ..., G1 in the SOM. We note that, steps 1 and

2 generate an SOM for an experiment with G1 + 1 treatment groups, namely supergroup

{G1 + 1, ..., G} (of size (G − G1)n
(2)) and groups 1, 2, ..., G1 (each of size n(1)). Thus, by

Lemma A2, it follows that Equation A29 holds for g ∈ {1, 2, ..., G1}.

To show that Equation A29 holds for g ∈ {G1 + 1, ..., G}, we first notice that steps 2 and

3 of the algorithm are completely independent and hence can be performed in any order.

Therefore, by changing the order of steps 2 and 3 and applying the same argument as before,
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we get that Equation A29 holds for g ∈ {G1 + 1, ..., G}. This completes the proof of the

theorem.

Theorem A8. Let G1, ..., Gm be such that 1 ≤ Gj ≤ G − 1 for all j ∈ {1, 2, ...,m} and

G1 + G2 + ... + Gm = G. Moreover, for j ∈ {1, 2, ...,m}, let n(j) be the group size of Gj

many treatment groups, with n(1)G1 = n(2)G2 = ... = n(m)Gm. Denote the collection of Gj

treatment groups with group sizes n(j) as supergroup Gj. Consider the following multi-stage

algorithm.

1. Run randomized chunk on supergroups G1,G2, ...,Gm to generate an SOM at the su-

pergroup level.

2. For j ∈ {1, 2, ...,m}, consider the locations of the SOM in step 1 where supergroup Gj

chooses. Then, use randomized chunk to obtain the selection orders at the levels of

the original groups in those locations.

The above SOM generating algorithm is sequentially controlled.

To prove this theorem, we first use the following Lemma.

Lemma A3. Let n1 = n2 = ... = nG = n. Consider the following SOM generating algorithm.

1. Consider the supergroups {1} (of size n) and {2, 3, ..., G} (of size (G− 1)n). Generate

an SOM at the superpopulation level using SCOMARS.

2. Consider the locations of the SOM in step 1 where supergroup {2, 3, ..., G} chooses.

Then, use randomized chunk to obtain the selection orders at the levels of the original

groups in those locations.

This algorithm is equivalent to the randomized chunk algorithm.

Below we prove this lemma.

Proof. To show that the algorithm is equivalent to randomized chunk, we have to show

that it generates a random permutation of (1, 2, ..., G) for the first G stages, a fresh random

permutation of (1, 2, ..., G) for the next G stages, and so on. Since the locations of groups

{2, ..., G} are chosen using randomized chunk, it thus suffices to show that, treatment 1 gets

to choose once (in a random location) in the first G stages, once in the next G stages, and

so on.

We use the notation as in Section E.1. Now, suppose among the first G stages, treatment 1
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gets to choose at stage r∗ first. Notice that r∗ cannot be greater than G as

P (WG = 1|SG−1 = 0) = P
{
U ≤

1
G
−max(0, 0− FG−1)

1− |0− FG−1|

}
= P

{
U ≤ 1

G− (G− 1)

}
= 1.

(A30)

Now, for r ∈ {1, 2, ..., r∗ − 1} we have,

P (Wr = 1|Sr−1 = 0) = P
{
U ≤

1
G
−max(0, 0− Fr−1)

1− |0− Fr−1|

}
= P

{
U ≤ 1

G− (r − 1)

}
=

1

G− (r − 1)
.

(A31)

For r∗ + 1 ≤ r ≤ G,

P (Wr = 1|Sr−1 = 1) = P
{
U ≤ pr −max(0, 1− Fr−1)

1− |1− Fr−1|

}
= P

{
U ≤

1
G
− 1 + r−1

G
r−1
G

}
= 0.

(A32)

Finally,

P (WG+1 = 1|SG = 1) = P
{
U ≤ pG+1 −max(0, 1− FG)

1− |1− FG|

}
= P

(
U ≤ 1

G

)
=

1

G
. (A33)

Therefore, by Equation A32, if treatment 1 selects at the r∗th stage, it never selects again

2, 3, ..., G. Also, by Equation A31, before the r∗th stage, the conditional probabilities of

treatment 1 selecting are same as what it would have been under random permutation of

the group labels. Finally, by Equation A33, the process restarts itself at the (G+1)th stage,

which is equivalent to starting a fresh new random permutation of the group labels. This

completes the proof of the lemma.

We now prove Theorem A8.

Proof. By the symmetry of the problem, it suffices to show that |Si1 − Fi1| < 1 for all

i ∈ {1, 2, ..., N}. Without loss of generality, we assume that G1 = {1, 2, ..., G1}, which

implies that treatment 1 belongs to supergroup G1. Now, it suffices to focus on the following

to steps of the algorithm:

1. Run randomized chunk on supergroups G1,G2, ...,Gm to generate an SOM at the su-

pergroup level.

2. Consider the locations of the SOM in step 1 where supergroup G1 chooses. Then, use
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randomized chunk to obtain the selection orders at the levels of the original groups in

those locations.

This is because, these two steps completely determine the locations of treatment 1 in the

SOM. By Lemma A3, these two steps can be equivalently performed as follows.

1. Consider the supergroups G1 (of size n(1)G1) and {G2, ...,Gm} (of size (m− 1)n(1)G1).

Generate an SOM at this supergroup level using SCOMARS.

2. Consider the locations of the SOM in step 1 where supergroup {G2, ...,Gm} chooses.

Then, use randomized chunk to obtain the selection orders at the levels of Gj in those

locations.

3. Consider the locations of the SOM in step 1 where supergroup G1 chooses. Then, use

randomized chunk to obtain the selection orders at the levels of the original groups in

those locations.

We note that this above algorithm is exactly equivalent to the SOM generating algorithm in

Theorem A7 for an experiment withG1+m−1 treatment groups, namely, 1, 2, ..., G1,G2,G3, ...,Gm.

Thus, by Theorem A7, we have |Si1 − Fi1| < 1 for all i ∈ {1, 2, ..., N}.

F FSM for stratified experiments

In this section, we discuss two potential approaches to use an FSM for stratified experiments.

We consider stratified experiments where the treatment group sizes within each stratum are

set by the investigator beforehand. To accommodate the FSM to such experiments, we again

need to carefully construct an SOM. In particular, we append the SOM with an additional

column of stratum labels, indicating which stratum the treatment group selects from at each

stage of the selection process. This column of stratum labels is specified in such a way that

the resulting SOM satisfies the group size requirements within each stratum.

Conceptually, the most straightforward approach is to generate a separate SOM for each stra-

tum. This is equivalent to setting the column of stratum labels as (1, ..., 1︸ ︷︷ ︸
m1

, 2, ..., 2︸ ︷︷ ︸
m2

, ..., S, ...., S︸ ︷︷ ︸
mS

)⊤,

where S is the number of strata and ms is the size of sth stratum, s ∈ {1, 2, ..., S}. This

approach is easy to implement and can be useful if, e.g., data on each stratum is available

at different stages of the experiment, akin to a sequential experiment. However, in this ap-

proach, the treatment groups only get to explore the covariate space of a single stratum for a

number of successive stages of selection and hence may not make the most efficient choices.

We address this issue with an alternative approach. For ease of exposition, we consider two

strata: 1 and 2. Let n1g and n2g be the (fixed) sizes of treatment group g ∈ {1, 2, ..., G}
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in strata 1 and 2, respectively, where n1g + n2g = ng. In this approach, we first generate

a usual SOM with group sizes n1, ..., nG. For g ∈ {1, 2, ..., G}, we then select the order of

the strata that treatment g chooses from by running a SCOMARS algorithm with group

sizes n1g and n2g. By allowing the treatment groups to select units from different strata in

a balanced manner, this approach mimics the unstratified FSM where the covariate space of

the entire sample is explored for choosing units. Also, by design, this approach satisfies the

size requirement of each treatment group within each stratum.

G FSM for sequential experiments

In this section, we describe our approach to using the FSM for sequential experiments.

Suppose treatment 1 gets to choose at the first stage of selection for the new batch. Let

X̃old be the design matrix based on units already assigned to treatment 1. Also, for each

unit i in the new batch, let X̃new,i :=
(

X̃old

(1,X⊤
i )

)
be the resulting design matrix in treatment

group 1 if unit i is selected. Treatment 1 selects the unit that maximizes det(X̃
⊤
new,iX̃new,i).

In other words, we use the design matrix based on all the units already assigned to the

choosing treatment group to evaluate the D-optimal selection function for each unit in the

new batch, and select the unit that maximizes the selection function. By carrying over the

existing design matrix to the new batch, this approach tends to correct for any existing

covariate imbalances.

H A simulation study

H.1 Setup

We now compare the performance of the FSM to complete randomization and rerandomiza-

tion in a simulation study. Here, N = 120, G = 2, n1 = n2 = 60, and k = 6. The covariates

are generated following the design of Hainmueller (2012):(
X1
X2
X3

)
∼ N3

{(
0
0
0

)
,
(

2 1 −1
1 1 −0.5
−1 −0.5 1

)}
, X4 ∼ Unif(−3, 3), X5 ∼ χ2

1, X6 ∼ Bernoulli(0.5).

(A34)

In this design, X4, X5, and X6 are mutually independent and separately independent of

(X1, X2, X3)
⊤. We draw a sample of 120 units once from the data generating mechanism in

(A34). Conditional on this sample, we compare four different assignment methods, namely

a completely randomized design (CRD), rerandomization with 0.01 acceptance rate (RR

0.01), rerandomization with 0.001 acceptance rate (RR 0.001), and the FSM. Both RR

0.01 and RR 0.001 use as rerandomization criteria the Mahalanobis distance between the

two treatment groups on the original covariates. The FSM uses a linear potential outcome

model on the original covariates and the D-optimal selection function. For each design we
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draw 800 independent assignments. The assignments under the FSM are generated using

the open source R package FSM available on CRAN. The total runtime of the FSM for the

800 simulated experiments was about one and a half minutes on a Windows 64-bit computer

with an Intel(R) Core i7 processor. See Chattopadhyay et al. (2021) for detailed step-by-step

instructions and vignettes on the use of FSM package.

H.2 Balance

We evaluate balance on the main and transformed covariates. Figures A1(a) and A1(b)

show density plots of the Absolute Standardized Mean Differences (ASMD; Rosenbaum and

Rubin 1985, Stuart 2010) of the six main covariates and their second-order transformations

(including squares and pairwise products), respectively. A smaller ASMD for a covariate

indicates better mean-balance on that covariate between the two treatment groups. Figure

A1(a) indicates that both rerandomization methods improve balance on the means of the

original covariates over CRD. As expected, the ASMD distribution under RR 0.001 is more

concentrated than that of RR 0.01, with 32% smaller mean ASMD than RR 0.01. Both the

FSM and RR 0.001 have similar distributions of the ASMD with FSM having moderately

(9%) smaller mean ASMD. See Table A10 for a comparison of the average ASMD of each

covariate.

Figure A1: Panels (a) and (b) show distributions of absolute standardized mean differences
(ASMD) of the main covariates and all their second-order transformations across 800 ran-
domizations. For each plot, the legend presents the average ASMD across simulations for the
four methods. Panel (c) shows distributions of discrepancies between the correlation matri-
ces of the covariates in the treatment and the control group (as measured by the Frobenius
norm, ||R1−R2||F ). On average the FSM achieves better covariate balance. In terms of the
main covariates, the FSM marginally outperforms RR 0.001. In terms of the second-order
transformations and correlation matrices, the FSM substantially outperforms RR 0.001.
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Figure A1(b) shows that the imbalances of covariate transformations are substantially smaller

with the FSM than with CRD, RR 0.01, and RR 0.001. In fact, the FSM achieves a 70%

reduction in the mean ASMD with respect to RR 0.001. Thus, although the FSM and

RR 0.001 exhibit comparable balance in terms of the main covariates, the FSM balances

these transformations of the covariates much better than RR 0.001. This highlights the

improved robustness of the FSM against model misspecification. Moreover, reducing the

tuning parameter of rerandomization from 0.01 to 0.001 yields only 2% improvement in the

mean ASMD.11 In Figure A1(b), both RR 0.01 and RR 0.001 often produce ASMD larger

than 0.1, and in some cases, larger than 0.5, indicative of substantial imbalances on these

covariate transformations.

For each method, we also compare balance in the overall correlation structure of the co-

variates. Figure A1(c) shows the boxplots of the distributions of ||R1 − R2||F . The FSM

outperforms the other three designs with at least 75% smaller average ||R1−R2||F . In partic-

ular, among the 800 randomizations, the highest value of ||R1−R2||F under FSM is smaller

than the corresponding lowest value under the other three designs, indicating that in terms

of the correlation structure (and hence the interactions) of the covariates, the least balanced

realization of the 800 FSMs exhibits better balance than the best balanced realization of the

800 complete randomizations and rerandomizations.

H.3 Efficiency

We now compare the efficiency of the methods under both model- and randomization-based

approaches to inference. Under the model-based approach, we consider a potential outcome

model where E{Yi(g)|Xi} is linear in Xi (Model A1), and another model where E{Yi(g)|Xi}
is linear in Xi and all its second-order transformations (Model A2). In each case, we assume

homoscedasticity, i.e., Var{Yi(g)|Xi} = σ2. For each potential outcome model, we fit the

corresponding observed outcome model by OLS and estimate PATE2,1 using the regression

imputation method described in Section 5.

More concretely, consider a specific treatment assignment vector Z. Under Model A1,

we fit a linear regression model Y obs
i = (1,Xi)

⊤βg + ϵig in treatment group g ∈ {1, 2}
and estimate PATE2,1 by the regression imputation estimator P̂ATE2,1 = β̂⊤

2
¯̃X − β̂⊤

1
¯̃X,

where ¯̃X⊤ = 1
N

∑N
i=1(1,X

⊤
i ). The model-based standard error of this estimator is SEZ =

σ

√
¯̃X⊤{(X̃⊤

1,ZX̃1,Z)
−1 + (X̃

⊤
2,ZX̃2,Z)

−1} ¯̃X, where X̃g,Z is the design matrix in group g, for

the given treatment assignment Z.

11In fact, for some covariate transformations, reducing this tuning parameter exacerbates imbalance (see
Table A11).
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Now, for a design d, the average and maximum model-based standard error relative to

the FSM is given by

1
M

∑M
r=1 SEZ

(r)
d

1
M

∑M
r=1 SEZ

(r)
FSM

and
max

r
SE

Z
(r)
d

max
r

SE
Z
(r)
FSM

, respectively, where Z
(1)
d , ...,Z

(M)
d are M

independent assignment vectors generated under design d, and Z
(1)
FSM, ...,Z

(M)
FSM are generated

under the FSM. These measures do not depend on σ2 and can be computed exactly from

the observed data. Tables A4(a) and A4(b) show the average and maximum model-based

standard error (SE) of the regression imputation estimator relative to the FSM across M =

800 randomizations under the two models.

Table A4: Average and maximum model-based standard errors relative to the FSM across
randomizations. Under Model A1 (linear model on the main covariates), the FSM and
RR exhibit similar performance, improving over CRD. Under Model A2 (linear model on
the main covariates and their second-order transformations), the FSM is considerably more
efficient than both CRD and RR.

(a) Model A1

Designs

CRD RR 0.01 RR 0.001 FSM

Average SE 1.03 1.00 1.00 1.00

Maximum SE 1.13 1.00 1.00 1.00

(b) Model A2

Designs

CRD RR 0.01 RR 0.001 FSM

Average SE 1.39 1.27 1.26 1.00

Maximum SE 3.61 1.97 1.80 1.00

Under Model A1, since both rerandomization and the FSM are able to adequately balance the

means of the original covariates, they lead to lower SE (hence, higher efficiency) than CRD.

Across randomizations, the worst case SE under RR 0.01, RR 0.001, and the FSM are 13%

smaller than under CRD. Under Model A1, the FSM has similar model-based SE as the two

rerandomization methods. However, under Model A2, the FSM uniformly outperforms the

other three designs, with a 26% reduction in average SE and an 80% reduction in maximum

SE than RR 0.001. This improvement in efficiency can be attributed to the balance achieved

by the FSM on the main covariates and their squares and pairwise products. In sum,

when the model assumed at the design stage is correct and is used at the analysis stage,

the FSM is as efficient as the two rerandomizations for estimating the treatment effect.

However, when the model assumed at the design stage is misspecified and later corrected

by augmenting transformations of the covariates (e.g., squares and pairwise products), the

FSM is considerably more efficient and robust than the other designs.

Under the randomization-based approach, we compare the standard errors of the difference-

in-means statistic under each design. Following Hainmueller (2012), the potential outcomes

are generated using the models: Y (1) = X1+X2+X3−X4+X5+X6+η, Y (2) = Y (1) (Model
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B1) and Y (1) = (X1 +X2 +X5)
2 + η, Y (2) = Y (1) (Model B2), where η ∼ N (0, 1). Both

generative models satisfy the sharp-null hypothesis of zero treatment effect for every unit

and hence, SATE2,1 = 0. Conditional on these potential outcomes, SATE2,1 is estimated

under each design using the standard difference-in-means estimator. The corresponding

randomization-based SE of this estimator is obtained by generating 800 randomizations of

the design and computing the standard deviation of the difference-in-means estimator across

these 800 randomizations. Table A5 shows the randomization-based SE of the difference-in-

means statistic for SATE2,1 under each model.

Table A5: Randomization-based standard errors relative to the FSM. The standard error for
the FSM is 0.2 under Model B1 (linear model on the main covariates) and 0.43 under Model
B2 (linear model on the main covariates and their second-order transformations). Especially
under Model B2, the FSM is considerably more efficient than both CRD and RR.

(a) Model B1

Designs

CRD RR 0.01 RR 0.001 FSM

SE 2.72 1.26 1.08 1

(b) Model B2

Designs

CRD RR 0.01 RR 0.001 FSM

SE 5.69 4.56 4.47 1

Under Model B1, the potential outcomes depend linearly on the covariates and therefore

balancing the means of the covariates improves efficiency. This is reflected in Table A5 as

the FSM has the smallest SE, closely followed by RR 0.001. Under Model B2, the potential

outcomes depend linearly on the squares and pairwise products of the covariates. By better

balancing these transformations, the FSM yields a considerably smaller SE than the other de-

signs. In particular, under Model B2, the SE under the FSM is 67% smaller than the SE under

RR 0.001. Therefore, as in the model-based approach, in the randomization-based approach

the FSM exhibits comparable efficiency to rerandomization under correct-specification of the

outcome model and considerable robustness under model misspecification.

H.4 Comparison with the global D-optimal design

In this section, we compare the performance of the FSM with the global D-optimal design

(or simply, the D-optimal design), as defined in Section H.4. Obtaining the exact D-optimal

assignment is an NP-hard problem in general, so we consider two alternatives. First, we

randomly sample a large number (20000) of assignment vectors from the space of all possible

assignments and obtain the D-optimal assignment among them. Due to random sampling,

this assignment is expected to have similar properties (e.g., balance) as the exact D-optimal

assignment. Second, we consider a random subsample of 20 units from the original sample
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of 120 units. For this subsample, we compare FSM with the D-optimal assignment. In this

case, both the designs assign units into two groups of size 10 each.

Tables A6 and A7 display the average ASMD values for the original covariates, as well as

their squares and interactions, respectively, under the first scenario. Correspondingly, Tables

A8 and A9 present these ASMD values under the second scenario.

Table A6: ASMD of the original covariates under the D-optimal design (D-opt), and the average ASMD
of the original covariates under the FSM. The ASMD for the D-optimal design is approximated based on
20000 randomizations.

Covariates
Designs

D-opt FSM

X1 0.031 0.029

X2 0.008 0.025

X3 0.020 0.042

X4 0.004 0.029

X5 0.041 0.029

X6 0.033 0.034

Mean 0.023 0.031
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Table A7: ASMD of the squares and pairwise products of the covariates under the D-optimal design (D-
opt), and the average ASMD of the same transformations under the FSM. The ASMD for the D-optimal
design is approximated based on 20000 randomizations.

Covariate
transformations

Designs

CRD RR 0.01

X1X2 0.029 0.041

X1X2 0.038 0.041

X1X2 0.206 0.024

X1X2 0.074 0.035

X1X2 0.223 0.030

X1X2 0.057 0.051

X1X2 0.090 0.027

X1X2 0.027 0.030

X1X2 0.075 0.026

X1X2 0.329 0.032

X1X2 0.147 0.096

X1X2 0.087 0.035

X1X2 0.064 0.037

X1X2 0.091 0.027

X1X2 0.036 0.024

X2
1 0.029 0.031

X2
2 0.085 0.038

X2
3 0.110 0.041

X2
4 0.060 0.053

X2
5 0.047 0.013

Mean 0.095 0.037
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Table A8: ASMD of the original covariates in the sampled dataset under the D-optimal design (D-opt),
and the average ASMD of the original covariates under the FSM.

Covariates
Designs

D-opt FSM

X1 0.022 0.191

X2 0.071 0.142

X3 0.036 0.213

X4 0.016 0.147

X5 0.054 0.194

X6 0.000 0.051

Mean 0.033 0.156

Table A9: ASMD of the squares and pairwise products of the covariates in the sampled dataset under the
D-optimal design (D-opt), and the average ASMD of the same transformations under the FSM.

Covariate
transformations

Designs

CRD RR 0.01

X1X2 0.825 0.353

X1X2 1.231 0.210

X1X2 0.484 0.162

X1X2 0.588 0.388

X1X2 0.727 0.230

X1X2 1.526 0.248

X1X2 0.765 0.095

X1X2 0.625 0.363

X1X2 0.477 0.264

X1X2 0.638 0.269

X1X2 0.740 0.392

X1X2 0.440 0.263

X1X2 0.559 0.404

X1X2 0.609 0.147

X1X2 0.238 0.063

X2
1 0.952 0.200

X2
2 0.116 0.365

X2
3 0.833 0.313

X2
4 0.566 0.167

X2
5 0.019 0.233

Mean 0.648 0.256
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From the above tables we observe that, on an average, the D-optimal design produces better

balance on the main covariates. This observation is consistent with Proposition A5, which

shows that with a single covariate, the D-optimal design aims to exactly balance its mean

across the two groups. However, akin to randomization, it produces worse balance on the

second-order transformations of the covariates.

H.5 Additional results from the simulation study

Table A10: Averages of the ASMD of the original covariates across 800 randomizations.

Covariates
Designs

CRD RR 0.01 RR 0.001 FSM

X1 0.162 0.051 0.035 0.029

X2 0.156 0.048 0.033 0.025

X3 0.158 0.049 0.033 0.042

X4 0.150 0.049 0.034 0.029

X5 0.140 0.052 0.034 0.029

X6 0.141 0.052 0.036 0.034

Mean 0.151 0.050 0.034 0.031
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Table A11: Averages of the ASMD of squares, pairwise products, and other transformations of the covari-
ates across 800 randomizations.

Covariate
transformations

Designs

CRD RR 0.01 RR 0.001 FSM

X1X2 0.144 0.153 0.148 0.041

X1X3 0.144 0.140 0.137 0.041

X1X4 0.141 0.148 0.147 0.023

X1X5 0.150 0.135 0.134 0.035

X1X6 0.152 0.109 0.101 0.030

X2X3 0.147 0.147 0.146 0.051

X2X4 0.140 0.155 0.150 0.027

X2X5 0.147 0.143 0.136 0.030

X2X6 0.152 0.115 0.104 0.026

X3X4 0.141 0.143 0.152 0.032

X3X5 0.149 0.140 0.139 0.096

X3X6 0.148 0.099 0.091 0.035

X4X5 0.148 0.132 0.130 0.037

X4X6 0.152 0.100 0.095 0.027

X5X6 0.146 0.095 0.094 0.024

X2
1 0.140 0.145 0.143 0.031

X2
2 0.151 0.155 0.150 0.038

X2
3 0.144 0.136 0.132 0.041

X2
4 0.143 0.145 0.147 0.053

X2
5 0.142 0.073 0.067 0.013

Mean 0.146 0.130 0.127 0.037

X1.5
5 0.141 0.060 0.048 0.018

X3
2 0.155 0.090 0.081 0.071

X4
4 0.140 0.143 0.147 0.072
1

4+X3
0.157 0.073 0.064 0.050

Mean 0.148 0.092 0.085 0.053
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Figure A2: Boxplot of the distribution of ||S1 −S2||F across 800 randomizations, where Sg is the sample
covariance matrix of the covariates in treatment group g ∈ {1, 2}.
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Table A12: Averages of the ASMD of the original covariates across 800 randomizations under the FSM
with differences choices of ϵ.

Covariates
Choice of ϵ

0.1 0.01 0.001 0.0001

X1 0.032 0.030 0.030 0.030

X2 0.029 0.026 0.026 0.026

X3 0.041 0.043 0.043 0.043

X4 0.026 0.028 0.028 0.028

X5 0.029 0.031 0.031 0.031

X6 0.034 0.034 0.034 0.034

Mean 0.032 0.032 0.032 0.032
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Table A13: Averages of the ASMD of squares and pairwise products of the covariates across 800 random-
izations under the FSM with different choices of ϵ.

Covariate
transformations

Choice of ϵ

0.1 0.01 0.001 0.0001

X1X2 0.044 0.038 0.038 0.038

X1X3 0.040 0.041 0.041 0.041

X1X4 0.028 0.025 0.025 0.025

X1X5 0.039 0.037 0.037 0.037

X1X6 0.031 0.030 0.030 0.030

X2X3 0.045 0.048 0.048 0.048

X2X4 0.029 0.026 0.026 0.026

X2X5 0.040 0.029 0.029 0.029

X2X6 0.028 0.026 0.026 0.026

X3X4 0.038 0.033 0.033 0.033

X3X5 0.091 0.097 0.097 0.097

X3X6 0.028 0.033 0.033 0.033

X4X5 0.046 0.038 0.038 0.038

X4X6 0.026 0.027 0.027 0.027

X5X6 0.024 0.027 0.027 0.027

X2
1 0.031 0.032 0.032 0.032

X2
2 0.038 0.036 0.036 0.036

X2
3 0.040 0.040 0.040 0.040

X2
4 0.052 0.052 0.052 0.052

X2
5 0.011 0.014 0.014 0.014

Mean 0.037 0.036 0.036 0.036
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I Additional results from the Health Insurance Experiment

Table A14: Average ASMD of the main covariates between treatment groups 1 and 2 across 400 random-
izations.

Covariates
Designs

CRD RR Wilks RR Mahalanobis FSM

X1 : Log family size 0.052 0.039 0.038 0.012

X2 : Log family income 0.052 0.040 0.043 0.010

X3 : Max hourly wage 0.051 0.042 0.047 0.017

X4 : Adult med visits 0.049 0.043 0.041 0.014

X5 : Kid med visits 0.048 0.039 0.040 0.010

X6 : Female 0.047 0.039 0.040 0.010

X7 : Age 0 to 5 0.053 0.038 0.039 0.010

X8 : Age 6 to 17 0.051 0.041 0.039 0.011

X9 : Age 18 to 44 0.053 0.038 0.040 0.010

X10 : Male HS Grad 0.051 0.038 0.041 0.006

X11 : Male more than HS 0.048 0.037 0.041 0.006

X12 : Insured 0.049 0.040 0.038 0.010

X13 : Excellent health 0.052 0.040 0.037 0.009

X14 : Good health 0.053 0.038 0.037 0.010

X15 : Family income mis 0.052 0.038 0.041 0.011

X16 : Max hourly wage mis 0.051 0.038 0.041 0.013

X17 : Adult med visits mis 0.054 0.040 0.040 0.011

X18 : Kid med visits mis 0.057 0.041 0.039 0.011

X19 : Education male mis 0.048 0.038 0.041 0.008

X20 : Insured mis 0.048 0.039 0.038 0.011

Mean 0.051 0.039 0.040 0.011
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Table A15: Averages of the ASMD between each pair of treatment groups across the original covariates
and across 400 randomizations.

Treatment group
Designs

CRD RR Wilks RR Mahalanobis FSM

1, 2 0.051 0.039 0.040 0.011

1, 3 0.055 0.041 0.043 0.011

1, 4 0.049 0.038 0.039 0.010

2, 3 0.056 0.043 0.045 0.012

2, 4 0.053 0.040 0.041 0.010

3, 4 0.056 0.042 0.044 0.012

Mean 0.053 0.040 0.042 0.011

Table A16: Averages of the ASMD of the squares and pairwise products of the (demeaned) covariates
X1,..., X5 between treatment groups 1 and 2 across 400 randomizations.

Covariates
Designs

CRD RR Wilks RR Mahalanobis FSM

X1X2 0.053 0.039 0.041 0.020

X1X3 0.053 0.047 0.046 0.027

X1X4 0.054 0.045 0.045 0.020

X1X5 0.049 0.040 0.041 0.013

X2X3 0.054 0.049 0.053 0.038

X2X4 0.050 0.045 0.048 0.017

X2X5 0.052 0.039 0.039 0.015

X3X4 0.054 0.043 0.045 0.022

X3X5 0.050 0.042 0.046 0.022

X4X5 0.054 0.044 0.045 0.015

X2
1 0.053 0.041 0.040 0.026

X2
2 0.051 0.041 0.042 0.015

X2
3 0.057 0.055 0.058 0.026

X2
4 0.053 0.053 0.053 0.012

X2
5 0.051 0.043 0.044 0.004

Mean 0.053 0.044 0.046 0.019
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Table A17: Averages of the ASMD between each pair of treatment groups across the squares and pairwise
products of the (demeaned) covariates X1,..., X5 and across 400 randomizations.

Treatment group
Designs

CRD RR 0.01 RR 0.001 FSM

1, 2 0.053 0.044 0.046 0.019

1, 3 0.056 0.046 0.048 0.020

1, 4 0.051 0.043 0.044 0.017

2, 3 0.058 0.049 0.049 0.021

2, 4 0.054 0.046 0.046 0.018

3, 4 0.058 0.048 0.049 0.023

Mean 0.055 0.046 0.047 0.020

Figure A3: Distributions of ASMD of all cubes and three-way interactions of the non-binary
covariates across randomizations.
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Figure A4: Distributions of discrepancies of the correlation matrices of the covariates in the treatment
groups of the HIE data across randomizations. The discrepancies are measured by ||Rg −Rg′ ||F , where Rg

is the sample correlation matrix of the covariates in treatment group g and || · ||F is the Frobenius norm. The
FSM systematically produces lower discrepancies than the other methods, exhibiting substantially improved
balance on the correlations of the covariates.
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Figure A5: Boxplot of the distribution of ||Sg −Sg′ ||F across 400 randomizations, where Sg is the sample
covariance matrix of the covariates in treatment group g ∈ {1, 2, 3, 4}.
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We now compare the efficiency of the designs in the randomization-based approach with four

additional potential outcome models given below.

• Model B3: Y (3) = 5− 3X1 +X2 +X3 − 0.2X4 + 0.8X5 + η, Y (3) = Y (2).

• Model B4: Y (3) = 5− 2X2
1 + 0.5X2

3 + 0.5X2
5 + 5X1X2 − 0.8X3X5 + η, Y (3) = Y (2).

• Model B5: Y (3) = 10 + 8X1X2 + 3X2X5 − 0.5X3X5 + η, Y (3) = Y (2).

• Model B6: Y (3) = 0.8X1X2 − 3X2
3 +

1
1+X4

− 4X3
1 + η

For each model, the error term η ∼ N (0, 1.52). Under each design, SATE3,2 is estimated

using the standard difference-in-means estimator and the corresponding randomization-based

SE is obtained by generating 400 randomizations and computing the standard deviation of

the estimator across these 400 randomizations. The average randomization-based standard

errors (across 500 simulations) are presented in Table A18.

Table A18: Average randomization-based standard errors relative to the FSM under Models
B3, B4, B5, B6

Designs

CRD RR Wilks RR Mahalanobis FSM

Model B3 2.36 1.80 1.90 1

Model B4 2.14 1.75 1.81 1

Model B5 2.99 2.40 2.44 1

Model B6 1.61 1.42 1.44 1

We finish this section by evaluating and comparing the covariate balance on the main co-

variates and the second-order transformations, for CRD, RR, and the FSM, where RR uses

the Mahalanobis distance based on the main covariates only and accepts 0.1% of the assign-

ments.
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Figure A6: Distributions of absolute standardized mean differences (ASMD) of the main
covariates (panel (a)) and the squares and pairwise products of the scaled covariates (panel
(b)) across randomizations. For each plot, the legend presents the average ASMD across
simulations for the four methods. Panel (c) shows distributions of discrepancies between
the correlation matrices of the covariates in treatment groups 1 and 2 (as measured by the
Frobenius norm, ||R1 −R2||F ). In terms of the main covariates, second-order transforma-
tions, and correlation matrices, the FSM substantially outperforms CRD and RR.

(a) Main covariates (b) Squares and pairwise products (c) Frobenius norm

Figure A6 shows a pattern of performances of the designs akin to those illustrated in Section

6. The FSM, outperforms CRD and RR in terms of balancing both the main covariates

and their second-order transformations. As compared to the previous version, this version

of RR reduces the average imbalance on the main covariates, while increasing the average

imbalance on the second-order transformations. This behavior aligns with our expectations,

since this version of RR specifically targets balance on the main covariates, not on their

second order transformations.

J Additional figures from the case studies
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Figure A7: Distributions of the absolute standardized mean differences of the main covariates
and their squares and interactions, and the Frobenius norms of R1−R2 under complete ran-
domization, rerandomization, and the FSM, for the five studies: (1) Angrist, (2) Blattman,
(3) Durocher, (4) Finkelstein, (5) Lalonde.
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Figure A8: Distributions of the absolute standardized mean differences of the main covariates
and their squares and interactions, and the Frobenius norms of R1 − R2 under complete
randomization, rerandomization, and the FSM, for the five studies: (6) Ambler, (7) Crepon,
(8) Dupas, (9) Karlan, (10) Wantchekon.
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