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Abstract

Citizen science databases that consist of volunteer-led sampling efforts of species communities are relied on as

essential sources of data in ecology. Summarising such data across counties with frequentist-valid prediction

sets for each county provides an interpretable comparison across counties of varying size or composition. As

citizen science data often feature unequal sampling efforts across a spatial domain, prediction sets constructed

with indirect methods that share information across counties may be used to improve precision. In this article,

we present a nonparametric framework to obtain precise prediction sets for a multinomial random sample

based on indirect information that maintain frequentist coverage guarantees for each county. We detail a

simple algorithm to obtain prediction sets for each county using indirect information where the computation

time does not depend on the sample size and scales nicely with the number of species considered. The

indirect information may be estimated by a proposed empirical Bayes procedure based on information from

auxiliary data. Our approach makes inference for under-sampled counties more precise, while maintaining

area-specific frequentist validity for each county. Our method is used to provide a useful description of avian

species abundance in North Carolina, USA based on citizen science data from the eBird database.

Key words: categorical data, conformal prediction, empirical Bayes, exchangeability, frequentist coverage,

nonparametric

Introduction

Understanding species abundance across heterogeneous

spatial areas is an important task in ecology. Citizen science

databases that consist of observations of species counts

gathered by volunteers are increasingly regarded as one of

the richest sources of data for such a task. One of the

largest such data sources is the eBird database in which

citizen scientists throughout the world input counts of bird

sightings [Sullivan et al., 2009]. In addition to its use for

describing avian species abundance, eBird is a principal

resource for understanding global biodiversity and is widely

used in constructing and implementing conservation action

plans [Sullivan et al., 2017].

More generally, analyses from such databases may be

used for informing policy, conservation efforts, habitat

preservation, and more, for which understanding species

prevalence for non-overlapping geographic areas, such as

counties across a state or country, is important. In practice,

species abundance from citizen science data are commonly

summarised within areas such as counties by empirical

proportions from a sample, as in, e.g., Arnold et al. [2021],

Camerini and Groppali [2014]. Such proportions can be used

to construct a prediction set for each county that provides

a description of species prevalence for that county with

guaranteed frequentist coverage.

Given the impact on policy design, corresponding

uncertainty quantification is of particular import [Lele, 2020],

and so it is desirable that precise prediction sets maintain

a target coverage rate regardless of the county’s size or

composition. This is challenging as a common feature of

citizen science data is unequal sampling efforts that results

in some counties with large amounts of data information

and others with very little. Using direct procedures that

only make use of within-county information, a prediction set

may be imprecise in these counties with low sampling efforts.

This suggests using indirect information such as data from

neighboring counties to improve prediction set precision for

a given county.

In this article, we describe species abundance across

sampling areas such as counties with frequentist-valid

prediction sets that are constructed to contain an unobserved

bird with 1 − α probability. That is, a valid prediction

set for a given county is a set of avian species such

that an unobserved bird will belong to one of those

species with 1 − α probability in a frequentist sense. We

1

https://orcid.org/0000-0001-5453-5770
email:elizabeth.bersson@duke.edu


2 Bersson and Hoff

develop a valid nonparametric prediction method that allows

for information to be shared across counties. Specifically,

our approach results in prediction sets with guaranteed

frequentist coverage for each county that are constructed

with the incorporation of indirect or prior information. We

detail and provide code for an empirical Bayes procedure

to estimate such prior information from auxiliary data such

as neighboring counties. If this indirect information used

to construct the prediction sets is accurate, the prediction

sets will be smaller than direct sets that only make use of

within-county information.

Identifying avian species that are present across a spatial

domain is of general interest in ecology [Twedt et al., 2010,

Lebrun et al., 2012, Shanahan and Possingham, 2009]. To

this aim, in Section 4, we detail the usefulness of the

proposed approach in summarising the eBird citizen science

data. For this task, frequentist-valid prediction sets provide

useful summaries of the data that may be used to compare

information across subregions and better inform policy.

In particular, a frequentist-valid prediction set consists of

species that are likely to be present in a given area and can

be used to draw statistically robust conclusions regarding

future observations. Such a prediction set is constructed

based on observed species counts, and, by maintaining a

specified frequentist coverage rate, reflects the uncertainty

in the data. Commonly reported summaries of observed

species abundance data, such as a list of observed proportions

or counts do not reflect the uncertainty in the data.

Moreover, the approach we propose constructs frequentist-

valid prediction sets with the incorporation of auxiliary

information. This is desirable as sharing information

across counties generally results in smaller prediction sets

as compared to direct prediction approaches, particularly so

in counties with low sampling efforts. In contrast, indirect

approaches constructed with auxiliary information such as a

Bayesian prediction set may reflect uncertainty in the data,

but are not calibrated.

Methodology

Background and Notation

For county j ∈ {1, ..., J}, let Xj be a vector of length K

where Xj,i = xj,i is the observed count of species i over

some set sampling period that may vary across counties. We

model Xj with a K-dimensional multinomial distribution

withNj =
∑K

i=1 xj,i trials and population proportions vector

θj ,

Xj ∼ MNK(θj , Nj). (1)

We construct a prediction set Aα(Xj) for an observation

of a new bird arising from the same distribution, Y j ∼
MNK(θj , 1) where Y j ∈ Y for Y = {(y1, ..., yK) :

∑K
i=1 yi =

1, yi ∈ {0, 1}(i = 1, ....,K)}. Let y(k)
j ∈ Y denote a prediction

of category k, that is, let y
(k)
j be a vector of length K

with a one at index k and zeros elsewhere. In particular,

we are interested in a prediction set for Y j that maintains

frequentist validity for some error rate α. Formally, we refer

to this as an α-valid prediction set:

Definition (α-Valid Prediction Set) An α-valid prediction

set for a predictand Y j ∈ Y is any subset Aα of the sample

space Y that contains Y j with probability greater than or

equal to 1− α,

Pθ (Y j ∈ Aα(Xj)) ≥ 1− α, ∀ θ, (2)

where the probability is taken with respect to Y j and Xj .

Additionally, small or precise α-valid prediction sets are

of particular interest, where prediction set size is measured

by expected cardinality, that is, expected number of the K

categories in the sample space included in the prediction set.

Order-based prediction for a single area

A standard approach to construct α-valid prediction sets for

each county or area is with a direct method that only makes

use of within-area information. As such, we first consider

construction of a prediction set for a single area j, using

only data from area j. For ease of notation, we drop the

area-identifying subscript in this subsection.

For multinomial data in general, if the event probability

vector θ is known, an α-valid prediction set is any

combination of categories such that their event probabilities

cumulatively sum to be greater than or equal to 1 −
α. Equivalently stated, an α-valid prediction set may be

constructed by excluding categories such that the cumulative

sum of the excluded categories’ event probabilities is less than

α. Such a prediction set may be constructed by admitting

categories in some prespecified order into the prediction set

until the cumulative sum of their event probabilities is at

least 1 − α. The resulting prediction set will have 1 − α

coverage regardless of the ordering used to admit categories.

In fact, the class of all α-valid prediction sets may be

constructed by following this procedure for non-strict total

orderings of categories.

Perhaps intuitively, constructing such a prediction set

by including categories with the largest event probabilities

will result in the smallest α-valid prediction set. In the

terminology of ordering, this corresponds to constructing a

prediction set based on an ordering of categories that matches

the ordering of the elements in θ. We refer to this optimal

ordering as the oracle ordering:

Theorem 1 (Oracle order-based prediction) Let Y ∼
MNK(θ, 1) for θ known. Then,

1. the class of all α-valid prediction sets for a given θ

consists of prediction sets of the form,

Aθ,o
α =

{
y(k) ∈ Y :

[
K∑
l=1

1 (ok ≥ ol) θl

]
> α

}
, (3)

for some vector o ∈ RK , and

2. the oracle ordering is that which corresponds to the

increasing order statistics of θ,

oθ = {o : θm < θn ⇒ om < on ∀ m,n ∈ {1, ....,K},m ̸= n} ,

and Aθ,oθ

α has the smallest cardinality among all

orderings.

In practice, θ is unknown, but a prediction set may

be constructed based on an observed sample X = x. It
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turns out, in fact, that any conditional α-valid prediction

set can be written similarly to the previous construction

(Equation 3) where the cumulative sum is computed with

respect to the empirical proportions given by x and y. This

is a generalization of the conformal prediction framework, a

popular machine learning approach to construct prediction

regions based on measuring conformity (or non-conformity)

of a predictand to an observed sample [Vovk et al., 2005].

Theorem 2 (α-valid order-based prediction) Let X ∼
MNK(θ, N),Y ∼ MNK(θ, 1). Then, every conformal α-

valid prediction set based on observed data x can be written

Aα(x) =

{
y(k) ∈ Y :

[
K∑
l=1

1 (ok ≥ ol)
xl + y

(k)
l

N + 1

]
> α

}
,

(4)

for some vector o ∈ RK .

Note that the prediction set depends on the vector o only

through the order of its elements. Such a vector may be

defined based on the data, or otherwise. We elaborate in

the remainder of this section.

For any ordering of the K categories, constructing a

prediction set following Theorem 2 results in a prediction

set with guaranteed finite-sample 1−α frequentist coverage.

The choice of ordering, however, will impact prediction

set precision, that is, the set’s cardinality. For inference

for a single area, a natural approach is to order the

categories with respect to their empirical proportions.

The empirical proportions are unbiased for population

proportions, so, if the area has a large sample size, an

ordering based on the empirical proportions will approximate

the oracle ordering well. It turns out this approach is well-

motivated by classical prediction approaches. Specifically, a

standard direct prediction method constructs a prediction set

separately for an area based on an area-specific conditional

pivotal quantity [Faulkenberry, 1973, Tian et al., 2022]. For

a multinomial population, Y |X + Y is such a quantity

that follows a multivariate hypergeometric distribution which

does not depend on the event probability vector. See

Thatcher [1964] for work on prediction sets of this type

for binomial data. A prediction set constructed to contain

species belonging to a highest mass region of this pivotal

distribution is obtained by including species with the largest

empirical counts until their cumulative proportion sum

exceeds 1− α,

AD
α (x) =

{
y(k) ∈ Y : (5)[

K∑
l=1

1

((
xk + y

(k)
k

)
≥

(
xl + y

(k)
l

)) xl + y
(k)
l

N + 1

]
> α

}
.

This direct prediction set based on an ordering of the

empirical proportions is appealing as it is easy to interpret

and has finite-sample guaranteed 1− α frequentist coverage.

For an area with low sampling effort, though, the empirical

proportions will not precisely estimate the true proportions.

As a result, a prediction set may have prohibitively large

cardinality such that it is not practically useful. For such

an area, incorporating indirect information from neighboring

counties can improve the estimates of the county proportions

and thereby increase the precision of a prediction set.

Order-based prediction for multiple areas

In general, in analyzing small area data, that is, areal data

featuring small within-area sample sizes in some areas, it is

common to utilize indirect methods that share information

across areas [Rao and Molina, 2015]. The eBird database

is a rich data source, and inference in any given county

may be improved upon by taking advantage of auxiliary

data using an indirect method. In this subsection, we detail

how information from neighboring counties may be used in

estimating an ordering of categories to improve prediction set

precision.

As opposed to a direct prediction set based on an ordering

corresponding to within-county empirical proportions, an

indirect prediction set can be constructed similarly whereby

species are admitted into the prediction set based on an

ordering corresponding to empirical posterior proportions

estimated from a hierarchical model. Such an estimate may

be obtained based on a conjugate Dirichlet prior distribution

parameterized with a common concentration hyperparameter

for the J areas,

θ1, ..., θJ ∼ DirichletK(γ). (6)

Given a hyperparameter γ ∈ RK , the posterior expectation

of the proportions θj in county j is x̃j/(Nj+
∑K

i=1 γi) where

x̃j = xj+γ. In this way, x̃j may be interpreted as a posterior

vector of counts for county j. Then, an α-valid prediction set

based on x̃j is,

AI
α(xj) =

{
y(k) ∈ Y : (7)[

K∑
l=1

1

((
x̃j,k + y

(k)
k

)
≥

(
x̃j,l + y

(k)
l

)) xj,l + y
(k)
l

Nj + 1

]
> α

}
.

By Theorem 2, AI
α(xj) is an α-valid procedure, and

it is constructed based on prior information. Specifically,

it differs from the direct set given in Equation 5 in that

categories are admitted into the prediction set based on an

ordering determined by posterior counts that incorporate

indirect information γ, as opposed to an ordering based on

the observed sample. Moreover, it has been shown that if the

indirect information used is accurate, AI
α(xj) may be more

precise than a direct prediction set with the same coverage

rate [Hoff, 2023, Bersson and Hoff, 2024].

In total, AD
α (xj) and AI

α(xj) are both α-valid prediction

procedures. They differ in the order in which species are

admitted into the prediction sets, as species are admitted into

the direct set in terms of decreasing empirical proportions

and into the indirect set in terms of decreasing posterior

counts. As a result, for an area with a small sample

size, incorporating accurate prior information can result in

an ordering used to construct a prediction set that more

accurately approximates the oracle ordering as the empirical

proportions might be too unstable. Of note, these two

approaches are equivalent for a uniform prior γ = c1, for

any constant c. This includes, for example, a standard

noninformative prior c = 1, a standard objective Bayes

Jeffrey’s prior c = 1/2, and an improper prior c = 0.
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Fig. 1: Monte Carlo approximations (+/- 1 standard deviation) of the expected cardinality ratio of (red) indirect to direct

methods and (blue) α-valid prediction set given the oracle ordering to direct method.

Empirical Bayes estimation of indirect information

To obtain an α-valid indirect prediction set for county

j ∈ {1, ..., J}, all that is required is an estimate of the

prior concentration parameter γ. We propose an empirical

Bayesian approach whereby values of γ to be used for county

j are estimated from data collected in neighboring counties.

Specifically, we use the maximum likelihood estimate of

the marginal likelihood based on the conjugate hierarchical

model given by Equations 1 and 6,

γj = argmax
γ

log p

 ⋃
l∈Lj

Xl

∣∣∣γ
 (8)

= argmax
γ

log
∏
l∈Lj

[
Γ(

∑K
i=1 γi)

Γ(
∑K

i=1 xl,i + γi)
×

K∏
i=1

Γ(xl,i + γi)

Γ(γi)

]
,

where Lj ⊆ {1, ..., J}\{j} is a non-empty set containing

the indices of counties neighboring county j. Information

is shared across neighboring counties to inform an estimate

of the prior for county j, and, when estimated in this

way, the prior concentration represents an across-county

pooled prior concentration. This optimization problem can

be solved numerically with a Newton-Raphson algorithm. See

Appendix B for details and derivation of such an algorithm.

Code to implement this procedure in the R Statistical

Programming language is available online, see Section 5.

When γj is estimated using data independent of area j

and used to construct AI
α(xj), the finite sample coverage

guarantee of AI
α(xj) holds regardless of the accuracy of the

estimated prior hyperparameter. If the estimated vector γj is

accurate, then AI
α(xj) may also be more precise than direct

prediction approaches.

Simulation study

To illustrate how the incorporation of indirect information

can affect precision of prediction sets, we compare expected

set cardinality obtained from the indirect and direct

prediction methods for a single simulated area. In contrast

to the eBird data, for example, the analysis of this

section corresponds to that of one county. Because citizen

science data such as these often feature unequal sampling

efforts across counties, we are particularly interested in

demonstrating the difference in cardinality between these two

approaches for a range of sample sizes N = 10, 100, 1000.

Moreover, we compare results for varying number of

categories K. Throughout, we consider a low entropy regime

in which ⌈K/4⌉ categories unequally split nearly all of

the probability mass, and the rest of the categories have

nearly probability 0. While we do not necessarily expect

real populations in practice to have such a distribution, it

is chosen to clearly demonstrate the benefit of including

indirect information in the construction of prediction sets

that maintain frequentist coverage.

In one construction of indirect prediction sets, we consider

a prior based on full information with moderate prior

precision γ = θ × 10. We compare with direct prediction

sets given by Equation 5, or, equivalently, indirect prediction

sets constructed with a uniform prior γ = 1. Finally, we

compare the approaches to α-valid order-based prediction

sets obtained based on an oracle ordering. Results comparing

Monte Carlo approximations of the expected prediction set

cardinality ratios between the various approaches obtained

from 25, 000 replications are displayed in Figure 1.

As all methods considered are α-valid procedures, the

crucial difference between them is the incorporation of

indirect information. Utilizing accurate prior information

in the construction of prediction sets generally results

in prediction sets distinctly smaller than direct sets,

particularly so if there are a large number of categories

relative to the sample size. This is evidenced by the red

dashes in Figure 1 showing the expected cardinality ratios of

the indirect to direct prediction sets are always at or below a

value of 1. An accurate prior may be one that approximates

the true probability mass vector well with large precision

relative to sample size, as seen in the left plot of Figure 1

for sample size N = 10. More generally, though, all that

is needed is a prior that results in posterior counts that

accurately approximate the oracle ordering of categories. We

discuss the three sample size regimes in detail below.
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For a small sample size of N = 10, the prior γ used

to construct the indirect prediction sets is an informative

prior with strong precision in that the scale used is equal

to the sample size in this case. As a result, the posterior

distributions contain notably more information than what

is in each simulated dataset. As a result, the ordering of

categories induced by the posterior counts, used to construct

the indirect prediction sets, are accurately approximating the

oracle ordering of categories. This is evidenced by the nearly

identical behavior of the two cardinality ratios explored.

In conjunction with the instability of the direct method in

the presence of such a small sample size, this results in

notably smaller cardinality of the indirect set as compared

to the direct set, even for relatively small total numbers of

categories. At its best, the indirect prediction set is about

80% smaller than the direct set.

For a moderate sample size of N = 100, the prior

precision used to construct the indirect prediction sets is not

overwhelming as compared to the sample size, and hence

the posterior counts do not approximate the oracle ordering

as well as in the regime with a smaller sample size. This is

evidenced by the divergence of the red and blue dashes in the

middle plot of Figure 1. Still, particularly as the number of

categories increases for fixed N , the benefit of utilizing prior

information of this type is highlighted by the decline of the

cardinality ratio of the indirect to direct prediction sets (red

lines). For example, in the case of N = 100 and K = 150,

the indirect prediction set constructed with γ is about 15%

smaller than the direct prediction set.

A similar but less pronounced pattern is seen in the

presence of a larger sample size of N = 1000. For this sample

size with K ≤ 150, all methods considered perform relatively

similarly. However, as the number of categories increases,

there is a distinct gain in prediction set precision given the

input of indirect information in prediction set construction.

Comparison with Bayesian prediction sets

For multi-group count data such as we are considering,

a standard Bayesian prediction set may be constructed

from the posterior predictive distribution (see, for example,

Gelman et al. [2014] §1.3) based on the hierarchical

model given by Equations 1 and 6. Specifically, the

posterior predictive distribution for group j is a multinomial

distribution for a single trial with proportions vector

x̃j/(Nj +
∑K

i=1 γi). Then, a Bayesian prediction set AB
α

may be taken to be the categories corresponding to the

highest mass region of this predictive distribution such that

the categories’ cumulative predictive probability sum exceeds

1− α,

AB
α (xj) =

{
y(k) ∈ Y : (9)[

K∑
l=1

1 (x̃j,k ≥ x̃j,l)
x̃j,l

Nj +
∑K

i=1 γi

]
> α

}
.

Such a prediction set may have smaller cardinality than the

indirect or direct approach, but it will not be α-valid. In fact,

the frequentist coverage may arbitrarily be nearly zero under

a misspecified prior parameter with a large scale.

To illustrate the relationship between cardinality and

coverage, we compare the Bayesian prediction method to

the proposed indirect approach (7) in simulation. We follow

the same simulation set-up as before and, for both methods,

consider a prior based on full information with moderate

prior precision γ = θ × 10. Results for a moderate sample

size of N = 100 are plotted in Figure 2. By construction,

the indirect approach is α-valid and maintains frequentist

coverage rates at or above the nominal level. In contrast, the

Bayesian prediction sets may be narrower than the indirect

sets, but, correspondingly, the frequentist coverage rate of

the Bayesian sets may fall below the nominal rate.

Summarising eBird species abundance data

In this section, we describe avian species abundance in

North Carolina, USA from eBird data obtained from citizen-

uploaded complete checklists of species observations in the

first week of May 2023. Across the 99 counties, 393

unique species were identified. Some species such as the

Northern Cardinal, Carolina Wren, and American Robin

were identified frequently. Many others like the Northern

Saw-whet Owl and the Solitary Sandpiper were rarely seen;

in fact, 50% of species were seen fewer than 100 times

each across the entire state. Moreover, within-county sample

sizes vary drastically (Figure 3) from approximately 50, 000

individual birds identified in Wake County, one of the most

populous counties in NC that contains the state’s capital,

to only 8 in Pasquotank County, a small coastal county

consisting of about 1/30th of the human population of Wake

County.

As motivated in the Introduction, describing such data

with α-valid prediction sets for each county provides a useful

summary with unambiguous statistical interpretation. That

is, with at least probability 1 − α, an unobserved bird in

a given county will belong to a species contained in the

specified prediction set, where the probability is taken with

respect to the random sample and the predictand. Here,

we demonstrate the usefulness of this approach in gaining

better understanding of species abundance. Moreover, we

elaborate on the benefit of utilizing indirect information in

the construction of practically useful sets that are precise,

particularly for counties with small within-county sample

sizes.

For each county in NC, we construct an indirect prediction

set based on a prior hyperparameter estimated from data

in the five nearest neighboring counties, following the

procedure described in Section 2.4. The eBird data consist

of independent samples collected across the state, so

samples are independent across counties. As a result of

this independence, finite-sample coverage of the indirect

prediction approach is guaranteed. We compare the

cardinality of these indirect prediction sets to that of direct

prediction sets, both of which maintain at least 95% coverage

for each county. The cardinality ratios of the indirect to direct

prediction sets across the counties in NC are plotted in Figure

4. To highlight the impact of within-county sample size, the

lower quantile sample sizes are overlaid on their respective

county.

In general, the incorporation of indirect information in

the construction of prediction sets results in notably smaller

cardinality of the indirect prediction sets as compared with

that of the direct prediction sets. Of the 99 counties in NC,
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Fig. 2: (Left) Monte Carlo approximations (+/- 1 standard deviation) of the expected cardinality of the (red) indirect α-valid

prediction set and (blue) Bayesian posterior predictive set, both constructed with prior concentration γ = θ × 10. (Right)

Monte Carlo approximations (with 95% Coppler-Pearsen intervals) of the frequentist coverage rate of each method, both

constructed for an error rate of α = 0.15.
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Fig. 3: Within-county log sample size.

indirect sets have smaller cardinality in 65, and the two

approaches result in the same cardinality in 20 counties.

The improvement in cardinality is particularly conspicuous

in counties with small to moderate sample sizes, as evidenced

by the sample sizes of counties with the brightest shade of

red in Figure 4. Moreover, ten counties have trivial direct

sets consisting of all K species, while only two counties

with the smallest within-county sample sizes, 8 and 14, have

trivial indirect prediction sets. For the county with the third

smallest sample size (24), the indirect prediction set only

includes 80 species, or about 20% of all possible species, while

the direct prediction set is the trivial set.

Overall, even in counties with larger sample sizes, it is

most common for the indirect and direct prediction sets to

contain a different set of species. In fact, the indirect and

direct prediction sets disagree for nearly every county in NC.

They are equivalent for only six counties where they aren’t

both trivial sets. Commonly, this discrepancy corresponds

with smaller indirect sets, and hence highlights the benefit

of inclusion of indirect information in the construction of

prediction sets.

Order-based prediction in Robeson County

To further compare the two approaches and elucidate

the role of the ordering of the species, we elaborate on
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Fig. 4: Cardinality ratio of indirect to direct prediction sets. Prior hyperparameters estimated with an empirical Bayesian

procedure based on five nearest neighbors for each county. The lowest quantile sample sizes are overlaid on their respective

counties.
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(purple text) prediction sets, sorted by the posterior proportion. MLE plotted in blue, and the posterior proportion based on

a prior estimated from data in nearest five neighboring counties.

the construction of indirect and direct prediction sets for

Robeson County. Robeson is located near the southeastern

border of NC and features a moderately small within-county

sample size of 247 birds observed, with species-specific

observation counts ranging from zero to ten. The two

prediction sets have nearly the same cardinality but contain

differences in species inclusion. Specifically, the indirect

D. Cormorant E. Kingbird Pine Warbler C. Sparrow

Robeson 0.81% 0.4% 0.00% 0.00%

NC-017 0.00% 2.85% 1.97% 2.63%

NC-047 0.00% 0.00% 1.29% 0.64%

NC-051 0.00% 0.68% 2.62% 5.59%

NC-093 0.00% 0.00% 1.09% 0.55%

NC-165 0.00% 0.86% 2.58% 5.16%

γ 0.00 1.33 3.42 4.69
Table 1. Percentage of all birds observed within each respective county, for select species included in either the indirect set (red text) or the direct set

(blue text). Estimated prior hyperparameter γ for Robeson County recorded in the last row.
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L. Flycatcher R. Hawk C. Yellowthroat E. Kingbird Bobolink

Haywood 0.21% 0.24% 0.21% 0.24% 0.24%

NC-021 0.06% 0.29% 0.18% 0.43% 0.14%

NC-099 0.00% 0.08% 0.16% 0.00% 0.00%

NC-115 0.07% 0.14% 0.21% 0.28% 0.00%

NC-173 0.18% 0.18% 0.66% 0.09% 1.41%

NC-175 0.00% 0.30% 1.00% 0.54% 0.84%

γ 0.4 1.29 2.43 1.49 2.15
Table 2. Percentage of all birds observed within each respective county for species included in either both prediction sets (purple text) or only the direct

set (blue text). Estimated prior hyperparameter γ for Haywood County recorded in the last row. Species are sorted by posterior proportion.

prediction set contains 33 species, and the direct set contains

32, with an overlap of 27 species.

To illustrate the role of the ordering used in the

construction of α-valid prediction sets, the empirical

proportions based on the observed sample (MLE) and

posterior proportions (Post.Pred) are plotted in Figure 5 for

the union of included species in the two sets. In the figure, the

species are sorted by increasing posterior proportions. The

indirect and direct sets include species based on the posterior

and empirical distributions, respectively. Discrepancies

between the indirect and direct sets occur when these two

distributions disagree. From Figure 5, it is easy to see

the indirect prediction set consists of the species with the

33 largest posterior predictive proportions. In contrast,

the direct set consists of species with the largest sample

probability mass. Naturally, the ordering of these two

estimates agree for species common to the region, and, as

such, there is a fair amount of overlap of species inclusion.

As a result of our estimation procedure for the prior

hyperparameter γ for Robeson County, the disparity between

inclusion or exclusion of a species among the two prediction

set methods is further elucidated by examining species

presence in neighboring counties. In short, species with more

frequent occurrence in neighboring counties will have a larger

estimated prior count than those seen rarely in neighboring

counties. Species occurrences in neighboring counties are

displayed in Table 1 for a select few species along with

the estimated γ for Robeson County, obtained by solving

Equation 8 using data in these neighboring counties.

Intuitively, species that are seen in neighboring counties

with some relative frequency, such as the Chipping Sparrow

or Pine Warbler, are probably also present in Robeson

County, and hence should be included in a prediction set. In

practice, these species have a comparatively high estimated

prior of about 5 and 4, respectively, and hence are included

in the indirect prediction set even though they weren’t

recorded as being observed in Robeson County in the dataset.

Alternatively, consideration of indirect information yields

the conclusion that species like the Eastern Kingbird and

Cormorant may be rare in the area in general, as reflected

by small γ values, and thus these species are not included in

the indirect prediction set.

Inference among species with tied observed counts in Haywood

County

In species abundance data, particularly for areas or counties

with small sample sizes, it is common for multiple species to

have the same observed count. A feature of the construction

of the direct order-based prediction approach as presented

is that species with the same observed counts will either be

jointly included or excluded from the prediction set. As a

result, a direct prediction set constructed from a sample with

tied species counts may have increased cardinality over an

indirect prediction set that does not necessarily jointly admit

all species with tied observed counts. If the direct set has

increased cardinality for this reason, the direct set will also

have increased coverage over the indirect set.

When constructing a prediction set based on the empirical

proportions without consideration of indirect information, as

in the construction of the direct set, this may commonly

occur, and there is no clear approach to choose among

the species with tied counts without further information

than what is provided in the sample in that county. One

could randomly choose to include one of the species from

the set of species with tied counts, for example, but a

more principled manner is to utilize indirect information

to determine which species should be included. This is the

mechanism used by the indirect prediction approach when

the prior hyperparameter is a real valued vector estimated

from indirect information. As such, a more nuanced benefit

of utilizing indirect information in the construction of a

prediction set is the capacity to include a select few categories

with tied empirical proportions.

To demonstrate, we elaborate on species inclusion

in the indirect and direct prediction sets in Haywood

County. Haywood is popular destination in the Blue Ridge

Mountains, located near the western border of North

Carolina. It features a moderately large within-county

sample size of roughly 4000 birds observed. In Haywood

County, the indirect prediction set contains 70 species, and

the larger direct set contains 74. In the construction of these

prediction sets, the ordering of species with regards to the

posterior proportions and the empirical proportions agree

for most species. As a result, all 70 species included in the

indirect set are also included in the direct set. The disparity

in species inclusion occurs primarily as a result of tied counts

of species occurrence in the sample.

Empirical proportions in Haywood and neighboring

counties are reported in Table 2 for the five species included

in Haywood County’s prediction sets with the smallest

posterior proportions. The species with the four smallest

posterior proportions are included only in the direct set,

and the other species, the Bobolink, is included in both

the indirect and direct sets. The Bobolink was observed 9

times in the sample from Haywood County, or about 0.24%

of the Haywood sample. For an ordering determined by either
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the empirical counts or the posterior counts, this species

is required to be included in the order-based prediction set

to guarantee 1 − α coverage. Two of the other species, the

Red-shouldered Hawk and Eastern Kingbird, were each also

observed 9 times in the sample from Haywood, and, by

construction of the order-based prediction approach, must

also be included in the direct set. When admitting the

species into a prediction set by posterior counts based on the

real-valued prior hyperparameter γ estimated from data in

neighboring counties, as in the indirect approach considered,

the ‘tie’ among these three species is broken, and only one,

the Bobolink, is included in the indirect prediction set.

Comparison with Bayesian prediction sets

The α-valid prediction approaches may also be compared

to the Bayesian prediction method detailed in Equation

9. As the Bayesian method and the indirect method are

constructed based on the same hierarchical working model,

the Dirichlet prior parameter in (9) may be estimated

following the same empirical Bayes approach used for the

indirect prediction method. While the Bayesian sets may be

smaller than the direct or indirect sets, the Bayesian sets are

not α-valid, and thus the frequentist coverage of a set for any

given county may fall below the nominal level.

As conveyed in the cardinality comparison between the

indirect and direct prediction sets, incorporating auxiliary

information in the construction of the prediction sets results

in improved cardinality overall. Specifically, the Bayesian

prediction sets are smaller than the direct sets in 59 of

the 99 counties in North Carolina. In comparing the two

methods that utilize auxiliary information, the Bayesian

sets are smaller than indirect sets in 33 counties, and

they have the same cardinality in 15 counties. Overall,

the indirect method outperforms both the Bayesian method

and the direct method in terms of minimizing prediction

set cardinality. Moreover, the Bayesian approach is not α-

valid, and thus the frequentist coverage rates of the Bayesian

prediction sets may fall below the nominal level.

Discussion

Species abundance data collected across heterogeneous areas

is increasingly important in understanding biodiversity. Some

of the largest sources of such data are citizen science

databases for which volunteers spearhead the data collection.

As a result of the civilian-led scientific effort, such data often

feature unequal sampling across a spatial domain where some

areas have large within-area sample sizes and others have

much smaller within-area sample sizes.

In this article, we propose summarising species abundance

data of this type with valid prediction sets that are

constructed by sharing information across areas. Utilizing

indirect information may result in smaller prediction sets

than otherwise achievable with direct methods. Meanwhile,

maintaining validity of the prediction sets for each area allows

for an accessible interpretation that enables a straightforward

comparison across areas. In particular, maintaining

interpretable statistical guarantees on a descriptor of such

data is important as analyses from such data often have

far reaching policy implications. Smaller prediction sets

may be attainable based on Bayesian inference of a spatial

hierarchical model such as that presented in Tang et al.

[2023], for example, but these approaches introduce bias

and a resulting prediction set would not retain the nominal

frequentist coverage rate guarantee for each county.

The usefulness of our approach for summarising citizen

science data is motivated in part to combat the common

problem of varying sampling efforts across areas. We detail

how α-valid prediction sets can be constructed with the

incorporation of indirect information to improve within-

county prediction set precision and propose an empirical

Bayes procedure to do so. Incorporation of accurate indirect

information results in a narrower prediction set for a given

county than a direct prediction set by exploiting data in

nearest neighboring counties. The proposed empirical Bayes

procedure is based on a standard hierarchical model that is

straightforward to understand, and the authors provide code

for implementation.

There may, however, be a benefit to utilizing a more

structured prior that incorporates indirect information in

a more complex manner such as a prior that weights data

from different parts of the state differently. For example, a

model based on a learned intrinsic distance between counties

was shown in Christensen and Hoff [2022] to fit a subset

of the eBird data better than standard methods based on

geographic adjacency structure. In the sample analyzed in

Section 4, we found an indirect prediction set constructed

with a hyperparameter estimated from five nearest neighbors

results in overall narrower prediction sets than a direct

approach, but it would be valuable to explore if this can

be further improved upon with a more detailed prior. More

broadly, different applications may warrant an alternative

information sharing prior if, for example, there is no notion

of spatial distance across the different areas. For example, it

may be of interest to compare species abundance variation

across different time frames for a given county.

All replication codes for this article, including functions

to implement the empirical Bayes estimation procedure for

the prior hyperparameter, are available at https://github.

com/betsybersson/FreqPredSets_Indirect.

Appendix A: Proofs

Remark 1 (Concerning Theorem 1.) We first elaborate on

the construction of an order-based prediction set following

Equation 3. To test if an element y(k) in the sample space

Y is included in a prediction set for a given vector o and

known event probability vector θ, the cumulative sum of event

probabilities of the categories corresponding to the minimum

element of o up to element k, following the ordering of o, is

computed. If this cumulative sum is greater than the error

rate α, then element k is included in the prediction set.

As a result, all elements with such cumulative sums greater

than α are included in the prediction set. The elements

with such cumulative sums less than or equal to α are not

included. Therefore, by construction, P (Y /∈ Aθ,o
α |θ) ≤ α.

Consequently,

P (Y ∈ Aθ,o
α |θ) = 1− P (Y /∈ Aθ,o

α |θ) ≥ 1− α,

so Aθ,o
α is α-valid.

https://github.com/betsybersson/FreqPredSets_Indirect
https://github.com/betsybersson/FreqPredSets_Indirect
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Proof of Theorem 1. (1): Note first that o enters Equation 3

only through the ordering of its elements. As such, without

loss of generality, consider vectors of the form o ∈ {0, 1}K .

When constructing a prediction set following Equation 3

based on such a vector o, the category space is effectively

divided into two disjoint subsets,

Y0 = {y(k) ∈ Y : ok = 0}

Y1 = {y(k) ∈ Y : ok = 1},

such that, by construction,

Aθ,o
α =

{
Y if

∑
{j:y(j)∈Y0} θj > α

Y1 else
.

For a given error rate α, clearly any α-valid prediction set

may be constructed under considerations of permutations of

the vector o of the form o ∈ {0, 1}K .

(2): We wish to show no other ordering results in an α-

valid prediction set with strictly smaller cardinality than oθ.

In words, consider switching the ordering of one element at a

time. This will always result in a prediction set with the same

cardinality or greater cardinality than that under oθ. More

formally, let õ = {oθ1, oθ2, ..., oθk∗ , oθk∗−1, o
θ
k∗+1, ..., o

θ
K}, that

is, equivalent to oθ with the (k∗)th and (k∗ − 1)th ordering

flipped. But, by construction, θk∗ ≥ θk∗−1, so |Aθ,oθ

α | ≤
|Aθ,õ

α |. □

Proof of Theorem 2. Let Y 1, ...,Y N+1 ∼ i.i.d.MNK(θ, 1).

Then, we wish to construct a conformal prediction set for

Y N+1 based on an observation of X =
∑N

i=1 Y i, and some

conformity measure C.

To determine if a candidate category k ∈ {1, ...,K} is

included in a 1 − α conformal prediction set, the conformal

algorithm proceeds as follows, see Section 2.1 of Bersson and

Hoff [2024] for more details:

1. Set yN+1 = y(k) where y(k) is a vector of length K with

a 1 in the kth index and 0s elsewhere.

2. For j = 1, ..., N + 1, compute conformity scores cj =

C(x− yj + y(k),yj).

3. Set

pk =
{#j ∈ {1, ..., N + 1} : cN+1 ≥ cj}

N + 1

More compactly, and by symmetry in the problem, this

conformal p-value may be equivalently written as:

pk =
K∑
l=1

1(o∗k ≥ o∗l )
xl + y

(k)
l

N + 1
,

where o∗k = cN+1 and o∗l = cj for a j ∈ {1, ..., N} such

that yj = y(l). Then, for prediction mis-coverage rate α,

the category k is included in the prediction set if pk > α.

A prediction set constructed from this procedure may be

concisely written as follows:

Aα(x) =

{
y(k) ∈ Y :

[
K∑
l=1

1 (ok ≥ ol)
xl + y

(k)
l

N + 1

]
> α

}
,

for some o ∈ RK .

□

Appendix B: Maximization of the marginal
multinomial-Dirichlet likelihood

In this section, we detail a Newton-Raphson algorithm

to maximize the log marginal likelihood of a conjugate

multinomial-Dirichlet model, sometimes referred to as the

Dirichlet-multinomial compound distribution:

Xj ∼ MNK(θj , Nj), independently for j = 1, ..., J

θ1, ..., θJ ∼ DirichletK(γ).

The log likelihood of the marginal likelihood is as follows,

L(γ) ∝
J∑

j=1

[
log Γ(

K∑
i=1

γi)− log Γ(Nj +
K∑
i=1

γi)+

K∑
i=1

log Γ(xj,i + γi)−
K∑
i=1

log Γ(γi)

]
.

Define

Ψ(s) =
d

ds
logΓ(s) = −ξ +

∞∑
n=0

[
1

n+ 1
− 1

n+ s

]
,

where ξ is the Euler-Mascheroni constant. Then, it is

straightforward to obtain the first and second derivatives of

the marginal log likelihood,

d

dγk
=

J∑
j=1

[
Ψ(

K∑
i=1

γi)−Ψ(Nj +
K∑
i=1

γk) + Ψ(xj,k + γk)−

Ψ(γk)

]

d

dγ2
k

=
J∑

j=1

[
Ψ′(

K∑
i=1

γi)−Ψ′(Nj +
∑
i

γi) + Ψ′(xj,k + γk)−

Ψ′(γk)

]

d

dγkdγk′
=

J∑
j=1

[
Ψ′(

K∑
i=1

γi)−Ψ′(Nj +
K∑
i=1

γi)

]
,

where Ψ′ is the trigamma function. Let g be the gradient

vector of length K and H the Hessian matrix. Finally,

Newton’s method updates γ as follows:

γ(t+1) = γ(t) −H−1(γ(t))g(γ(t)),

where the algorithm is iterated until convergence.

Solving for the maximum likelihood estimate (MLE) of the

unknown parameter in the Dirichlet-multinomial compound

distribution is covered in literature dating back to at least

Mosimann [1962], and it is stated in Wallach [2008] that the

likelihood is concave. For a detailed overview of the Dirichlet-

multinomial compound distribution, see Ng et al. [2011]. For

derivations and comparisons of various algorithms to solve

the maximization problem, including computational expense

and initialization sensitivity, we refer the reader to Minka

[2000] and Wallach [2008].
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Data availability

The eBird project is managed by the Cornell Lab of

Ornithology, and the raw data is publicly available online

at https://science.ebird.org/en/use-ebird-data. The

sample analyzed in Section 4 is available at https://github.

com/betsybersson/FreqPredSets_Indirect/tree/main/data.
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