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A. Background on Feller processes

We recall some basic definitions and properties associated with Feller processes which
we use for the derivations in Section 3. Our principal source is Dong (2003).

A.1. Definition of a Feller process
Let S be a locally compact, separable metric space and let C0(S) denote the set of
continuous functions f : S → R such that for any ϵ > 0 there exists a compact K ⊆ S
such that |f(x)| < ϵ for all x ̸∈ K. Also, let ||f || denote the supremum norm on C0(S).

Definition 1 (Feller process). A time-homogeneous Markov process (Xt)t≥0 with
state space S and associated transition semigroup (Pt)t≥0 is a Feller process if:

• Ptf ∈ C0(S) for all f ∈ C0(S) and t ≥ 0.

• ||Ptf || ≤ ||f || for all f ∈ C0(S).

• Ptf(x)→ f(x) as t→ 0 for all x ∈ S and f ∈ C0(S).

Definition 2 (Generator of a Feller process). Suppose X is a Feller process
on S as above and f is a function in C0(S). If the limit

Af := lim
s→0

Psf − f

s

exists in C0(S), we say that f is in the domain of the generator of X. We call the
operator A defined in this way the generator of X and denote its domain by D(A).

In the main text, we are concerned with Feller processesX, Y defined on the extended
space S = X × [0,∞) which are constructed by taking a time-inhomogeneous Markov
process X on X and defining X = (Xt, t)t≥0. In this setting, we have the following
variant of Dynkin’s formula.

Lemma 3 (Dynkin’s formula). If X = (Xt, t)t≥0 is a Feller process on S with
generator A and f ∈ D(A), then

Mf
t = f(Xt, t)− f(X0, 0)−

∫ t

0
Af(Xs, s) ds

is a martingale with respect to the natural filtration of X.

Proof. See Theorem 27.20 in Dong (2003).

A.2. Adjoint of a generator
Given a state space S and a reference measure ν on S, we can define an inner product
on C0(S) by letting

⟨f, h⟩ =
∫
S
fh dν

for all f, h ∈ C0(S) such that the integral exists. This induces a Hilbert space structure
on C0(S) and allows us to make the following definition, from Yosida (1965).
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Definition 3 (Adjoint of an operator). Given operator A with domain D(A)
contained in C0(S), we define the adjoint operator A∗ acting at function f ∈ C0(S) by

⟨A∗f, h⟩ = ⟨f,Ah⟩ for all h ∈ D(A).

The domain D(A∗) of A∗ is the set of all functions f such that there exists some function
A∗f for which the above holds.

B. Assumptions for Section 3

Here, we list the assumptions under which our derivations in Section 3 hold. Note that
these assumptions can be verified in several relevant cases (see Appendix F).

B.1. Assumptions on the state space X
Assumption 3. Our state space X is a locally compact, separable metric space. In

addition, there exists a reference measure ν on X with respect to which all relevant
probability distributions are absolutely continuous.

B.2. Assumptions on the marginals p and q

Assumption 4. We have pt ∈ D(K̂∗) for each t ∈ [0, T ], where K̂∗ is the adjoint of
the spatial part of the operator K. In addition, p is differentiable with respect to t and
∂tp is bounded.

B.3. Assumptions on the generators K and L
Assumption 5. X and Y are Feller processes with associated transition semigroups

(Pt)t≥0, (Qt)t≥0 and generators K,L respectively.

Assumption 6. K decomposes as K = ∂t + K̂, where K̂f is defined only in terms of
the spatial arguments of f , so we may view it as an operator on (a subset of) C0(X ).

Assumption 7. There exists a subset D0 ⊆ D(K̂) ∩ L2(X , ν) which is dense in

L2(X , ν), satisfies K̂h ∈ D0 for all h ∈ D0 and such that every function in D0 is bounded
and has compact support.

B.4. Assumptions onM and c

Assumption 8. The function c : S → R is bounded, and the function v : S → R is

bounded, in D(M) and satisfies
∫ T
0 E

[
|Mv(Zs, s)|2

]
ds <∞.

B.5. Assumptions on β

Assumption 9. The functions β−1, β−1v, log β and log v are in D(L), β−1 and

βL(β−1) are both bounded, and β ∈ D(L̂∗).
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C. Stochastic process theory

We provide full statements of the general stochastic process results used in Section 3.
For completeness, we also provide proofs of the given results adapted to our setting.

Theorem 4 (Fokker–Planck). Let (Xt)t∈[0,T ] be a Markov process with generator
K and marginals pt satisfying the assumptions in Appendix B. Then p satisfies the
forward Kolmogorov equation ∂tp = K̂∗p for ν-almost every x.

Proof. For any h ∈ D0, by Assumptions 4 and 7 we may write

⟨∂tp− K̂∗p, h⟩ =
∫
X
(∂tp)h− p(K̂h) dν

= ∂tE [h(Xt)]− E
[
K̂h(Xt)

]
.

Applying Dynkin’s formula to f(x, t) = h(x), taking expectations and using Fubini’s
theorem, we see that

E [h(Xt)]− E [h(X0)] =

∫ t

0
E
[
K̂h(Xs)

]
ds.

Differentiating with respect to t, we deduce that ⟨∂tp− K̂∗p, h⟩ = 0. Since this holds for

all h ∈ D0 and D0 is dense in L2(X , ν), we conclude that ∂tp− K̂∗p = 0 holds ν-a.e. as
required.

Theorem 5 (Feynman–Kac). Let Z = (Zt, t)t≥0 be a Feller process on S with
generator M. Suppose that we are given functions v, c : S → R and h : X → R such
that M, v, c solve equation Mv + cv = 0 (as in Assumption 1) with boundary condition
v(·, T ) = h(·). Suppose also that Assumption 8 is satisfied. Then we have

v(x, τ) = E

[
h(ZT ) exp

{∫ T

τ
c(Zs, s) ds

} ∣∣∣∣∣ Zτ = x

]
for all 0 ≤ τ ≤ T .

Proof. This result is well-known in the case of Euclidean diffusion processes (Karatzas
and Shreve, 1991). In the general case, the proof relies on the theory of semimartingales
(see for example Métivier (1982)). Fix τ ∈ [0, T ] and for all t ∈ [τ, T ] define

St = v(Zt, t) exp

{∫ t

τ
c(Zs, s)ds

}
along with

Vt = v(Zt, t), Ut = exp

{∫ t

τ
c(Zs, s)ds

}
.

Each of these processes is clearly a semimartingale, and so we may define dSt, dUt and
dVt accordingly (Métivier, 1982). The following lemma will allow us to express dSt in
terms of dUt and dVt.
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Lemma 4 (Integration by parts for semimartingales). If U and V are semi-
martingales and at least one is continuous then we have

d(UtVt) = Ut−dVt + Ut−dVt + d[U, V ]ct ,

where [·, ·]ct denotes the quadratic covariation.

Proof. This is Theorem 2.7.4(ii) of Pulido (2011), or follows from applying Theorem
27.1 of Métivier (1982) to the function φ(U, V ) = UV .

Since v ∈ D(M) by Assumption 8, by Dynkin’s formula we have that V is a semi-
martingale and we may decompose

dVt =Mvdt+ dMv
t

where Mv
t is a martingale. Also, since c(x, t) is bounded by Assumption 8, U is a

continuous, adapted, previsible process of finite variation and satisfies

dUt = c(Zt, t) exp

{∫ t

τ
c(Zs, s) ds

}
dt.

In addition, note that d[U, V ]ct = 0 since U is continuous and of finite variation. There-
fore, by Lemma 4, we can calculate

St − Sτ =

∫ t

τ
Us−dVs +

∫ t

τ
Vs−dUs + [U, V ]ct

=

∫ t

τ
Us

{
Mv + cv

}
ds+

∫ t

τ
Us dM

v
s

=

∫ t

τ
Us dM

v
s

where we have used thatMv+ cv = 0 in the last line. Therefore, S can be expressed as
a stochastic integral with respect to the martingale Mv.

The conditions we have imposed through Assumption 8 on c and v imply that U is
bounded and Mv is square-integrable. It follows, for example from Theorem 24.4.5 in
(Métivier, 1982), that S is a local martingale and hence, since it is also bounded, a true
martingale. We then have that

v(x, τ) = E [Sτ |Zτ = x] = E [ST |Zτ = x]

= E

[
h(ZT ) exp

{∫ T

τ
c(Zs, s)ds

} ∣∣∣∣∣Zτ = x

]
as required.

Theorem 6 (Girsanov). Let Y = (Yt, t)t≥0 and Z = (Zt, t)t≥0 be Feller processes
on S with generators L, M and path measures Q, P respectively, such that Y0 and
Z0 have the same law. Suppose also that there exists a bounded, measurable function
α : S → (0,∞) in D(L) such that α−1Lα is bounded, and such that

αMf = L(fα)− fLα (12)
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for all functions f such that f ∈ D(M) and fα ∈ D(L). Then we have

dP
dQ

(ω) =
α(ωT , t)

α(ω0, 0)
exp

{
−
∫ T

0

Lα(ωs, s)

α(ωs, s)
ds

}
. (13)

Proof. This essentially follows from the work of Palmowski and Rolski (2002). Using
their terminology, their Proposition 3.2 implies α is a good function, so the RHS of
Equation (13) is a martingale and we may define a measure P̃ by

dP̃
dQ

(ω) =
α(ωT , t)

α(ω0, 0)
exp

{
−
∫ T

0

Lα(ωs, s)

α(ωs, s)
ds

}
.

Under the measure P̃, the canonical process (ωt)t∈[0,T ] is still Markov. By the proof of
their Theorem 4.2, we see that

D̃f
t = f(Yt, t)−

∫ t

0
Mf(Ys, s)ds

is a martingale for all sufficiently smooth functions f , implying thatM is the generator
of (ωt)t∈[0,T ] under P̃. It follows that (ωt)t∈[0,T ] has the same law under P̃ as Z does

under Q, which is sufficient to prove the result since Y and Z are Feller.

D. Proof from Section 3

We give the proofs of Lemma 1 and Theorem 2 from Section 3.

Lemma 1. Let the generator L and the functions β and c be as above. Then, we have
v−1βL(β−1v) + L log β = β−1L̂∗β + L̂ log β.

Proof. Let us define M̂ to be the operator such that M = M̂ + ∂t. Then, since
M̂+ c =M+ c− ∂t = K̂∗, for any sufficiently rapidly decaying test function f we have

⟨M̂f, 1⟩+ ⟨cf, 1⟩ = ⟨K̂∗f, 1⟩ = ⟨f, K̂1⟩ = 0,

so ⟨M̂f, 1⟩ = −⟨c, f⟩. Assumption 2, which states that β−1Mf = L(β−1f) − fL(β−1)

for all sufficiently rapidly decaying f , can be rearranged to M̂f = βL̂(β−1f)−βf L̂(β−1).
So, it follows that

⟨c, f⟩ = −⟨βL̂(β−1f), 1⟩+ ⟨βf L̂(β−1), 1⟩
= −⟨f, β−1L̂∗β⟩+ ⟨f, βL̂(β−1)⟩

for any sufficiently rapidly decaying f . We conclude that β−1L̂∗β = βL̂(β−1)− c.
Next, using Assumption 2 with f = v we can write

v−1βL(β−1v) = βL(β−1) + v−1Mv

= βL(β−1)− c

= −∂t log β + βL̂(β−1)− c

= −∂t log β + β−1L̂∗β.
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Finally, note that −L log β + L̂ log β = −∂t log β. Combining this with the final line
above, we get the desired result.

Theorem 2. With the above set-up, minimising the objective

IDSM(β) =

∫ T

0
Eq(x0,xt,ξ0)

[L(q·|0(·|x0)/β(·, ξ0, ·))(xt, t)

qt|0(xt|x0)/β(xt, ξ0, t)
− L log(q·|0(·|x0)/β(·, ξ0, ·))(xt, t)

]
dt

is equivalent to maximising a lower bound on the expected model log-likelihood.

Proof. Applying Theorem 1 to the generative process Xξ∗
conditioned on observa-

tion ξ∗,

log pT (x0|ξ∗) ≥ EQ

[
log p0(YT )

∣∣∣Y0 = x0

]
−
∫ T

0
EQ

[
L̂∗β(xt, ξ

∗, t)

β(xt, ξ
∗, t)

+ L̂ log β(xt, ξ
∗, t)

∣∣∣∣ Y0 = x0

]
ds.

Replacing ξ∗ by ξ0, letting (x0, ξ0) ∼ pdata and taking expectations, we get

Epdata(x0,ξ0)
[log pT (x0|ξ0)] ≥ EqT (xT )

[
log p0(xT )

]
−
∫ T

0
Eq(xt,ξ0)

[
L̂∗β(xt, ξ0, t)

β(xt, ξ0, t)
+ L̂ log β(xt, ξ0, t)

]
ds.

For any given ξ, we have

Eq(xt|ξ)

[
L̂∗β(xt, ξ, t)

β(xt, ξ, t)
+ L̂ log β(xt, ξ, t)

]
= Eq(x0,xt|ξ)

[L(q·|0(·|x0, ξ)/β(·, ξ, ·))(xt, t)

qt|0(xt|x0, ξ)/β(xt, ξ, t)
− L log(q·|0(·|x0, ξ)/β(·, ξ, ·))(xt, t)

]
+const

by the argument of Appendix E (see below), where the constant depends only on the
dynamics of the forward process. Substituting ξ0 for ξ and taking expectations over
ξ0 ∼ pdata, noting that qt|0(xt|x0, ξ0) = qt|0(xt|x0), we get

Eq(xt,ξ0)

[
L̂∗β(xt, ξ0, t)

β(xt, ξ0, t)
+ L̂ log β(xt, ξ0, t)

]
= Eq(x0,xt,ξ0)

[L(q·|0(·|x0)/β(·, ξ0, ·))(xt, t)

qt|0(xt|x0)/β(xt, ξ0, t)
− L log(q·|0(·|x0)/β(·, ξ0, ·))(xt, t)

]
+const.

It follows that

Epdata(x0,ξ0)
[log pT (x0|ξ0)] ≥ EqT (xT )

[
log p0(xT )

]
−
∫ T

0
Eq(x0,xt,ξ0)

[L(q·|0(·|x0)/β(·, ξ0, ·))(xt, t)

qt|0(xt|x0)/β(xt, ξ0, t)
− L log(q·|0(·|x0)/β(·, ξ0, ·))(xt, t)

]
ds

+ const.
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The first term on the RHS and the constant are independent of the dynamics of the
reverse process. Hence minimising

IDSM(β) =

∫ T

0
Eq(x0,xt,ξ0)

[L(q·|0(·|x0)/β(·, ξ0, ·))(xt, t)

qt|0(xt|x0)/β(xt, ξ0, t)
− L log(q·|0(·|x0)/β(·, ξ0, ·))(xt, t)

]
dt

is equivalent to maximising a lower bound on Epdata(x0,ξ0)
[log pT (x0|ξ0)], which is the

expected model log-likelihood.

E. Equivalence of generalised score matching objectives

First, we show that IISM and IDSM are equivalent training objectives.

Eq0,t(x0,xt)

[L(q·|0(·|x0)/β(·, ·))(xt, t)

qt|0(xt|x0)/β(xt, t)
− L log(q·|0(·|x0)/β(·, ·))(xt, t)

]
=

∫
X

∫
X
q0,t(x0,xt)

{L(q·|0(·|x0)/β(·, ·))(xt, t)

qt|0(xt|x0)/β(xt, t)
− L log(q·|0(·|x0)/β(·, ·))(xt, t)

}
dν(x0)dν(xt)

=

∫
X
q0(x0)

∫
X

{
β(xt, t)L̂

(
qt|0(·|x0)

β(·, t)

)
(xt)− qt|0(xt|x0)L̂ log

(
qt|0(·|x0)

β(·, t)

)
(xt)

}
dν(xt)dν(x0)

=

∫
X
q0(x0)

∫
X
qt|0(xt|x0)

{
L̂∗β(xt, t)

β(xt, t)
+ L̂ log β(xt, t)

}
dν(xt)dν(x0) + const

= Eqt(xt)

[
L̂∗β
β

+ L̂ log β

]
+ const,

where the constants depend only on the dynamics of the forward process and so are fixed
during training. Integrating from t = 0 to t = T , we conclude that IISM and IDSM are
equivalent.

There is also an explicit score matching form of the general DMM training objective
as follows:

IESM(β) =

∫ T

0
Eqt(xt)

[
L(q·(·)/β(·, ·))(xt, t)

qt(xt)/β(xt, t)
− L log(q·(·)/β(·, ·))(xt, t)

]
dt.
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To see that this is equivalent to IISM and IDSM, observe

Eqt(xt)

[
L(q·(·)/β(·, ·))(xt, t)

qt(xt)/β(xt, t)
− L log(q·(·)/β(·, ·))(xt, t)

]
=

∫
X
qt(xt)

{
L(q·(·)/β(·, ·))(xt, t)

qt(xt)/β(xt, t)
− L log(q·(·)/β(·, ·))(xt, t)

}
dν(xt)

=

∫
X

{
β(xt, t)L̂

(
q·(·)
β(·, ·)

)
− qt(xt)L̂ log

(
q·(·)
β(·, ·)

)}
dν(xt)

=

∫
X
qt(xt)

{
L̂∗β(xt, t)

β(xt, t)
+ L̂ log β(xt, t)

}
dν(xt) + const

= Eqt(xt)

[
L̂∗β
β

+ L̂ log β

]
+ const

and integrate from t = 0 to t = T .

F. Application to particular spaces

In this section, we show how our general framework can be applied in some particu-
lar cases of interest, namely to Euclidean diffusion processes, continuous-time Markov
Chains on finite discrete state spaces, diffusions on Riemannian manifolds and the
Wright–Fisher diffusion on the simplex.

A recurring theme we see in each example is that the default parameterisation given
by our framework in terms of β is sub-optimal, either because we expect it to lead to
numerical instabilities when optimising the training objective, or because it only captures
a restricted subset of the class of reverse processes we are interested in. However, in each
case it turns out to be possible to reparameterise the generative process in a way which
captures a wider class of processes and lets us interpret the training objective on this
wider class. This allows us to optimise our generative process over this wider class of
processes. In addition this reparameterisation typically leads to a form of the objective
that we expect to be more numerically stable in practice.

F.1. Real vector spaces
We show how our framework recovers the setup of Song et al. (2021), described in Section
2.1, in the case where K and L are the Euclidean diffusion processes given in Example
1. For convenience, we recall that X and Y satisfy the SDEs

dXt = µ(Xt, t)dt+ dB̂t, dYt = b(Yt, t)dt+ dBt, (14)

respectively, and the corresponding generators are

K = ∂t + µ · ∇+
1

2
∆, L = ∂t + b · ∇+

1

2
∆.

First, we check the assumptions made in Appendix B. If we let our reference measure
ν be the Lebesgue measure, then Assumption 3 holds. Assumption 5 is satisfied whenever
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b and µ are Lipschitz functions (Schilling and Partzsch, 2012, Corollaries 19.27 and
19.31), and Assumption 6 follows given the form of K above. For Assumption 7 we take
D0 = C∞

c (Rd), the set of infinitely differentiable functions with compact support, and
note that this is dense in L2(X , ν). Finally, we assume that the reverse process and p0
are sufficiently regular that Assumptions 4, 8 and 9 hold.

Using integration by parts, we can calculate the adjoint of K̂. We have∫
fK̂hdν =

∫
f

(
µ · ∇h+

1

2
∆h

)
dν

= −
∫

h∇ · (fµ)dν − 1

2

∫
∇f · ∇hdν

=

∫
h

(
−µ · ∇f − (∇ · µ)f +

1

2
∆f

)
dν,

assuming f and h are sufficiently regular that all boundary terms are zero. Therefore,

K̂∗ = −µ · ∇ − (∇ · µ) + 1

2
∆.

We see that Assumption 1 holds if we let c = −(∇ · µ) and

M = ∂t − µ · ∇+
1

2
∆,

noting that this is the generator of another diffusion process Z satisfying the SDE

dZt = −µ(Zt, T − t)dt+ dB′
t.

Given this form of L andM, Assumption 2 then becomes

−β−1µ · ∇f +
1

2
β−1∆f = b · ∇(β−1f) +

1

2
∆(β−1f)− fb · ∇(β−1)− 1

2
f∆(β−1),

which reduces to
∇ log β = µ+ b, (15)

for some bounded measurable function β. This puts a restriction on the class of reverse
processes K we may use; the condition that the drift µmust be expressible as −b+∇ log β
for some β is not automatically satisfied. However, the true time-reversal of the forward
process will satisfy this property. In addition, we will show that we may reparameterise
the training objective so that it can be interpreted for a broader class of reverse processes.

Assuming for the moment that Assumption 2 does hold, we can evaluate

Φ(f) =
Lf
f
− L log f

=
b · ∇f
f

+
1

2

∆f

f
− b · ∇ log f − 1

2
∆ log f

=
1

2

∥∥∇ log f∥2,
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and so the denoising score matching objective becomes

IDSM(β) =
1

2

∫ T

0
Eq0,t(x0,xt)

[∥∥∇ log qt|0(xt|x0)−∇ log β(xt, t)
∥∥2] dt. (16)

Looking at Equations (15) and (16) suggests that it is more natural to parameterise
the reverse process in terms of sθ(x, t) = ∇ log β(x, t) instead of β(x, t). Making this
substitution, the objective becomes

IDSM(θ) =
1

2

∫ T

0
Eq0,t(x0,xt)

[∥∥∇ log qt|0(xt|x0)− sθ(xt, t)
∥∥2] dt,

recovering the objective of Song et al. (2021).
Parameterising in terms of sθ(x, t) rather than β(x, t) is preferable for a couple of

reasons. First, sθ(x, t) is targeting the score ∇ log qt(x), while β(x, t) is targeting qt(x),
and we expect the former to typically be an easier target. Second, while Equation (16)
only makes sense when the forward and backward processes are related via Assumption
2, the objective in Equation (3) is valid for any forward and backward diffusion processes
as in Equation (14). Hence reparameterising allows us to capture a wider class of reverse
processes in our optimisation.

F.2. Discrete state spaces
Next, we show how to apply our framework when X and Y are continuous-time Markov
chains on a finite discrete state space as in Example 2. With a particular choice of
parameterisation, we end up recovering the set-up of Campbell et al. (2022).

Recall that we start with K = ∂t +A and L = ∂t +B, where A and B are the time-
dependent generator matrices of X and Y respectively. From this it follows immediately
that K̂∗ = AT . We will use the counting measure as our reference measure ν.

On a finite discrete space, all functions are bounded and have compact support, and
D(K̂) = D(L̂) = C0(S) is the set of all functions on X . Assumptions 3, 5, 6 and 7 follow
immediately. In addition, we assume that the reverse process and p0 are sufficiently
regular that Assumptions 4, 8 and 9 always hold.

In order for Assumption 1 to hold, we need to findM and c such thatM+c = ∂t+K̂∗

(viewed as operators). Since M should be the generator of another CTMC, we write
M = ∂t + D for some generator matrix D. We then require D + c = AT , where c is
viewed as a diagonal matrix and D must have zero row sums. This holds if and only if
we take

cx =
∑
y∈X

Ayx, Dxy = Ayx − cx1x=y.

With this choice ofM, Assumption 2 becomes

β−1(x, t)
∑
z∈X

Dxzf(z) =
∑
z∈X

Bxz β−1(z, t)f(z)− f(x)
∑
z∈X

Bxz β−1(z, t)

for all x ∈ X . If we pick two distinct x,y and set f(z) = 1z=y in the above, we deduce

β−1(x, t)Dxy = β−1(y, t)Bxy for all x ̸= y.
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Hence for Assumption 2 to hold, we require

Ayx =
β(x, t)

β(y, t)
Bxy for all x ̸= y. (17)

An elementary check also shows that this condition is sufficient for Assumption 2 to hold
for a given choice of β.

With this parameterisation, the implicit score matching objective becomes

IISM(β) =

∫ T

0
Eqt(xt)

[
BTβ

β
+B log β

]
dt

=

∫ T

0
Eqt(xt)

∑
y∈X

{
Byxt

β(y, t)

β(xt, t)
+Bxty log

β(y, t)

β(xt, t)

}dt.

Unfortunately, fitting β directly using this objective is typically likely to perform
poorly. This can be seen for a couple of reasons. Firstly, the optimal value of β(x, t) is
qt(x), and so learning β(x, t) should be roughly as hard as targeting the marginals of
the forward process directly. Secondly, the presence of β in the denominators can lead
to numerical instabilities in regions where the forward process has low density.

Fortunately, we have at least a couple of methods for avoiding these problems avail-
able. The first is to find an equivalent formulation of the objective in terms of the
generator of the reverse process, and then learn this generator using a denoising param-
eterisation. For x ̸= y, we have

Bxy log
β(y, t)

β(x, t)
= Bxy log

Bxy

Ayx

= −Bxy logAyx + const,

where the constant depends only on the dynamics of the forward process, which are
fixed. We can therefore write

IISM(A) =

∫ T

0
Eqt(xt)

Bxtxt
+

∑
y ̸=xt

Axty −
∑
y ̸=xt

Bxty logAyxt

dt+ const

=

∫ T

0
Eqt(xt)

−Axtxt
−

∑
y ̸=xt

Bxty logAyxt

dt+ const,

recovering the objective of Campbell et al. (2022). In addition, we can parameterise the
reverse generator A via

Axy(θ) = Byx

∑
x0

qt|0(y|x0)

qt|0(x|x0)
p
(t)
θ (x0|xt) for x ̸= y, (18)

where p
(t)
θ (x0|xt) is some learned estimate of the original datapoint x0 given the noised

observation xt, and θ denotes the learnable parameters. This parameterisation should be
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more stable, as it avoids potentially exploding denominators, and we expect predicting
the original datapoint given the noised datapoint to be an easier goal than learning
the marginals qt(x). See Campbell et al. (2022) for more details on this denoising
parameterisation.

The second method is to reparameterise our objective in terms of the ratios sθ(x,y, t) =
β(y, t)/β(x, t). Doing this, the training objective becomes

IISM(θ) =

∫ T

0
Eqt(xt)

∑
y∈X

{
Byxt

sθ(xt,y; t)−Bxty log sθ(y,xt; t)
}dt. (19)

In addition, the generative process is now parameterised in terms of sθ(x,y, t) via

Axy = Byxsθ(x,y; t) for x ̸= y. (20)

Importantly, this objective matches the generalised objective from Section 3 when the
noising and generative processes are related by Assumption 2, and is still minimised
when sθ(x,y; t) = qt(y)/qt(x).

This parameterisation is potentially beneficial for a couple of reasons. Firstly, by
removing β(x, t) from the denominators, we expect that objective should be more nu-
merically stable. Secondly, this parameterisation captures a wider class of potential
reverse processes, since A is now given in terms of B via Equation (20), which is less
restrictive than Equation (17).

As discussed further in Section 4, the integrand in Equation (19) may be viewed as a
score matching objective for discrete state space. It shares certain similarities with ratio
matching techniques (Hyvärinen, 2007), in particular targeting the ratios β(y, t)/β(x, t).
However, as far as we are aware this particular objective is not directly equivalent to
any previously studied score matching objective in discrete state space (Hyvärinen, 2007;
Lyu, 2009; Sohl-Dickstein et al., 2011).

F.3. Riemannian manifolds
Consider the case where X is a Riemannian manifold with metric tensor g and ν is
the volume measure induced by g (so that Assumption 3 holds). A diffusion in X may
be defined through its generator, so we let the noising and generative processes have
generators

K = ∂t + µ · ∇+
1

2
∆, L = ∂t + b · ∇+

1

2
∆.

respectively, where ∆ is the Laplace-Beltrami operator defined in local coordinates by

∆f =
1√
|g|

∂i
(√
|g|gij∂jf

)
and |g| denotes the determinant of the metric tensor. For such processes, Assumption
5 is satisfied under mild regularity conditions on the manifold and the coefficients of
the generators, as detailed by Molchanov (1968). As in the Euclidean diffusion case,
Assumption 6 follows from the given form of K, for Assumption 7 we may take D0 =
C∞
c (X ) and note that this is dense in L2(X , ν) (Taylor, 2011, Section 4.4), and we
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assume that the reverse process and p0 are sufficiently regular that Assumptions 4, 8
and 9 hold.

To calculate the adjoint operator of K̂, we recall that the canonical volume element
on X induced by g is given by

dω =
√
|g| dx1 ∧ · · · ∧ dxn

and the divergence of a vector field a : X → TX on a Riemannian manifold is given by

∇ · a =
1√
|g|

∂i(a
i
√
|g|).

Then, using the generalised Stokes’ Theorem, we have

⟨f, µ · ∇h⟩ =
∫
X
fµi (∂ih)

√
|g| dx1 ∧ · · · ∧ dxn

= −
∫
X
h ∂i(µ

if
√
|g|) dx1 ∧ · · · ∧ dxn

= ⟨−(∇ · µ)f − (µ · ∇f), h⟩,

where we assume f and h are sufficiently smooth that we may disregard boundary terms.
In addition, we have

⟨f,∆h⟩ =
∫
X
f∂i(

√
|g|gij∂jh) dx1 ∧ · · · ∧ dxn

= −
∫
X

√
|g|gij(∂if)(∂jh) dx1 ∧ · · · ∧ dxn

= ⟨∆f, h⟩.

We conclude that the adjoint operator is given by

K̂∗ = −µ · ∇ − (∇ · µ) + 1

2
∆.

Then, as in the Euclidean diffusion case we see that Assumption 1 holds if we let c =
−(∇ · µ) and

M = ∂t − µ · ∇+
1

2
∆,

noting that M is also the generator of a diffusion process Z on X . We also find that
Assumption 2 reduces to the condition ∇ log β = µ+ b, as before.

Assuming this holds, we can evaluate

Φ(f) =
Lf
f
− L log f

=
b · ∇f
f

+
1

2

∆f

f
− b · ∇ log f − 1

2
∆ log f

=
1

2

∥∥∇ log f∥2g(x),
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where ∥ · ∥g(x) denotes the norm on the tangent space TxX induced by g.
Finally, as in the Euclidean diffusion we make a reparameterisation sθ(x, t) = ∇ log β(x, t)

in order to sidestep Assumption 2 and provide an easier training target. The resulting
denoising score matching objective is

IDSM(θ) =
1

2

∫ T

0
Eq0,t(x0,xt)

[∥∥∇ log qt|0(xt|x0)− sθ(xt, t)
∥∥2
g(xt)

]
dt,

which reproduces the result of Huang et al. (2022) and De Bortoli et al. (2022). Notably,
we find that all the relevant formulae in the manifold case are essentially the same as in
the Euclidean diffusion case, except for the inclusion of the metric tensor.

F.4. Wright–Fisher diffusions
Suppose we wish to approximate a distribution pdata(·) over the space X = P(E) of
measures on a finite set E = {1, . . . , N}. A natural class of stochastic processes on X
are the Wright–Fisher diffusions, a model used in population genetics to describe the
evolution of allele frequencies in a population over time (Ethier and Griffiths, 1993).

We can parameterise measures in X by tuples of real numbers p = (p1, . . . , pN ) ∈
[0, 1]N such that

∑N
i=1 pi = 1. With this parameterisation, the Wright–Fisher diffusion

has generator

L = ∂t +
1

2

N∑
i,j=1

pi (δij − pj)
∂2

∂pi∂pj
+

N∑
i,j=1

qijpi
∂

∂pj
,

with domain D(L) = {F |P(E) : F (p1, . . . , pN ) ∈ C2(RN )}, where (qij)i,j=1,...,N is some

matrix, potentially depending on p and t, such that
∑N

j=1 qij = 0 for each i = 1, . . . , N .

If we take qij =
1
2ϑj > 0 for all p ∈ X , t ∈ [0, T ] and i ̸= j, then this process is ergodic

and its invariant distribution is Dirichlet(Θ), the Dirichlet distribution with parameters
Θ = (ϑ1, . . . , ϑN ) (Ethier and Griffiths, 1993). Moreover, the transition function of the
process can be expressed as

P (t,p, ·) =
∞∑
n=0

dΘn (t)
∑

α∈(ZN
+ ):|α|=n

(
n

α

) N∏
i=1

pαi

i Dirichlet(α+Θ)(·) (21)

where dΘn (t) are smooth functions of t given explicitly in Ethier and Griffiths (1993). It
follows that if we take ϑj > 2 for all j and we start the process in the interior of the
simplex, then the process almost surely does not hit the boundary and the marginals of
the forward process always vanish and have zero derivative at the boundary (since this
holds for any Dirichlet distribution where all parameters are greater than 2).

Note that X is compact and hence locally compact and separable. Since we can view
X as a subset of a linear subspace of RN , it also has a natural Lebesgue measure, which
we take as the reference measure ν. Hence we satisfy Assumption 3.

We let our noising process have generator L as above and our generative process have
generator

K = ∂t +
1

2

N∑
i,j=1

pi (δij − pj)
∂2

∂pi∂pj
+

N∑
i,j=1

rijpi
∂

∂pj
,
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where (rij)i,j=1,...,N is another matrix with zero row sums. The forward process Y is then
Feller from Ethier and Kurtz (1993, Theorem 3.4). It follows that the extended forward
process Y is also Feller and, since the process is pathwise continuous on a compact state
space, this implies that the extended backward process X is also Feller, so Assumption
5 holds. Assumption 6 follows from the given form of K, and for Assumption 7, we can
take D0 = {F |P(E) : F (p1, . . . , pN ) ∈ C∞(RN )}. As usual, we assume that the reverse
process and p0 are sufficiently regular that Assumptions 4, 8 and 9 hold.

In order to calculate the adjoint operator K̂∗, we require the following lemma, which
is essentially a form of the integration by parts formula for the space X .

Lemma 5. Suppose we have F : RN → RN such that for all x ∈ X , F (x) · 1 = 0,
where 1 is the unit vector in the (1, . . . , 1)T direction. In addition, suppose that F (x) = 0
for all x ∈ ∂X . Then∫

X

N∑
j=1

∂Fj

∂pj
(p) dν(p)− 1

N

∫
X

N∑
j,k=1

∂Fk

∂pj
(p) dν(p) = 0.

Proof. Since F (x) ·1 = 0 for all x ∈ X , we can view F as a function from X to TX ,
the tangent bundle of X . Then, since F (x) = 0 for x ∈ ∂X , by the generalised Stokes’
theorem we have ∫

X
∇X · F dν = 0,

where∇X ·F denotes the manifold divergence on X . Finally, ∇X ·F = ∇·F−1·∇ (F · 1),
where ∇ is the standard gradient operator on RN , and so the result follows.

First, we need to calculate the adjoint of K̂. To deal with the first order term, we
use Lemma 5 with Fj = rijpifh for i = 1, . . . , N in turn to get∫

X

N∑
j=1

∂

∂pj
(rijpifh) dν(p)−

1

N

∫
X

N∑
j,k=1

∂

∂pj
(rikpifh) dν(p) = 0,

whenever fh = 0 on ∂X . Since
∑N

j=1 rij = 0, the second term vanishes. Thus, summing
over i we get∫

X

N∑
i,j=1

pifh
∂rij
∂pj

dν(p) +

∫
X

N∑
i=1

riifh dν(p)

+

∫
X

N∑
i,j=1

rijpih
∂f

∂pj
dν(p) +

∫
X

N∑
i,j=1

rijpif
∂h

∂pj
dν(p) = 0,

from which we deduce that∫
X
f

 N∑
i,j=1

rijpi
∂

∂pj

h dν(p) = −
∫
X
h

 N∑
i,j=1

pi
∂rij
∂pj

+

N∑
i=1

rii +

N∑
i,j=1

rijpi
∂

∂pj

 f dν(p)

(22)
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whenever fh = 0 on ∂X .
To deal with the second order term, we use Lemma 5 with Fj = pi(δij − pj)(f∂ih)

for each i = 1, . . . , N in turn to get∫
X

N∑
j=1

∂

∂pj
(pi(δij − pj)(f∂ih)) dν(p)−

1

N

∫
X

N∑
k,j=1

∂

∂pj
(pi(δik − pk)(f∂ih)) dν(p) = 0,

whenever f∂ih = 0 on ∂X for each i = 1, . . . , N . Expanding the LHS, we get∫
X

N∑
j=1

(δij − pi − δijpi)(f∂ih)dν(p) +

∫
X

N∑
j=1

pi(δij − pj)((∂jf)(∂ih) + f∂i∂jh)dν(p)

− 1

N

∫
X

N∑
j,k=1

(δijδik − δijpk − δjkpi)(f∂ih)dν(p)−
1

N

∫
X

N∑
j,k=1

pi(δik − pk)∂j(f∂ih)dν(p).

Now, the last term is zero since
∑N

k=1 pi(δik− pk) = 0. Simplifying and summing over i,
we get∫

X

N∑
i=1

(1−Npi)f∂ih dν(p) +

∫
X
f

 N∑
i,j=1

pi(δij − pj)
∂2

∂pi∂pj

h dν(p)

+

∫
X

N∑
i,j=1

pi(δij − pj)(∂jf)(∂ih) dν(p) = 0.

By symmetry, we may reverse the roles of f and h in this last equation and subtract the
resulting equations to get∫

X

N∑
i=1

(1−Npi)f∂ih dν(p) +

∫
X
f

 N∑
i,j=1

pi(δij − pj)
∂2

∂pi∂pj

h dν(p)

=

∫
X

N∑
i=1

(1−Npi)h∂if dν(p) +

∫
X
h

 N∑
i,j=1

pi(δij − pj)
∂2

∂pi∂pj

 f dν(p) (23)

whenever f∇h = h∇f = 0 on ∂X . Finally, applying Lemma 5 with Fi = fh(1 −Npi),
we get∫

X

N∑
j=1

∂

∂pj
(fh(1−Npj)) dν(p)−

1

N

∫
X

N∑
i,j=1

∂

∂pj
(fh(1−Npi)) dν(p) = 0.

whenever fh = 0 on ∂X . Expanding, we have∫
X

N∑
j=1

h(1−Npj)∂jf dν(p) +

∫
X

N∑
j=1

f(1−Npj)∂jh dν(p)−N2

∫
X
fhdν(p)

− 1

N

∫
X

N∑
i,j=1

(1−Npi)∂j(fh) dν(p) +N

∫
X
fhdν(p) = 0,
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which simplifies to

∫
X

N∑
j=1

h(1−Npj)∂jf dν(p)+

∫
X

N∑
j=1

f(1−Npj)∂jh dν(p)−N(N − 1)

∫
X
fhdν(p) = 0.

(24)
Combining Equations (23) and (24), we see

1

2

∫
X
f

 N∑
i,j=1

pi(δij − pj)
∂2

∂pi∂pj

h dν(p) =
1

2

∫
X
h

 N∑
i,j=1

pi(δij − pj)
∂2

∂pi∂pj

 f dν(p)

+

∫
X
h

 N∑
j=1

(1−Npj)
∂

∂pj

 f dν(p)

− N(N − 1)

2

∫
X
fhdν(p). (25)

Putting together Equations (22) and (25), we conclude that the operator

K0 =
1

2

N∑
i,j=1

pi (δij − pj)
∂2

∂pi∂pj
+

N∑
j=1

(1−Npj)
∂

∂pj
− N(N − 1)

2

−
N∑

i,j=1

pi
∂rij
∂pj
−

N∑
i=1

rii −
N∑

i,j=1

rijpi
∂

∂pj

satisfies ⟨K0f, h⟩ = ⟨f,Kh⟩ for all functions f, h ∈ {F |P(E) : F (p1, . . . , pN ) ∈ C2(RN )}
such that fh = f∇h = h∇f = 0 on ∂X . We conclude that K̂∗ = K0 and h ∈ D(K̂∗) for
all h such that h = ∇h = 0 on ∂X . Therefore, we choose to define

M = ∂t +
1

2

N∑
i,j=1

pi (δij − pj)
∂2

∂pi∂pj
+

N∑
j=1

(1−Npj)
∂

∂pj
−

N∑
i,j=1

rijpi
∂

∂pj
,

c = −N(N − 1)

2
−

N∑
i,j=1

pi
∂rij
∂pj
−

N∑
i=1

rii.

We see that Assumption 1 is satisfied, since v vanishes and has zero derivative on ∂X
by our earlier remarks. Recalling that qij =

1
2ϑj for i ̸= j and

∑N
j=1 rij = 0, if we let

uij = ϑj +
pj
pi
(ϑi − 1)− rij , for i ̸= j
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and set uii = −
∑

j ̸=i uij , then for each j = 1, . . . , N we have

N∑
i=1

uijpi =
∑
i ̸=j

uijpi −
∑
i ̸=j

ujipj

=
∑
i ̸=j

(piϑj + pj(ϑi − 1))−
∑
i ̸=j

(pjϑi + pi(ϑj − 1))−
N∑
i=1

rijpi

= 1−Npj −
N∑
i=1

rijpi.

We thus see that M is the generator of another Wright–Fisher process with transition
matrix (uij)i,j=1,...,N . Hence Assumption 1 is satisfied. To check Assumption 2,

βL(β−1f)− βfL(β−1) =
β

2

N∑
i,j=1

pi(δij − pj)(β
−1(∂i∂jf) + 2(∂if)(∂jβ

−1) + f(∂i∂jβ
−1))

+ β

N∑
i,j=1

qijpi(β
−1∂jf + f∂jβ

−1)

− βf

2

N∑
i,j=1

pi (δij − pj) ∂i∂jβ
−1 − βf

N∑
i,j=1

qijpi∂jβ
−1

=
1

2

N∑
i,j=1

pi(δij − pj)(∂i∂jf)−
N∑

i,j=1

pi(δij − pj)(∂if)(∂j log β)

+

N∑
i,j=1

qijpi(∂jf).

Thus Assumption 2 holds if and only if

N∑
i=1

uijpi = −
N∑
i=1

pi(δij − pj)(∂i log β) +

N∑
i=1

qijpi

for each j = 1, . . . , N . This is satisfied if we take

rij = ϑj +
pj
pi
(ϑi − 1)− pj

∂(log β)

∂pi
− qij (26)

for i ̸= j and rii = −
∑

j ̸=i rij . We choose this parameterisation since if we start the
forward process in its invariant distribution and learn β so that the generative process
is the exact time reversal of the forward process then β(p, t) ∝ qt(x) ∝

∏N
i=1 p

ϑi−1
i . In

this case, Equation (26) reduces to rij = ϑj − qij , so this parameterisation ensures that
if we start the forward process in its invariant distribution and learn the reverse process
perfectly then the transition matrix (rij)i,j=1,...,n we learn is equal to the transition
matrix (qij)i,j=1,...,n of the forward process.
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We can then calculate the score matching operator Φ(f) = f−1Lf − L log f ,

Φ(f) =
1

2

N∑
i,j=1

pi (δij − pj) f
−1 ∂2f

∂pi∂pj
− 1

2

N∑
i,j=1

pi (δij − pj)
∂2(log f)

∂pi∂pj

+

N∑
i,j=1

qijpif
−1 ∂f

∂pj
−

N∑
i,j=1

qijpi
∂(log f)

∂pj

=
1

2

N∑
i,j=1

pi (δij − pj)
∂(log f)

∂pi

∂(log f)

∂pj
.

However, since we do not have access to the analytic forms of the transition kernel
qt|0(pt|p0) for this model, we must fit β using the implicit score matching objective. We
thus calculate

L̂∗β
β

+ L̂ log β =
1

2

N∑
i,j=1

pi (δij − pj)β
−1 ∂2β

∂pi∂pj
+

N∑
j=1

(1−Npj)β
−1 ∂β

∂pj
− N(N − 1)

2

−
N∑

i,j=1

pi
∂qij
∂pj
−

N∑
i=1

qii −
N∑

i,j=1

qijpiβ
−1 ∂β

∂pj

+
1

2

N∑
i,j=1

pi (δij − pj)
∂2(log β)

∂pi∂pj
+

N∑
i,j=1

qijpi
∂(log β)

∂pj

=

N∑
i,j=1

pi (δij − pj)
∂2(log β)

∂pi∂pj
+

1

2

N∑
i,j=1

pi (δij − pj)
∂(log β)

∂pi

(∂ log β)

∂pj

+

N∑
j=1

(1−Npj)
∂(log β)

∂pj
+ const,

where we have discarded terms that do not depend on β. Noting that the loss and the
reverse process only depend on β through ∂(log β)/∂pj , we reparameterise in terms of
siθ(p, t) = pi∂(log β(p, t))/∂pi. (We include the extra factor of pi for numerical stability
reasons, since if we start in the stationary distribution then pi∂(log β(p, t))/∂pi should
be of constant scale.) Doing this, the implicit score matching objective becomes

IISM(θ) =

∫ T

0
Eqt(pt)

[ N∑
i,j=1

(δij − pj)
∂siθ(pt, t)

∂pj
+

1

2

N∑
i,j=1

(p−1
j δij − 1)siθ(pt, t)s

j
θ(pt, t)

+ (1−N)

N∑
j=1

sjθ(pt, t)

]
dt, (27)

and the reverse process is parameterised as the Wright–Fisher diffusion with transition
matrix (rij)i,j=1,...,N where

rij(p, T − t) =
1

2
ϑj +

pj
pi
(θi − 1)− pj

pi
siθ(p, t), i ̸= j.
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G. Proof of properties of the score matching operator

We give the proof of the properties of the score matching operator from Proposition 1.

Proposition 1. Let Y be a Feller process with semigroup operators (Qt)t≥0, gener-
ator L and associated score matching operator Φ. Then:

(a) Φ(f) ≥ 0 for all f in the domain of Φ, with equality if f is constant;
(b) for any probability measures π1, π2 on X ,

d

dt
KL(π1Qt||π2Qt)

∣∣∣
t=0

= −Eπ1

[
Φ

(
dπ1
dπ2

)]
,

where KL(π1Qt||π2Qt) denotes the Kullback–Leibler divergence between π1Qt, π2Qt.

Proof. Since log is a concave function, it follows that log(Qtf) ≥ Qt(log f) for all
f in the domain of Φ with equality if f is constant. Hence

log(Qtf)− log f

t
≥ Qt(log f)− log f

t

for all t ≥ 0. Taking the limit t ↓ 0, we deduce that (Lf)/f ≥ L(log f) which gives the
first part of the lemma.

For the second part, we assume that π1Qt and π2Qt are absolutely continuous with
respect to ν and let π1,t(x) and π2,t(x) respectively denote their densities. Then

d

dt
KL(π1Qt||π2Qt) =

d

dt

∫
π1,t(x) log

(
π1,t(x)

π2,t(x)

)
dν(x)

=

∫
∂tπ1,t(x) log

(
π1,t(x)

π2,t(x)

)
dν(x) +

∫
π1,t(x)∂t log π1,t(x)dν(x)

−
∫

π1,t(x)∂t log π2,t(x)dν(x)

=

∫
L̂∗π1,t(x) log

(
π1,t(x)

π2,t(x)

)
dν(x) +

∫
L̂∗π1,t(x)dν(x)

−
∫
L̂∗π2,t(x)

(
π1,t(x)

π2,t(x)

)
dν(x)

using the Fokker–Planck equation on each term. Since ⟨L̂∗π1,t, 1⟩ = ⟨π1,t, L̂1⟩ = 0, we
may drop the second term and write

d

dt
KL(π1Qt||π2Qt) = Eπ1,t(x)

[
L̂ log

(
π1,t(x)

π2,t(x)

)]
− Eπ1,t(x)

[(
π2,t(x)

π1,t(x)

)
L̂
(
π1,t(x)

π2,t(x)

)]
= −Eπ1,t(x)

[
Φ

(
π1,t(x)

π2,t(x)

)]
.

Setting t = 0, we get the desired result.
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H. Discrete-time approximation proofs

In this section, we give the proofs of Lemma 2 and Theorem 3 from Section 5. In order
to prove Lemma 2, we use a couple of lemmas which we present first.

Lemma 6. Given processes X and Y as in Section 3, define a process W by setting
W t = (XT−t, t) and denote its generator by N . Then we have

vN g = (M+ c)(vg)

for all sufficiently rapidly decaying functions g.

Proof. First, we let
←−
K = −∂t + N̂ denote the generator of the time-reversal of

X. Then, the integration by parts formula of Cattiaux et al. (2021) implies that for all
sufficiently rapidly decaying test functions f and g we have

⟨ptf,Kg +
←−
Kg⟩+ ⟨pt,Γ(f, g)⟩ = 0,

where Γ(f, g) = K(fg)− fKg− gKf denotes the carré du champ operator associated to
K. We deduce that

⟨f, pt
←−
Kg⟩ = −⟨ptf,Kg⟩ − ⟨pt,K(fg)− fKg − gKf⟩

= −⟨ptf, ∂tg⟩ − ⟨K̂∗pt, fg⟩+ ⟨K̂∗(gpt), f⟩
= −⟨pt∂tg, f⟩ − ⟨g∂tpt, f⟩+ ⟨K̂∗(gpt), f⟩
= ⟨K̂∗(gpt)− ∂t(ptg), f⟩

where in the third line we have used the Fokker–Planck equation. Since f was arbitrary,
it follows that

pt
←−
Kg = K̂∗(gpt)− ∂t(ptg).

Finally if we substitute t 7→ T − t in this final equation, we get

vN g = (K̂∗ + ∂t)(vg),

which gives the desired result when combined with the definition of M and c from
Assumption 1.

Lemma 7. Suppose β : S → (0,∞) is a function such that Assumption 2 holds. If
we define ζ = β−1v, then for any function f decaying sufficiently rapidly, ζ satisfies

ζN f = L(fζ)− fLζ.

Proof. For any sufficiently rapidly decaying f satisfying fζ ∈ D(L) and vf ∈ D(M),
using Lemma 6 we have

L(fζ)− fLζ = L(vβ−1f)− fL(β−1v)

= β−1M(vf)− β−1fMv

= β−1vN f − cβ−1vf + cβ−1vf

= ζN f.
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Now we can give the proofs of Lemma 2 and Theorem 3.

Lemma 2. Suppose X, Y are fixed generative and noising processes with marginals
p, q as in Section 3, and suppose that they are related as in Assumptions 1 and 2 for
some sufficiently regular function β. Then for any 0 < s < t < T with γ = t− s,

γ Eqs(xs)

[
L̂∗β
β

+ L̂ log β
]
= Eqs,t(xs,xt)

[
log

qt|s(xt|xs)

pT−s|T−t(xs|xt)

]
+ o(γ).

Proof. Let Pxs and Qxs denote the path measures of W and Y respectively on the
interval [s, t] when we condition on the initial value xs. Assuming β is sufficiently regular
so that ζ is bounded away from zero and infinity and ζ−1Lζ is bounded and continuous
in the time variable, by Girsanov’s theorem and Lemma 7 we have

dPxs

dQxs
(ω) =

ζ(ωt, t)

ζ(ωs, s)
exp

{
−
∫ t

s

Lζ(ωτ , τ)

ζ(ωτ , τ)
dτ

}
.

Taking logarithms and writing γ = t − s, to first order in γ for any fixed path ω this
becomes

log
dPxs

dQxs
(ω) = log

ζ(ωt, t)

ζ(ωs, s)
− γ
Lζ(ωs, s)

ζ(ωs, s)
+ o(γ).

Since the first order terms depend only on the value of the path at its endpoints (ωs, ωt),
we conclude that

log
qt|s(xt|xs)

pT−t|T−s(xt|xs)
= − log

ζ(xt, t)

ζ(xs, s)
+ γ
Lζ(xs, s)

ζ(xs, s)
+ o(γ).

It follows that

log
qt|s(xt|xs)

pT−s|T−t(xs|xt)
= log

v(xt, t)

v(xs, s)
− log

ζ(xt, t)

ζ(xs, s)
+ γ
Lζ(xs, s)

ζ(xs, s)
+ o(γ).

Taking expectations and using the definition of the generator as a stochastic derivative,
we have

EQ

[
log

qt|s(xt|xs)

pT−s|T−t(xs|xt)

]
= γEqs(xs)

[
Lζ(xs, s)

ζ(xs, s)
− L log ζ(xs, s) + L log v(xs, s)

]
+ o(γ)

= γEqs(xs)

[
L̂∗β(xs, s)

β(xs, s)
+ L̂ log β(xs, s)

]
+ o(γ),

where in the final line we have used Lemma 1.

Theorem 3. For any DMM, the objective (11) for its natural discretisation is equiv-
alent to the natural discretisation of IISM to first order in γ = maxk=0,...,N−1 |tk+1− tk|.

Proof. Given time steps 0 = t0 < t1 < · · · < tN = T , define γk = tk+1 − tk for
k = 0, . . . , N − 1 and set γ = maxk=0,...,N−1 γk. Then the natural discretisation of the
objective IISM(β) is given by

N−1∑
k=0

γkEqtk (xtk
)

[
L̂∗β
β

+ L̂ log β

]
.
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Using Lemma 2 with s = tk−1 and t = tk for k = 1, . . . , N , we get

Eq̃(xtk−1
)

[
KL(q̃(xtk−1

|xtk)||p̃θ(xtk−1
|xtk))

]
= Eq̃(xtk−1

,xtk
)

[
log

q̃(xtk |xtk−1
)

p̃θ(xtk−1
|xtk)

]
+ const

= γk−1 Eqtk−1
(xtk−1)

[
L̂∗β
β

+ L̂ log β
]
+ o(γk−1) + const.

Putting this together, we see that

KL(q̃(x0:T )||p̃θ(x0:T )) =

N−1∑
k=0

γkEqtk (xtk
)

[
L̂∗β
β

+ L̂ log β

]
+ o(γ) + const,

so objective (11) is equivalent to the natural discretisation of IISM to first order in γ.

I. General equivalence between denoising autoencoders and score matching

A denoising autoencoder takes a datapoint x0 drawn from a data distribution q0, noises
it according to some density qτ (xτ |x0) and then tries to reconstruct x0 given the noised
observation xτ (Vincent et al., 2008). Traditionally, qτ (xτ |x0) is taken to be Gaussian
with mean x0 and some standard deviation σ and we make a point estimate fθ(xτ ) for
x0 given xτ . The parameters θ are learned by minimising the MSE error

JDAE(θ) = Eq0,τ (x0,xτ )

[
∥fθ(xτ )− x0∥2

]
.

For a general denoising autoencoder on state space X , we allow a probabilistic re-

construction p
(θ)
0|τ (x0|xτ ) of x0 depending on a set of parameters θ, rather than a point

estimate. We fit θ by minimising the objective

JDAE(θ) = Eq0,τ (x0,xτ )

[
− log p

(θ)
0|τ (x0|xτ )

]
.

Note that this reduces to the MSE objective in the case where X = Rd and p
(θ)
0|τ (x0|xτ )

is Gaussian with mean fθ(xτ ).
Suppose now that we have a generalised denoising autodencoder where the noising

distribution q0,τ (x0,xτ ) is given by the endpoints of a Markov process on X with gener-

ator L and the denoising distribution p
(θ)
0|τ (x0|xτ ) is given by the endpoints of a Markov

process on X with generator K. Suppose further that we parameterise the denoising
process K via some function β(x, t) according to Assumptions 1 and 2 as in Section 3.
Then Lemma 2 implies that JDAE is equivalent to first order to the objective

JISM(β) = Eqτ (xτ )

[
L̂∗β(xτ , τ)

β(xτ , τ)
+ L̂ log β(xτ , τ)

]
,

or alternatively to the corresponding generalised denoising score matching objective as
in Section 4.
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This generalises the result of Vincent (2011), which demonstrated an equivalence
between denoising autoencoders and denoising score matching in the case of Gaussian
noise on Rd. Indeed, we recover their result by considering the case where qτ |0(xτ |x0)

and p
(θ)
0|τ (x0|xτ ) are Gaussian, noting that these distributions are naturally induced as

the distributions of the endpoints of diffusion processes.
Our work extends this equivalence between denoising autoencoders and generalised

score matching as described in Section 4 to arbitrary state spaces and noising/denoising
distributions, provided that the noising and denoising distributions can be viewed as the
marginals at the endpoints of Markov processes with known generators.

J. Experimental details

We give the details of our experimental set-up and results from Section 6. Code for all
of our experiments can be found at github.com/yuyang-shi/generalized-diffusion.

J.1. Inference on Rd using diffusion processes
The g-and-k distribution with parameters (A,B, g, k) is defined via its quantile function

F−1(q|A,B, g, k) = A+B

[
1 + 0.8 tanh

(
gz(q)

2

)] (
1 + z(q)2

)k
z(q),

where z(q) denotes the qth quantile of the standard Gaussian distribution, and we require
B > 0 and k > −0.5. The parameters A,B, g, k control the location, scale, skewness and
kurtosis of the distribution respectively (Prangle, 2020). The prior on the parameters
is uniform on [0, 10]4. For the diffusion model, we centre and rescale each parameter
linearly to [−1, 1] in our implementation, and transform back to [0, 10] for reporting.

As our noising process, we use the Ornstein–Uhlenbeck process dYt = −1
2Ytdt+dBt.

This has generator L = ∂t − 1
2x · ∇ + 1

2∆ and transition densities qt|0(xt|x0) which are
Gaussian and available analytically. We can sample from the forward process at time t
by sampling x0 ∼ q0(x0) and then xt ∼ qt|0(xt|x0). In practice, we apply a time-rescaling
to the noising process following Song et al. (2021), in order to apply less noise at small
times and move more quickly to the reference distribution at large times, by considering

dYt = −
1

2
β(t)Ytdt+

√
β(t)dBt.

The β schedule is set to be linear and monotonically increasing, i.e.

β(t) = βmin + (βmax − βmin)t. (28)

We set βmin = 0.001 and βmax is selected using a grid search from 2, 4, 6, 8, 10.
The reverse process is parameterised in terms of a conditional score network sθ(xt, ξ, t)

using multilayer perceptrons (MLPs). We first encode x and ξ into 128-dimensional
encodings using two separate MLPs with 3 layers and 512 hidden units in each layer.
We then concatenate the two encodings as well as the time t and pass through another
MLP with 3 layers and 512 hidden units in each layer. The total number of neural
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network parameters is approximately 1.9M. For N = 250, we take in ξ the full set of
order statistics as inputs to our network, i.e. we sort the observation ξ and take all
n = 250 values. For N = 10000, we take n = 100 evenly-spaced order statistics from our
observation as inputs, following Fearnhead and Prangle (2012).

Since we have access to the analytic transition densities, we train using the denoising
score matching objective IDSM(θ). We use a total of 106 training samples (x0, ξ0) ∼ pdata
during training. We optimise the network using the Adam optimiser with batch size
512 and learning rate 0.0001 with a cosine annealing schedule for 2.5M iterations. For
sampling, we use the Euler-Maruyama method with 1000 steps to simulate from the
reverse SDE.

The ground truth posterior density is estimated with MCMC samples generated us-
ing the R package gk (Prangle, 2020). We compare our method with the semi-automatic
ABC (SA-ABC) and Wasserstein SMC (W-SMC) methodologies using the R packages
abctools (Nunes and Prangle, 2015) and winference (Bernton et al., 2019), as well
as with Sequential Neural Posterior (Greenberg et al., 2019), Likelihood (Papamakar-
ios et al., 2019) and Ratio Estimation (Durkan et al., 2020) approaches (SNPE, SNLE
and SNRE) using the sbi Python package (Tejero-Cantero et al., 2020). All methods
are set to use 106 data samples to generate 5000 posterior samples. We note that the
default configurations offered by the sbi package for SNPE, SNLE and SNRE use com-
paratively smaller neural networks compared to our choice of score network sθ(xt, ξ, t)
detailed above. We have correspondingly increased the size of the neural networks for
the three methods to approximately the same number of parameters. We also use Neural
Spline Flows (NSFs, Durkan et al. (2019)) for SNPE as it is reported to have superior
performance (Lueckmann et al., 2021). Other settings are kept to the default values.

Compared to SA-ABC and W-SMC methodologies, neural-network based approaches
including our DMM model require fitting a neural network and therefore are more com-
putationally expensive at training time. However, our model is able to produce more
accurate posterior estimates for fixed ξ0, and perform amortised inference across a range
of parameter values using the same number of 106 data samples. Therefore, it is com-
paratively more data-efficient.

As well as the plots in the main text, we also provide a pair plot comparing the
approximate posterior from our diffusion model to the ground truth joint distribution
in Fig. 8. We see that our model provides results very close to the ground truth for the
parameters A, B and g and can model the dependency between parameters, but gives a
wider estimate in its reproduction of the posterior over k.

J.2. MNIST digit image inpainting using discrete-space CTMCs
Our implementation in discrete space closely follows that of Campbell et al. (2022), and
we refer to their paper for further details. We denote our states as x0 = (x1

0 . . . ,x
D
0 ) and

for our noising process we use a CTMC with generator matrix B := B1:D(x1:D,y1:D)

which factorises over the dimensions, so B1:D(x1:D,y1:D) =
∑D

i=1 B̃(xi,yi)1x1:D\i=y1:D\i

for some rate matrix B̃ acting on a single dimension. Thus each pixel evolves indepen-
dently as a CTMC on {0, . . . , 255} with rate matrix B̃. We use the Gaussian rate matrix
of Campbell et al. (2022) for B̃, which respects the ordinal structure of our state space
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Fig. 8. Pair plots of the simulated posterior samples from the diffusion model and the ground
truth distribution using MCMC for the g-and-k distribution example, with xtrue = (3, 1, 2, 0.5) and
N = 10000. The off-diagonal plots are the pairwise scatter plots between each component of x,
and the diagonal plots reproduce each parameter’s marginal kernel density estimate.

and has a discretised Gaussian as its invariant distribution. The transition probabili-
ties for this forward process can be calculated analytically efficiently by diagonalising
the matrix and using matrix exponentials. This allows us to sample directly from the
forward process at time t.

Since we have access to the forward transition probabilities, we use the denoising

parameterisation of the reverse process in terms of p
(t)
θ (x0|xt) given in Equation (18),

which we expect to lead to more stable training. We parameterise p
(t)
θ (x0|xt, ξ) using

a convolutional U-net (Ho et al., 2020), taking as inputs both xt and ξ (concatenated
in the channel dimension), as well as a sinusoidal embedding of the time t. The total
number of neural network parameters is approximately 6.1M. The output of the network
is defined as the mean and log scale of a logistic distribution for each pixel. The logistic

distribution is then discretised into bins {0, . . . , 255}, and p
(t)
θ (x0|xt, ξ) is defined as the

product of the discretised logistic distributions across dimensions.

We used the MNIST dataset (LeCun et al., 2010) which consists of images of hand-
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Table 1. PSNR and SSIM scores for MNIST 14x14 inpainting using discrete-space
and continuous-space DMMs. Higher values denote better performance.

Discrete-space Continuous-space (raw) Continuous-space (rounded)
PSNR 16.63 16.72 16.75
SSIM 0.757 0.706 0.723

written digits. To train our model, we minimise the objective given in Example 6. For
optimisation, we use the Adam optimiser with batch size 128 and learning rate 0.0002 for
1M iterations. In order to simulate the reverse process efficiently, we use a tau-leaping
approximation with 1000 steps (for more details see Campbell et al. (2022)).

We compare our method to a continuous state space approach, as used for example in
Song et al. (2021) and presented in Appendix F.1. We first normalize the data to range
[−1, 1], and then learn a continuous-space diffusion model with an Ornstein—Uhlenbeck
noising process. All training configurations are kept the same as the discrete-space
DMM. We report the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) for both methods in Table 1. PSNR and SSIM are two image
quality metrics which measure the similarity between the generated posterior image and
the ground truth. PSNR measures the pixel-by-pixel difference between two images
and is a direct transformation of the mean squared error (MSE), whereas SSIM is a
structural and more perceptional metric based on luminance, contrast and structure.
For the continuous-space diffusion model, we report values for both the raw output
samples (rescaled back to original scale), as well as with a further rounding step to the
nearest integer in {0, . . . , 255}. The discrete-space and continuous-space models appear
to achieve comparable results, with the discrete-space model having a slightly worse
PSNR score, but slightly better SSIM score, suggesting comparable perceptual quality.

J.3. Large-scale image super-resolution using discrete-space CTMCs
We perform an additional experiment using discrete-space DMMs for a large-scale image
inverse problem on the ImageNet dataset (Russakovsky et al., 2015). We train a DMM
using CTMC noising and generative processes to perform 4-fold image super-resolution.

Each input image has 64× 64 pixels and three RGB colour channels, and we aim to
output images at the higher resolution of 256× 256 pixels which are consistent with the
input images. Our state space X = {0, . . . , 255}3×256×256.

The noising process, reverse process parameterisation, and neural network design are
the same as in Section J.2, but we use a larger neural network for this task. As the
starting point of our network optimisation, we utilise the pretrained network weights
for continuous diffusions by Dhariwal and Nichol (2021), but we retrain the network
for our discrete-space DMM using the objective in Example 6. The total number of
neural network parameters is approximately 311.8M. We train the network using the
Adam optimiser with batch size 4 and learning rate 2 × 10−5 for an additional 200000
iterations. For sampling, we use tau-leaping with 1000 steps.

We plot the simulated super-resolution samples in Fig. 9 for a number of low-resolution
images generated from the ImageNet validation dataset. As shown in the images, the
discrete diffusion model outputs different super-resolution samples that are realistic to
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Fig. 9. Image super-resolution results (64× 64→ 256× 256) on the ImageNet dataset using our
DMM. The first column is the input image and remaining columns are samples from the DMM.
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the eye, and coherent with the low-resolution images, demonstrating that DMMs can
continue to provide high-quality posterior samples even in very high-dimensional sce-
narios situations where the prior pdata(x) is unavailable and standard ABC or MCMC
techniques are not available.

J.4. Modelling distributions on SO(3) using manifold diffusions
Recall that our noising process on SO(3) is Brownian motion with generator L = ∂t+

1
2∆.

Since SO(3) is compact, this converges to the uniform measure for large times; see e.g.
De Bortoli et al. (2022). For this process, the transition probabilities can be explicitly
written as

qt|0(xt|x0) ∝
∞∑
ℓ=0

(2ℓ+ 1)e−ℓ(ℓ+1)t/2 sin
((
ℓ+ 1

2

)
α
)

sin(α/2)
, (29)

where α = arccos
[
2−1(Tr(xT

0 xt)− 1)
]
is the angle between xt and x0, and xt,x0 ∈ SO(3)

are in matrix form. For completeness, we provide the derivation of this result below in
Section J.4.1.

Given this expression, to sample from qt|0(xt|x0), we follow Leach et al. (2022) and

first sample the rotation axis v uniformly from the sphere S2 ⊂ R3. Then, we sample
the rotation angle α ∈ [0, π] using inverse transform sampling from the distribution

ft(α) =
1− cos(α)

π

∞∑
ℓ=0

(2ℓ+ 1)e−ℓ(ℓ+1)t/2 sin
((
ℓ+ 1

2

)
α
)

sin(α/2)
,

where the normalising factor (1 − cos(α))/π is the measure on rotation angles induced
by the uniform measure on SO(3). For larger t, we find that the above series converges
quickly and evaluating summation terms up to l = 5 gives an accurate approximation.
For t < 1, the above series converges slowly, and so we use the approximation

ft(α) ≈
1− cos(α)

2
√
π sin(α/2)

(
t

2

)− 3

2

e
t

8
−α2

2t

[
α− e−

2π2

t

(
(α− 2π)e

2πα

t + (α+ 2π)e−
2πα

t

)]
from Leach et al. (2022) instead. From the angle α and the axis v = (x, y, z), we define
the skew symmetric matrix V associated to v to be

V =

 0 z −y
−z 0 x
y −x 0


and calculate the corresponding rotation matrix using Rodrigues’ formula

R = I + sin(α)V + (1− cos(α))V 2.

Finally, we set xt = Rx0. In this way, we can directly sample from the noising process
at time t.

The reverse process is generated by K = ∂t+ sθ(x, t) ·∇+ 1
2∆ by Example 7, and the

score network is parameterised as sθ(x, t) =
∑3

i=1 s
i
θ(x, t)Ei(x), using a basis {Ei}3i=1 of

the tangent bundle.
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We use the denoising score matching objective IDSM(θ) to learn θ (see Section F.3).
To compute the score ∇ log qt|0(xt|x0), we use automatic differentiation on Equation

(29), where xt,x0 ∈ R3×3 are represented in matrix form, followed by projection to the
tangent space at xt. For small times, we find this can be numerically unstable, and so
we use Varadhan’s approximation

lim
t→0

t∇ log qt|0(xt|x0) = exp−1
xt

(x0)

for the heat kernel qt|0(xt|x0) at small times instead (De Bortoli et al., 2022).
Once we have learned the score network, we generate approximate samples from the

reverse process using the Geodesic Random Walk method of De Bortoli et al. (2022),
which corresponds to performing an Euler-Maruyama discretisation, taking Gaussian
steps in the tangent space and then projecting back to the manifold using the exponential
map.

J.4.1. Derivation of analytic transition probabilities
First, we calculate the metric tensor using the quaternion chart on SO(3), where the
unit quaternion w + xi + yj + zk represents a rotation by an angle α = 2 cos−1(w)
about the axis (x, y, z), and we consider the coordinates (x, y, z) to be our local chart.
If r = w + xi+ yj+ zk, we find the metric at r by considering two small displacements
r + dr and r + dr′, rotating r back to the identity, and then using the fact that near
the identity the metric is given by 4dx2 + 4dy2 + 4dz2 (where the scaling is chosen to
correspond to the definition of the exponential map used by De Bortoli et al. (2022) and
Leach et al. (2022)). Writing

r + dr = (w + dw) + (x+ dx)i+ (y + dy)j+ (z + dz)k,

r + dr′ = (w + dw′) + (x+ dx′)i+ (y + dy′)j+ (z + dz′)k,

where we have wdw+xdx+ydy+zdz = 0 and wdw′+xdx′+ydy′+zdz′ = 0, and noting
that composition of rotations corresponds to multiplication in the quaternion algebra,
we have

r−1(r + dr) = (w − xi− yj− zk) ((w + dw) + (x+ dx)i+ (y + dy)j+ (z + dz)k)

= 1 + (−xdw + wdx− ydz + zdy) i+ (−ydw + wdy − zdx+ xdz) j

+ (−zdw + wdz − xdy + ydx)k

and similarly for r−1(r + dr′). Therefore, the metric is expressed by

4

{(
w +

x2

w

)
dx+

(
−y + xz

w

)
dz +

(
z +

xy

w

)
dy

}2

+ cyclic terms.

Multiplying out, collecting like terms and inspecting the coefficients of dx2, dxdy etc.,
we see that

gij =
4

w2

w2 + x2 xy xz
xy w2 + y2 yz
xz yz w2 + z2
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and we can calculate |g| = 1/w2. Inverting the metric, we get

gij =
1

4

(1− x2) −xy −xz
−xy (1− y2) −yz
−xz −yz (1− z2)

 .

Now, we want to switch to using w as a coordinate, and to find expressions for ∆f where
f(w) is a function only of w. To this end, we have

∇f =
∂f

∂w
dw = − 1

w

∂f

∂w
(xdx+ ydy + zdz) ,

gij(∇f )j = −
1

4w

∂f

∂w

(1− x2) −xy −xz
−xy (1− y2) −yz
−xz −yz (1− z2)

x
y
z

 = −w

4

∂f

∂w

x
y
z

 ,

so

∆f = w ∂i

(
1

w
gij(∇f)j

)
= −3w

4

∂f

∂w
+

1− w2

4

∂2f

∂w2
.

If we make the substitution w = cos(α/2), where α is the angle of the corresponding
rotation, then dw = −1

2 sin(α/2)dα, and we get

∆f = cot(α/2)
∂f

∂α
+

∂2f

∂α2
.

To find the transition probabilities, we must solve the Fokker–Planck equation

∂q

∂t
=

1

2
∆q

on SO(3), subject to the initial condition of a delta mass at I. By symmetry, we know
the solution will be rotationally symmetric, so we can write the solution as q(α, t). Now,
we look for separable solutions of the form q(α, t) = T (t)A(α). We see that we must
have

1

T

dT

dt
=

1

2A

(
cot(α/2)

dA

dα
+

d2A

dα2

)
.

Separating the two equations, we see that we require

dT

dt
=

1

2
λT, cot(α/2)

dA

dα
+

d2A

dα2
= λA,

for some fixed λ. The first equation has solution T (t) = eλt/2, while a solution to the
second is given by

A(α) =
sin

((
µ+ 1

2

)
α
)

sin(α/2)
,

where µ satisfies −µ(µ+ 1) = λ. In addition, the boundary conditions force µ to be an
integer. Combining these expressions, we see that the solution is of the form

q(α, t) =

∞∑
ℓ=0

βℓe
−ℓ(ℓ+1)t/2 sin

((
ℓ+ 1

2

)
α
)

sin(α/2)
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for some coefficients βℓ. Finally, we have the initial condition that q(α, 0) = 0 for
α > 0 and

∫
SO(3) q(x, 0)f(x)dν(x) = f(I) where ν is the uniform probability measure

on SO(3). Up to a scaling factor, this is satisfied if and only if βℓ ∝ (2ℓ + 1). Putting
this all together, we obtain Equation (29).

J.5. Mixture of wrapped normal distributions on SO(3)
We consider modelling a mixture of wrapped normal distributions on SO(3). The
wrapped normal distribution NW (x | µ, σ2) with mean µ and variance σ2 is defined
here as the transformed distribution via sampling w ∼ N (w | 0, σ2), where w ∈ R3×3,
from the standard normal distribution with variance σ2, projecting w onto the tangent
space via v = w−wT

2 , then applying the exponential map x = expµ(v) at µ. While we
could apply standard parametric learning methods which involve learning of {µm, σm}
directly, we do not rely on the specific form of the data distribution pdata, which allows us
to model different distributions flexibly. We consider modelling of a mixture of wrapped
normal distributions with M = 16 mixtures.

We apply a time-rescaling for the noising process, which is given by L = ∂t+
1
2β(t)∆

with the linear β schedule given in Equation (28). Then, the reverse process is generated
by K = ∂t + β(t)sθ(x, t) · ∇ + 1

2β(t)∆. We use an MLP with 5 layers and 512 hidden

units in each layer to output a vector of dimension 3 parameterising {siθ(x, t)}3i=1. We
train the network using the Adam optimiser with batch size 512 and learning rate 0.0002
with a cosine annealing schedule for 100000 iterations.

We learn both the unconditional distribution pdata(x) and the conditional distribution
pdata(x|m) when conditioned on the cluster member m. In the conditional case, we learn
a conditional score model sθ(x,m, t) under the same settings.

Fig. 10 shows the results from our conditional model for pdata(x|m), where we com-
pare the unwrapped distributions in the tangent space between the ground truth normal
distribution and the modelled distribution of mixture member m = 1, and plot a repre-
sentative sample from our conditional model. We see that our model targets the correct
mixture accurately. Our visualisations of distributions on SO(3) are adapted from Mur-
phy et al. (2021).

We compare our method to the method of De Bortoli et al. (2022), in which the
denoising diffusion model for this task is trained by simulating the forward process using
the Geodesic Random Walk and using the DSM loss with Varadhan’s approximation,
rather than using the analytic transition densities given in Appendix J.4.1 as we do. We
compare the two methods using the learned models’ test-set log-likelihood, calculated
using the probability flow ODE as in De Bortoli et al. (2022), as well as the average
time per training iteration. Our results are shown in Table 2. We see that both methods
achieve comparable log-likelihoods, but our method is about 15% more efficient during
training since having the analytic transition densities means that we can simulate the
forward noising process in a single step.

J.6. Pose estimation on the SYMSOL dataset
We give details for the pose estimation task on the SYMSOL dataset. We use a similar
network design for the conditional score sθ(xt, ξ, t) as Murphy et al. (2021), composed of
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Fig. 10. (Left) Histogram of samples from our model conditioned on the mixture member m = 1
compared to the ground truth normal density, represented in the tangent space of SO(3). (Right)
Conditional samples from the model for m = 1. The axis of rotation and rotation angle are
represented by position and colour respectively.

Table 2. Test set log-likelihood and time per training iteration for denoising models on SO(3).
Mean and standard deviation reported over 5 seeds.

Time per
M = 16 M = 32 M = 64 iteration (ms)

De Bortoli et al. (2022) 0.864±0.026 0.174±0.025 -0.516±0.016 55.18±2.783
Analytic (ours) 0.872±0.026 0.175±0.025 -0.515±0.016 47.23±2.134

a vision recognition model for processing the input images ξ, and an MLP for outputting
the score. For the vision recognition model, we utilise pretrained ResNet-50 backbone
without the final fully-connected classification layer, which outputs a 2048-dimensional
embedding. We next get sinusoidal positional embeddings of xt and t, use linear layers
to transform all embeddings into 256 dimensions and take the summed embedding. This
also allows efficient computations of embeddings with a single ξ and multiple values
of (xt, t) as the computationally expensive forward pass through the vision recognition
model only needs to be taken once. Thus, we simulate a small number of (xt, t) pairs
given each pair (x0, ξ) at each step for more efficient training. We finally pass the
embedding into an MLP with 3 layers and 256 hidden units in each layer.

Compared to the Implicit-PDF methodology by Murphy et al. (2021), which main-
tains a grid on SO(3) and approximates the density pointwise, our DMM model directly
learns a sampling method and does not require maintaining a grid. Therefore, our
method is more general and not specific to SO(3). For our implementation, we modify
their network structure to take in the time t, and output the score parameterisation of
dimension 3 as opposed to the unnormalised log density of dimension 1. We optimise
the network using the Adam optimiser with batch size 128 and learning rate 0.0001 with
a cosine annealing schedule for 100000 iterations.

We include further visualisations of the generated samples when conditioned on 2D
views of different shapes in Fig. 11. As shown in the plots, the samples generated using
DMM are all close to the ground truth and cover all modes of the class of rotational
symmetries.
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Fig. 11. Samples from the ground truth (plotted as stars, middle) and our pose estimation DMM
(right) conditioned on 2D views of shapes (left). The axis of rotation and rotation angle are
represented by position and colour respectively.



From Denoising Diffusions to Denoising Markov Models 53

Table 3. True test data log-likelihood compared to the DMM model ELBO as given
by (8) using the ISM loss for the mixture of Dirichlet example. Mean and standard
deviation reported over 5 seeds.
Dimension of simplex N = 3 N = 5 N = 10 N = 20

Data 1.321±0.340 4.122±0.242 15.288±0.389 45.914±0.694
Model 1.158±0.160 4.017±0.208 15.061±0.428 45.494±0.698

J.7. Approximation of distributions over measures using Wright–Fisher diffusions
Finally, we evaluate the Wright–Fisher diffusion framework from Appendix F.4 for mod-
eling distributions over measures on a finite state space. We test our framework by at-
tempting to model mixtures of Dirichlet distributions pdata(x) =

1
M

∑M
m=1Dirichlet(αm)

with parameters αm ∈ RN . We consider M = 4 mixtures and vary the number of di-
mensions N of the simplex.

As in Appendix F.4, we use a Wright–Fisher diffusion with qij = ϑj for all i ̸= j as
our noising process, and set ϑj = 3 for all j = 1, . . . , N . We also apply a time rescaling to
the forward process as in Equation (28). We set βmin = 0.001 and βmax is selected using
a grid search from 0.5, 1, 2. We simulate the forward diffusion process using the exact
simulation algorithm of Jenkins and Spanò (2017), which exploits the eigenfunction de-
composition of the Wright–Fisher process transition function given in Equation (21) and
works by sampling from the ancestral process AΘ

∞(t) whose distribution is determined
by the functions {dΘn (t) : n = 0, 1, . . . }. For very small times t, we also use a normal
approximation for simulating AΘ

∞(t). For more details, we refer the reader to Jenkins
and Spanò (2017).

We learn the score network with the parameterisation siθ(p, t) = pi∂(log β(p, t))/∂pi
using the implicit score matching loss (27). We parameterise sθ(p, t) using an MLP with
4 layers and 512 hidden units in each layer to output a vector of dimension N . We train
the network using the Adam optimiser with batch size 128 and learning rate 0.0001 with
a cosine annealing schedule for 100000 iterations.

We visualise the results of this experiment in Fig. 7 for a 3-dimensional example. As
can be seen, the DMM model is able to learn the ground truth distribution very accu-
rately. We also report in Table 3 the ground truth log-likelihood of the data distribution
pdata(x) and the ELBO of the DMM model given by (8) using the ISM loss, as the num-
ber of dimensions N increases. We observe that the model’s ELBO is consistently close
to the true data log-likelihood, which demonstrates the scalability of the DMM model.
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