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Summary. We consider the analysis of continuous repeated measurement outcomes that are
collected longitudinally. A standard framework for analysing data of this kind is a linear Gaussian
mixed effects model within which the outcome variable can be decomposed into fixed effects,
time invariant and time-varying random effects, and measurement noise. We develop method-
ology that, for the first time, allows any combination of these stochastic components to be
non-Gaussian, using multivariate normal variance—mean mixtures. To meet the computational
challenges that are presented by large data sets, i.e. in the current context, data sets with many
subjects and/or many repeated measurements per subject, we propose a novel implemen-
tation of maximum likelihood estimation using a computationally efficient subsampling-based
stochastic gradient algorithm. We obtain standard error estimates by inverting the observed
Fisher information matrix and obtain the predictive distributions for the random effects in both
filtering (conditioning on past and current data) and smoothing (conditioning on all data) con-
texts. To implement these procedures, we introduce an R package: ngme. We reanalyse two
data sets, from cystic fibrosis and nephrology research, that were previously analysed by using
Gaussian linear mixed effects models.

Keywords: Heavy-tailedness; Latent effects; Longitudinal data; Multivariate analysis;
Non-normal distributions; Skewness; Stochastic approximation; Tail data

1. Introduction

This paper is concerned with the analysis of real-valued repeated measurement data that are
collected through time, also known as longitudinal data. The basic data structure is that repeated
measurements of an outcome variable are made on each of a number of subjects at each of a
number of follow-up times, which are not necessarily the same for all subjects, with explanatory
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Fig. 1. Data on six patients in a randomized trial of drug therapies for schizophrenia (the outcome vari-
able, PANSS (positive and negative syndrome scale), is a questionnaire-based instrument for assessing the
severity of a patient’s condition): , patients from the placebo treatment arm; - - - - - , patients from the
active treatment arm

variables or covariates of two kinds also available: baseline covariates attached to subjects, and
longitudinal covariates attached to individual outcomes. We write Y;; for the jth measurement
of the outcome on the ith subject, f;; for the corresponding follow-up time, a; for the matrix of
baseline covariates that are associated with the ith subject and x;; for the matrix of longitudinal
covariates that are attached to the jth measurement on the ith subject.

Fig. 1 shows a simple example, taken from a randomized trial of drug treatments for schizophre-
nia, in which the outcome variable is a measure of each subject’s mental state at times 0, 1, 2,
4, 6 and 8 weeks after randomization to one of two different drug therapies: placebo versus
active treatment. Here, a; is a scalar treatment indicator, whereas the general pattern of de-
creasing responses over time suggests a quadratic trend; hence x;; consists of ;; and tlzj Fig. 1
shows data from three subjects in each of the two treatment arms; the complete trial included
88 subjects in the placebo group and 435 subjects distributed across five active treatment arms
(Henderson et al., 2000). This example shows several features that are typical of studies of this
kind: the outcome variable, the PANSS-score (positive and negative syndrome scale) (Kay et al.,
1987), is an imperfect measurement instrument for the underlying process of interest, namely
each subject’s state of mental health at the time of measurement; the outcome variable exhibits
stochastic variation both between subjects and between follow-up times within subjects; ques-
tions of interest include estimation of parameters that define the mean response profiles of the
underlying process over time and prediction of the trajectory of the process for an individual
subject.



Linear Mixed Effects Models 3

Most of the very extensive literature on statistical methods for data of this kind uses either a
Gaussian model or, if the inferential goal is restricted to parameter estimation, a set of estimating
equations; textbook accounts include Verbeke and Molenberghs (2001), Diggle et al. (2002)
and Fitzmaurice et al. (2011). In this paper, we present methodology for handling repeated
measurement data that exhibit long-tailed or skewed departure from Gaussian distributional
assumptions.

In Section 2, we review the literature on existing approaches to Gaussian and non-Gaussian
modelling of real-valued repeated measurement data. In Section 3, we set out our proposed class
of non-Gaussian models. In Section 4, we describe a computationally fast method for likelihood-
based inference. Section 5 describes a method for validating the distributional assumptions of the
models considered. Section 6 describes two applications. In the first of these, the scientific focus is
on estimation of mean response profiles, whereas in the second the focus is on realtime individual
level prediction. Section 7 presents the results from two simulation studies and Section 8 describes
our R package, ngme, that implements the new methodology. In Section 9, we discuss some
potential extensions, including models for categorical or count data (Molenberghs and Verbeke,
2005) and joint modelling of repeated measurement and time-to-event data (Rizopoulos, 2012).
Technical details are presented in the appendices.

2. Literature review

2.1. Gaussian models for real-valued repeated measurement data
Laird and Ware (1982) were the first to consider modelling repeated measurements as noisy
versions of underlying signals that can be decomposed into fixed effects aiTa + XiTjﬁ and random
effects diTjUi, leading to the mixed effects model

Yij=a] a+x,8+d Ui +0Z;, j=1,....n, i=1,....m, 1)
where n; is the number of measurements on the ith subject, m is the number of subjects, the
individual level U; are mutually independent, zero-mean multivariate normal, U; ~ N(0, 33) and
the Z;; are mutually independent N(0, 1).

A widely used special case of model (1) is the ‘random-intercept and random-slope’ model in
which each subject’s random effect is a linear function of time. This model is very useful when
the data contain only a small number of repeated measurements per individual. With longer
sequences, the assumption that individual random-effect trajectories can be approximated by
straight lines becomes implausible, because of non-linearities in the trajectories. Diggle (1988)
proposed adding to the model a time-varying random-effect term W;(z), specified as a stationary
stochastic process. Taylor et al. (1994) and Diggle et al. (2015) later considered non-stationary
options for W;(¢). The general specification for models of this kind is that

Yij=al a+x),8+d U+ Wii)) +0Zij, (2)

where, in addition to the notation that has already been introduced, the W;(¢) are independent
copies of a continuous time zero-mean Gaussian process with covariance function ~(z,1') =
cov{W;(r), W;(t') }. We consider the elements of both the a; and x;; to be prespecified constants.
This implicitly assumes, in particular, that, if any time-varying covariate is not prespecified, it is
stochastically independent of all other terms in the model; hence conditioning on it is innocuous.
We can then drop the term al-Ta in model (2) by allowing elements of x; ; to take identical values
for all j that are associated with any fixed i. For the covariance function ~y(z,"), we use the
stationary Matérn (1960) family:
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Y,y = 227 (@)} kle = 1)Ky (sl =1, 3)

where I'(¢) is the complete gamma function, w? >0 denotes the variance, ¢ > 0 is a shape
parameter, ~ >0 is a scale parameter and K is a modified Bessel function of the second kind of
order ¢. The corresponding Gaussian process W; () is [¢] — 1 times mean-square differentiable,
where ‘[-]” denotes the ceiling function. An alternative way of capturing non-linear behaviour
of repeated measurements is to specify the random effects as regression splines or polynomials
with stochastic coefficients (Fitzmaurice et al. (2011), chapter 19). We do not consider these
approaches in this paper, since they appear to us less natural than the stochastic process approach
and would require many more parameters to achieve the same flexibility in shape. That said,
there are connections between an integrated random-walk process and a smoothing spline
representation of the W;(f) (Wahba, 1990; Zhu and Dunson, 2017).

Likelihood-based inference for model (2) is straightforward. The likelihood function is a
product of m multivariate normal densities with dimensions ;. For typical study designs, the n;
are sufficiently small that the required matrix calculations are not computationally demanding.

In the continuous time setting, it is helpful to exploit an alternative representation of a Gaus-
sian process W(-) as the solution to a stochastic differential equation,

DW(@) =dL(), 4

where D is a differential operator and dL(¢) is continuous time Gaussian white noise (Lindgren
et al., 2011). For example, the integrated random-walk model used by Diggle ez al. (2015) and
Zhu and Dunson (2017) corresponds to D = 3>/dr%, whereas the Matérn model corresponds to

92\ o+D/4
> )

D=(r’>-—
<FC or2

For the stochastic differential equation representation of an integrated Ornstein—Uhlenbeck
process, see Zhu et al. (2011a,b).

In applications for which only the regression parameters 3 are of scientific interest, estimat-
ing equations offer an alternative to likelihood-based estimation. In the current context, this
approach was introduced by Liang and Zeger (1986), working in the wider setting of general-
ized linear models. For linear models, the approach consists of estimating 3 by weighted least
squares; hence

m _l m
B= (z x?Fm) x!F;Y;, (6)
i=1 =1

1

where, for each i, Y, = (Yi,..., Ym,.)T, x; is the n; x k matrix whose jth row is xiTj and the
F; are weight matrices. Rewriting equation (6) in an obvious shorthand notation as 8= DY,
inference for 3 uses the result that 3 is asymptotically multivariate Gaussian with mean 3 and
variance DCDT, where C =var(Y), a block diagonal matrix with non-zero blocks, C; = var(Y;).
IfF;, = C;l, then B is the maximum likelihood estimator for 3.

The basic idea behind equation (6) is to choose, rather than to estimate, a set of matrices F;
that reflect a reasonable working covariance structure for the matrices C; = var(Y;), but not to
rely on the correctness of the chosen structure. Instead, the unknown matrix C; is replaced by a
non-parametric estimate C;. One such set of estimates is given by C,= n; ! Y;i—x; ,5‘) (Y —x; ,@)T.
Individually, each C; is a very poor estimate of C;, but the implicit averaging in equation (6)
leads to consistent estimation of var(3) in the limit m — oo for fixed n; (Liang and Zeger, 1986).
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2.2. Non-Gaussian models for real-valued repeated measurement data
The existing literature on non-Gaussian models takes as its starting point a linear model with
correlated errors:

Y;j=x.;B8+Si), (M
where, in the case of a common set of follow-up times, 71, ...,1,, for each subject, the S; =
(Si1, ..., Sin)T are independent copies of a zero-mean multivariate normal random vector (Jen-

nrich and Schluchter, 1986). Most references consider the Laird—Ware approach as presented
in model (1), where

SijzdiTjUi-i-Z,'j. 8)

Liu and Rubin (1995), Lange et al. (1989) and Pinheiro et al. (2001) replaced each S;; in equa-
tion (7) or (8) by Sl-”} = S;j/+/Vi, where the V; are mutually independent unit mean gamma-
distributed random variables. They estimated the model parameters by maximum likelihood
using an expectation—maximization algorithm (Dempster et al., 1977). Lin and Wang (2011)
considered Bayesian methods of inference for the same class of models. Matos et al. (2013)
extended the work of Pinheiro et al. (2001) to allow censored outcomes.

Song et al. (2007) and Zhang et al. (2009) considered an extension to Lange et al. (1989) by
allowing the gamma-distributed scaling factor V; to apply to either one of the two components
on the right-hand side of equation (8). Lin and Lee (2007) applied the gamma-distributed scaling
factor only to the random-effects term diTjUi but also replaced the mutually independent Z;;
by a set of auto-regressive processes; this restricts its applicability to data with equally spaced
measurement times.

Rosa et al. (2003) and Tian et al. (2008) also used the formulation S;; =S;;/+/Vi, but without
restricting the V; to be gamma distributed. Lange and Sinsheimer (1993) called the resulting
family of distributions the normal-independent family, a special case of which is a mixture of
normal distributions. The R package heavy (Osorio, 2016) fits this class of models. In a series
of papers, V. H. Lachos and colleagues have developed methodology for fitting non-linear mixed
models by using the normal-independent family; see Lachos et al. (2009, 2010, 2011,2012,2013)
Zeller et al. (2010) and Cabral et al. (2012) and also independent contributions by Verbeke and
Lesaffre (1996), Sun et al. (2008), Ho and Lin (2010), De la Cruz (2014), Zhang et al. (2015)
and Yavuz and Arslan (2016).

Several researchers have extended the single-term modelling framework (8) by decoupling
the scalings of the random effects and the measurement error terms. See, for example, Rosa
et al. (2004), Aralleno-Valle et al. (2007), Jara et al. (2008), Meza et al. (2012), Choudhary
et al. (2014) and Bai et al. (2016). Lu and Zhang (2014) extended the approach to include
non-ignorable drop-out.

Wang and Fan (2011, 2012), Lin and Wang (2013) and Kazemi ez al. (2013) used the normal-
independent family to model multivariate repeated measurement data.

Others have taken a semiparametric approach to the problem, for example by using a Dirichlet
process prior for the random effects or leaving the random-effects distribution unspecified. See
Kleinman and Ibrahim (1998), Ghidey et al. (2004), Tao et al. (2004), Subtil and Rabilloud
(2010), Davidian and Gallant (1993), Zhang and Davidian (2001) and Vock et al. (2012). Koller
(2016) considered robust estimating equations.

We have found only two references that considered the general form of model (2) with three
stochastic components with the single-term formulation (8), namely Stirrup et al. (2015) and
Asar et al. (2016), and none that allows the three scaling factors to be decoupled.
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3. A flexible class of non-Gaussian models

Our aim in this section is to set out a version of the mixed effects model
YijZX;S,B—I-d};-U,’—{—Wi(l‘ij)—l—O'Zij, j=1...,n; i=1,...,m, )

that, we believe for the first time, allows Gaussian or non-Gaussian distributional specifications
of the three stochastic components U;, W;(#) and Z;; to be decoupled.

Writing B and H to denote generic vector-valued random variables, we replace the Gaussian
assumption for each of the components with a normal variance-mean mixture of the form

B=6+uV+/VE/2H, (10)

where 6 and p are parameter matrices, H~ N(0, I) with I being the identity, and V is a random
variable that takes values on R™. We need to impose some restrictions on the distribution of V for
the inferential algorithms that we develop in Section 4 to be practicable. For the subject-specific
random effect U; and the measurement-specific noise Z;; the only necessary restriction is that
V has a known distribution. However, to simplify parameter estimation, we shall impose the
additional restriction that V|H also has a known distribution. For the subject-specific continuous
time stochastic process W;(t) we use a numerical discretization of the differential operator (4) to
generate realizations of the process. For this reason, we need the distribution to be closed under
arbitrary discretization, which we ensure by requiring that the distribution of V be closed under
convolution. Our specific proposals for U;, W;(¢) and Z;; are described below in more detail.

A flexible choice for B is the multivariate generalized hyperbolic (GH) distribution (Barndorff-
Nielsen, 1977; Vilca et al., 2014). This distribution can be generated from the mixture represen-
tation (10) by specifying a generalized inverse Gaussian (GIG) distribution for V. The density
function of the GIG distribution is

, _ (a/pyr* a b,
f(x,p,a,b)—mx exp(—x—x ), (11)

where K, is the modified Bessel function of the third kind, of order p, whereas a and b are
positive-valued parameters. We denote this distribution by GIG(p, a, b) and refer the reader to
Jorgensen (1982) for more details. An important property of this distribution is that, for any
¢>0,cV~GIG(p,a/c,cb). Another property that is useful for the construction of the sampling-
based inferential algorithms that we introduce in Sections 4.2 and 4.4 is that the conditional
distribution of V given the observed data is also GIG.

The GH distribution includes several widely used distributions as special cases, e.g. the Stu-
dent ¢, generalized asymmetric Laplace (GAL), normal-inverse Gaussian (NIG) and Cauchy
distributions. Specific parameter configurations for the distributions of V that give each of these
special cases are presented in Table 1. Note that, for both the NIG and the GAL distributions,
the formulation is overparameterized for B in equation (10). One therefore needs to fix a or b.

3.1. Noise and random effects
Since the measurement noise is univariate, we can write the mixture representation (10) as

Zij=6% + p?Vi+ o Vi ZE, 12)

where Z;“j ~ N(0, 1). To maintain the interpretation of o2 as the variance of the noise, at least in
the symmetric case, we constrain the values of the GIG parameters a, b and p, so that E [Vl-? 1=1,
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Table 1. Some special cases of the GH distribution, their mix-
ing distributions and their corresponding GIG forms+

Distribution of B Mixing distribution GIG form of the
of V mixing distribution
t 1Gam(v/2,v/2) GIG(v/2,v,0)
NIG 1G(a, b) GIG(-1.a,b)
GAL Gam(p,a) GIG(p,2a,0)
Cauchy 1Gam(3,5/2) GIG(-1.0,b)

tGam indicates the gamma family of distributions, IGam the in-
verse gamma family and IG the inverse Gaussian family.

and hence var(o/V/ Z}) = o2. We further set 6% = —p% to ensure that the measurement noise
is zero mean, i.e. E[Z;;]=0.

An alternative to representation (12) is to attach a single random variable VZ to all of the
noise terms Z;; on the ith subject, i.e. Z;; = 6% + p? VZ + \/VI-ZO'Z?}. The distribution of V; can
then be interpreted as a random effect for patient-specific measurement noise variance. Note, in
particular, that this introduces stochastic dependence between Z;; and Z; for j+# j’, although
they are conditionally independent given Vl-Z.

For the random effects, we let U; = 6" + uV vV + /VUS/2U¥, where V; is a unit-mean
GIG random variable and U} ~ N(0,) with I as before. We again set 6Y = —puY to ensure that
E[U;]1=0.

3.2. Stochastic process

A simple way to introduce a non-Gaussian stochastic process term in expression (9) would be
again to include a subject-specific scaling, i.e. W;(t) = ViW W (1), where ViW follows a unit mean
GIG distribution. However, this approach would not be able to capture interesting within-
subject departures from Gaussian behaviour, e.g. jumps or asymmetries in the sample paths of
W;(t). To provide the required flexibility, we instead use non-Gaussian generalizations of the
stochastic differential equation (4). Specifically, we propose modelling the W;(¢) as independent
copies of the solution to

DW;(t)=dLi(1), 13)

where the L; are independent copies of a non-Gaussian Lévy process, i.e. a process with indepen-
dent and stationary increments. In practice, we work with a discretized version of equation (13),
for which Bolin (2014) showed that a type G Lévy process for L;(¢) is a suitable candidate. The
implication is that the increments of L; have a distribution that corresponds to the specification
given by equation (10).

One approach would therefore be to choose the distribution of V% as a GIG distribution,
which would yield the GH processes of Eberlein (2001). However, as noted earlier, we require the
distribution of V¥ to be closed under convolution (Wallin and Bolin, 2015). Also, the stochastic
gradient method for parameter estimation that we introduce in Section 4 requires the ability
to sample from the conditional distribution of V" given all other components in the model.
Within the GH family, the NIG, GAL and Cauchy distributions are the only ones that meet these
requirements (Podgorski and Wallin, 2016). In Table 2, we present the parameterization of the
mixing distribution for the three cases. Using any of these distributions for the increments of L;
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Table 2. The parameterizations of the three types of GH pro-
cesses satisfying closure under convolution

Distribution of L(t)  Mixing distribution GIG form of the
of VW mixing distribution
Cauchy 1Gam(},7%/2) GIG(-1,0,7%)
NIG 1G(a, br) GIG(—1,a,br%)
GAL Gam(pt,a/2) GIG(pt,a,0)

in equation (13) results in models with the same covariance structure as if L; were Gaussian, but
with more general marginal distributions. The NIG choice makes L; an NIG process (Barndorff-
Nielsen, 1997a). This class of processes has been used in financial modelling; see Barndorft-
Nielsen (1997b), Bibby and Serensen (2003), Tankov (2003) and Eberlein (2001), for more
details.

3.2.1.  The choice of operator

As previously mentioned, using D as in equation (5) yields a process with a Matérn covariance
function. More specifically, if the process is defined on the entire real line, then it has Matérn
covariance. In practice, we restrict the process to a bounded temporal interval and impose
boundary conditions on the operator to obtain a well-posed problem. Common choices for these
artificial boundary conditions are either homogeneous Neumann or homogeneous Dirichlet
conditions. The effect of these artificial boundary conditions is small for distances that are larger
than twice the practical correlation range of the process (Lindgren et al., 2011). We therefore
define the process on an extended temporal domain T =[—r, fymax + ] where all measurement
times lie within the interval [0, fnax] and 7 is a value that is larger than the practical correlation
range.

For ¢ = %, the operator (5) is D; = (k% — 8%/8¢2)1/2, which results in a process with an exponen-
tial covariance function E[W(t)W(t +h)] = (2x) ! exp(—«|h|). Another, perhaps more natural,
choice that results in a process with exponential covariance when defined on the entire real line
is D> =K+ 9/0t. This can easily be seen by computing the power spectrum Sw (w) of the corre-
sponding stochastic process. Taking the Fourier transform of the stochastic differential equation
gives (k +iw) W(w) =dL(w). Using the fact that the power spectrum of dL(w), is constant, it
follows that

Sw(w) cx{(m—i—iw)(f-i—iw)}_l =K +wH L

which we recognize as the spectral density corresponding to the exponential covariance function.
This result is well known, since in the Gaussian case the process is the classical Ornstein—
Uhlenbeck process. When posed on the bounded domain 7, we only have to equip D, with one
boundary condition. A natural choice in this case is a stochastic Dirichlet boundary condition
at either end point of T, W(0) = W or W(T) = W, where W is a random variable with distribution
equal to the marginal distribution for W(#), when the model is formulated on the entire real line.
This results in a stationary model and there is no need to extend the domain of interest.

When the driving noise of the process is Gaussian, the models that are formulated by using
D) and D, are equivalent in distribution (apart from the behaviour at the boundary of the
domain). However, for non-Gausisan models the processes that are formulated by using the
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two choices are not equivalent: the kernel of D; is symmetric, whereas the kernel of D; is
completely asymmetric. This affects the appearance of trajectories of the process. For Dy, the
trajectories are symmetric in time, i.e. the process is time reversible, whereas the trajectories can
be asymmetric when D, is used. The difference between the symmetric and asymmetric models
isillustrated in Fig. 2, where the same driving NIG noise is used to simulate a trajectory using D
and D,. Using D, allows for sharp jumps in the trajectories that are not present when D is used.

One way to construct a model with a general Matérn covariance that allows for asymmetries
in the sample paths is to add a fractional exponent to D, to give D3 = (k4 9/0r)2?*+D/2_ This
results in a process with a Matérn covariance, but with asymmetry in the trajectories depending
on where boundary conditions are imposed. It should be noted that these models have Markov
properties when ¢ = %, %, %, ..., which simplifies simulation as explained in the next section.

Besides the Matérn models, another option that is used for longitudinal data is the integrated
random-walk model (Diggle et al., 2015). This can be seen as a special case of D3 with k=0
and ¢ = %, and can thus be handled in the same way as the Matérn models.

3.2.2.  Discretization
We need to discretize time to use the stochastic differential equation (13). For this, we use the
approximation

K
W) =) oWy, (14)
k=1
where W= (W1,..., Wx)T is a vector of random variables and the ¢ (¢) are basis functions. We
use a set of piecewise linear basis functions such that
= <t<
- s 81 52,
o1 = 52— 51 _
, otherwise,
ke <t<
D Sk—1 Sk
¢K(t)={ Sk — Sk—1 .
0, otherwise,
and, fork=2,3,...,(K—1),
t—Sp_
—=1, Sko1 <1< s,
Sk — Sk—1
_ t—s
n=9q - % Sk <1< Skp1,
Sk+1 — Sk )
0, otherwise,

where 0 =151 <s3 <...<sg_1 <Sk =Imax- In the case of a Dirichlet boundary condition at t =0,
the function ¢, is removed from the expansion, whereas, in the case of the Dirichlet boundary
condition at t = fi,x, ¢k 1S removed. The distribution of the stochastic weights is computed by us-
ing either a Galerkin finite element discretization or a Petrov—Galerkin method depending on the
operator; details are given in Appendix B. The result for the non-Gaussian case can be written as

WIVW ~ N[K~H{RT6Y + (VW) T}, K diag(VW)(K—HT, 15)

where K is a matrix corresponding to a discretization of the differential operator and VkW ~
IG(v, h,%u) where Ay are fixed constants depending on the basis functions. Note that we again
set 6% = — " to satisty E[W()]=0.
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Note that the parameter v controls the tails of the marginal distribution of the process. The
limiting case v — 0 is the Cauchy process, whereas the limiting case v — oo is a Gaussian
process. These are exactly the properties that we need to use our likelihood-based methods to
assess whether a standard, and undeniably convenient, Gaussian assumption for any or all of
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the stochastic components of expression (9) is adequate.
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Simulation of an NIG process with exponential covariance function using the operator (a) D, and
(b) D4, with the same driving noise in both cases: one can note that the trajectory is asymmetric in (a)
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4. Likelihood-based inference

4.1. Hierarchical representation

Our specification of a normal variance-mean mixture for each of the stochastic components
of expression (9) makes likelihood-based inference practicable via the following hierarchical
representation of the model. For subject i, let VZ, VY and V¥ denote the stochastic variance
factors corresponding to the noise, random-effects and stochastic process components of ex-
pression (9), and write Y; = (Y1, . . ., Y,',,i)T for the corresponding set of repeated measurements.
Let W; ={Wj:k=1,..., K} be the stochastic weight vector for the ith subject in the approxi-
mation of W;(¢) given by equation (14), and A; the n; x K matrix with (j, k)th element ¢ (t;;).
Write x; and d; for the matrices with jth rows xl-T- and dl-T- respectively. Finally, let ® denote
the complete set of model parameters. The model for the ith subject then has the following
hierarchical representation:

YW, Ui, V2~ N{XT B+d] U + AW, + (=1 + V52, 02 diag(V7) },
Ui| VY ~N(—pY +pV v vPs),
WilVY ~ MK (" i+ Y VY, K diag(vH) KHTY,

coupled with a final layer in the hierarchy: the distributions of the stochastic variance factors. The
distributions are GIG distributed with parameters that depend on the model choice. Integrating
out the latent variables and variance components, these equations collectively determine the
contribution of the ith subject to the marginal log-likelihood L(®;Y;). As the vectors Y; from
the m subjects are independent, the overall log-likelihood is

L©:Y)=3" Li(©:Y)).
i=1

4.2. Stochastic gradient estimation
The computations that are required for maximum likelihood estimation are cumbersome for
problems that involve longitudinal data sets with large numbers of subjects and repeats, even
using the computationally efficient approximation (14). Our proposed algorithm for maximum
likelihood estimation therefore uses a stochastic gradient method that calculates the gradient
of the objective function at each step of the maximization by subsampling.

A stochastic gradient method for the general problem of minimizing an objective function
f(©) starts with an initial guess ©®?, and then iteratively updates ® according to

"V =0" +1,0,©™), (16)

where 0, (®) isarandom variable such that E[Q,(©®)]= Ve f(®) and ), is a sequence of positive
numbers such that X°° 7, =ccand 77 | n? < 0o; an exampleis 7, oc 1 /7" with 0.5 <7 < 1. Under
mild regularity conditions, the resulting sequence @™ converges to a stationary point of f(®)
(Kushner and Yin, 2003; Andrieu et al., 2007).

For maximum likelihood estimation, f(®)=—L(O;Y). If the data set contains a large num-
ber of subjects we use only a small, randomly sampled subset in each iteration to generate a
computationally efficient stochastic gradient method. For this, Vg L(®;Y) can be replaced by
the random variable

0,(©)=VoL(©:Y)=s3" VoLi(®: Y, a”

i=1
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where the J; are independent Bernoulli random variables with P(J; =1) =1/s. Since the expected
value of Vg L (®;Y) with respect to these random variables is equal to Vg L(®;Y) for any s,
the resulting stochastic gradient method (16) will converge to a stationary point of the log-
likelihood. Our experience, for example with the two case-studies that we describe in Section
6, has been that, for data sets containing a large number of subjects, often we need only a
small proportion of the available measurement sequences Y; at each iteration to estimate the
parameters reliably. For example, we used only 688 (3%) subjects out of 22910 for the renal
case-study that is presented in Section 6.2.

For our non-Gaussian models, an additional complication is that the likelihood is not available
in an explicit form. However, using Fisher’s identity (Dempster et al., 1977) we can compute
the gradient of the log-likelihood without computing the log-likelihood itself. For all versions
of our model, the log-likelihood conditional on the variance components V={V/, vV vZ}m
is Gaussian and thus explicit. Fisher’s identity then gives

VoLs(©;Y)=Ev{VeLs(©®;Y,V)|Y},

where L;(©;Y,V) is the log-likelihood augmented with V, which is explicitly available since
Y|V is Gaussian and V is GIG. The expectation with respect to V is not, in general, explicit
but can be approximated by Monte Carlo (MC) sampling from the conditional distribution
V|Y. We use a Gibbs sampler and iterate between sampling from the conditional distributions
VIU, W, Y and U, W|V, Y, where U={U;}/", and W ={W;}" ; for details, see Appendix A.
Convergence of algorithms of this kind was studied in Andrieu et al. (2007).

When using stochastic gradient optimization to maximize over many parameters, it is impor-
tant to scale the gradient by a preconditioner to give a Newton-like iteration. Our proposed
algorithm therefore is

@(n+l) — @(n) +7]nl(®(ﬂ))_l O, (@(ﬂ))’ (18)

where I(©)~! is a preconditioner to be determined and Q,, (®") is a stochastic approximation
of the gradient based on subsampling and MC integration over V using the Gibbs sampler.
One option for the preconditioner is I* (@) = —EV[V(%LS((%; Y, V)|Y]. Calculation of I*(®) is
typically easy, since VéLS((-); Y, V) is often explicit and can be calculated simultaneously with
the gradient. Lange (1995) described the connection between using I*(®) and the expectation—
maximization algorithm. However, if the same variables are used for the MC estimates of
the expectations in I*(®) and Q,,(®), the joint updating step (18) will be biased because of
correlation between the two estimated expectations. One way to avoid this is to use different
samples of V|Y to compute the two expectations. Instead we use a preconditioner that is similar
to the complete Fisher information cFIM,

Lrim(©) = —Ey y[V3 Ls(©; Y, V)], (19)

which often can be computed explicitly. Note that, in equation (19), the expectation is taken
over both Y and V. Since the expectation is not conditioned on Y, cFIM does not suffer from
the same biasedness issues as I*(©). However, it can still be biased if subsampling is used, and
we therefore use a preconditioner that is a weighted average of I.piv (®) over past iterations to
reduce the bias. The use of cFIM is not ideal because it may result in slow convergence, but itis the
best available option. The standard Fisher information matrix, Irpv (@) = —Ey[VéLs(@; Y)],
is seldom explicit and thus cannot be used as a preconditioner. However, we do need to estimate
either the standard or the observed Fisher information matrix oFIM, Ioppv (®) = —VéLS(Q; Y),
to calculate confidence intervals for the estimated parameters. We estimate Ioppv (®) by using
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Louis’s identity (Louis, 1982),
LoriM(©®) = —Ey[VELs(©;Y,V)|Y] - vary{Ve Ls(©; Y, V)Ve Ly(©; Y, V) T|Y}. (20)

Both terms on the right-hand side of equation (20) can be estimated by MC sampling, as
proposed for Vg Ls(©;Y) in equation (17). We could also estimate Irpv(®) by an additional
sampling step, using the fact that Irpv (®) = Ey[Ioriv (©)]. For more details on the calculation
of the gradients required and oFIM, see Appendix A.

4.3. Multiple-chain estimation

A drawback of the estimation procedure that was described in the previous subsection is that the
stochastic nature of the method can make it difficult to determine a suitable stopping criterion.
To overcome this problem, we propose running several independent estimation procedures in
parallel, starting from the same initial guess, i.e., using algorithm (18), we compute N, different
estimates of @™, {@E”) :i=1,..., N;}, in parallel started from the same initial guess and using
independent stochastic estimates of the gradient and preconditioner.

We combine these estimates by taking the mean of the N,-estimates and calculate the estimate
of the corresponding MC standard deviations . These statistics are calculated, for the jth
parameter, as
1 N

oW—_—_ sy ®,
J er; L

and

1 N 1/2
m_ LS5 em_gmp
g {Nr l;( i,j j ) s

where 95:1/') denotes the jth element in @f"). We run each chain in batches. Whenever n =kNj, for
k=4,5,6,... being the number of batches and N, a chosen batch size (we use 1000 as default),

we check whether each parameter ©;, the jth element of ©, has converged on the basis of
two criteria. The first is that o/ /O should be smaller than a threshold, e.g. 0.1. This means
that the MC variance should be sufficiently small for each parameter. The second convergence
criterion is that the rate of change for each parameter should be sufficiently small. To check this,
we estimate the intercept and slope of a simple linear regression model fit to the last four batch
estimates of © (i.e. the values @5-( DY) for 1 = 0,...,3)astheoutcome and iteration as the input.
We then check whether the magnitude of the slope is not significantly larger than some constant
(such as 0.01) times the magnitude of the intercept. We conclude convergence of a parameter
if both criteria are satisfied and stop the estimation procedure if all parameters converge. An
example of the trajectories for the multiple-chain estimation procedure is shown in Fig. 3.

The use of multiple chains has extra advantages, in addition to providing stopping criteria.
The first is that the combined estimates that are based on multiple chains naturally have lower
MC variances than the estimates that are based on using a single chain. The second is that
the estimates of the MC variances can be used when computing confidence intervals for the
parameters, which can improve coverages of Wald-type confidence intervals. Specifically, to
compute a confidence interval for © ;, we use © j & z,/24/{ (05-"))2 + a?}, where Jj-") is the estimate
of the MC standard deviation for the final iteration n, and o2 denotes the jth diagonal element
of the inverse observed Fisher information matrix. Details on the calculation of the Fisher
information matrix are given in Appendix A.
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4.4. Subsampling with fixed effects: the grouped subsampler

Another issue with the subsampling method that was described in Section 4.2 is that the subsam-
pled matrices of covariates, X;, may not be of full rank. If this is so, none of the preconditioners
that were described above can be used. In contrast, regular subsampling without any precondi-
tioners may result in large MC variation in the estimated gradient. The cystic fibrosis case-study
that we shall describe in Section 6.1 provides an example. These data are stratified into birth co-
horts whose effects are important, but one of the cohorts contains only seven patients. This issue
is related to subsampling for S-estimation algorithms in linear regression models (Koller and
Stahel, 2016), but we could not find a satisfactory solution in the literature that could be applied
in the current context. To address the issue, we therefore introduce the following subsampling
procedure, which we call the grouped subsampler. The procedure first builds k£ + 1 groups of
subjects, Gy, G1, ..., Gk, in such a way that the matrices Xg, = Eieg/.xixiT have full rank for j > 1.

The groups are built iteratively starting with G;. To this group the first subject is added and
one checks whether the covariate matrix xg, = xlxlT has full rank. If this is so, the formation of
G1 is complete. Otherwise more subjects need to be added to the group. If xg, + xzxg has a larger
rank than xg,, the second subject is added to the group and xg, is updated to xg, + xzxg. At
this stage, the formation of G; is complete if Xg, has full column rank; otherwise the procedure
continues by adding more subjects in order until xg, has full rank or until no further subjects
are left. If the formation of G; terminates because of a lack of further subjects, one cannot
estimate the model on the basis of the available subjects. Otherwise, further groups G, Gs, . ..
are constructed iteratively in the same way: subjects, who are not in any of the previous groups,
are added to the group G until the covariate matrix xg, has full rank. At some point, the
group formation will terminate because of the lack of further subjects. If this happens during
the formation of a group G, this group is removed since its covariate matrix does not have full
rank. Finally, any subjects who has not been assigned to a group are placed in the group Gy. The
procedure for forming the groups is described in pseudocode in algorithm 1 in Appendix A.4.

The groups are created as an initial stage before the estimation procedure begins. During
the estimation procedure a subsampling step is performed as follows. Assume that we want to
sample a proportion p € (0, 1) of the subjects. Let n, be the total number of subjects in the groups
Go, . . ., Gk. To ensure that we obtain a sample for which the subsampled covariate matrix has full
column rank, we need to sample all subjects from at least one of the groups Gi, ..., Gr. Given
this restriction, we would like to sample approximately pn, subjects from the groups Gi, ..., Gk
as well as png subjects from Gy. To do so, we first sample all the subjects from my = [ pk] out of
the groups Gi, ..., G chosen at random; then we sample mo=min{max([pN — Mk/ng4],1),no}
subjects at random from Gy; here, ‘[-]’ denotes the function that outputs the nearest integer.

To obtain an unbiased estimate of the gradient in the estimation step when using the subsam-
pling procedure, we assign weights k/m  to the subjects sampled from the groups G, g =1, ..., k,
and weight ny/mg to those sampled from Gy, so that each subject has weight 1 divided by the
probability of their being sampled. The fact that we can obtain unbiased estimates by using the
grouped subsampler is crucial. Many apparently natural subsampling solutions to the column
rank problem, e.g. the solution that samples subjects until the matrix has full column rank,
will not work because they produce samples that cannot easily be weighted to obtain unbiased
estimates.

4.5. Prediction
Suppose that, for a given subject i, we want to predict the value of the latent process at a given
time 7, i.e. Y5 = X;l;c B+ d;c U; + W;(t). Different types of predictions may be defined depending
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on the scientific interests of a specific application. The first is smoothing prediction, where the
quantity of interest is the value given all available data for that patient, Y|Y;. The second is
ﬁlterm% where the quantlty of interest is the value given all data collected before the time #,

’Z|Y , Where Y ={Y;j:t;; <tx}. The third is nowcasting, where the quantlty of interest is the
value given all data collected up to and including the time #, Yl",; |Y , where Y ={Y;j:t;j<t}.

For all three cases, we can sample from the relevant predictive dlstrlbutlon Y3|Y}, using
the same Gibbs sampler that was used when estimating the gradient (just conditioning on
different sets of data). The details of this Gibbs sampler are given in Appendix A.l. Given M
values obtained from the Gibbs sampler, we approximate the quantities of interest such as the
predictive mean or the quantiles of the predictive distribution needed for constructing prediction
intervals, using MC integration.

5. Model validation and model selection

An obvious question is how to decide when a non-Gaussian model is preferable to the standard
Gaussian model. A natural first step would be to check the validity of a Gaussian model through
its marginal residuals, ¥;; — xiT]ﬂ, standardized by their variances. These standardized residuals
can be plotted against theoretical quantiles of the standard normal distribution to check for
departures from normality. However, this plot would not show which of the model components
are the source of the non-Gaussianity. Also, deviations from normality in such a plot do not
necessarily indicate that a non-Gaussian model is needed. Consider for example data from the
very simple longitudinal model Y;; = U; + Z;;, where U; ~ N(0, a%,) and Z;; ~ N(O, af) are inde-
pendent. If the time series for each subject are sufficiently long, the quantile-quantile (Q—-Q)-
plot of ¥;; can deviate substantially from normality because the value of U; is replicated over the
entire time series. Finally, the approach cannot easily be used to check the validity of any given
non-Gaussian model, since we do not necessarily know the true distribution of its residuals.

We therefore check the validity of a model, Gaussian or not, by predicting each model com-
ponent from the data given the estimated parameters and compare the distribution of each
component with the corresponding quantity for data snnulated from the model. Thus, to check
the validity of the error model, we compute Zij=Yij—X] ,6 E[U;+ W;(t;)|Y;], then simulate
YS according to the model and compute Z =E[Z;;|Y’] based on the 51mu1ated values. We can
then visualize the model fit by using, for example 0—0-plots between Z; ; jand Z . If these plots
deviate from the line of equality, this indicates that the model does not fit the data For a more
formal assessment, we can repeat the procedure for K different simulated data sets and compute
a joint simulation envelope. If the envelope does not contain the line of equality we can reject
that the data are generated by the model.

Using the same simulations, we can similarly assess the fit of the random effects U;, comparing
the quantiles of U; = E[U;|Y;] and Uf = E[U;|Y*]. To assess the fit of the process W; (), we apply
a similar procedure to the innovations of the process dL;. Using the innovations, rather than the
W;(¢), avoids the correlation-induced distortion of the empirical marginal distributions of W;(¢).

6. Case-studies

6.1. Natural progression of lung function in cystic fibrosis patients

Our first application uses data on the lung function of cystic fibrosis patients, taken from the
Danish cystic fibrosis register. The patients are all aged over 5 years and entered the database
between 1969 and 2010. The outcome variable is YoFEV1 (percentage predicted forced expiratory
volume in 1 s), which is a measure of lung function that is widely used as a descriptor of
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Fig. 4. %FEV1 measurements against age (in years) in the background as a grey scatter plot:
on six patients

, data

severity of disease (Davies and Alton, 2009). The data, previously analysed by Taylor-Robinson
et al. (2012), contain 70448 measurements of %FEV1 on 479 patients with follow-up times
approximately 1 month apart. For the analysis that is reported here, three patients who provided
only one %FEV1-measurement have been excluded. Hence, 476 patients are available for the
current analysis. Available covariates are sex, age, birth cohort (decadal), presence or absence
of pancreatic sufficiency, presence or absence of diabetes mellitus and the number of years
with pseudomonas: a bacterial infection to which cystic fibrosis patients are susceptible. The
number of repeated measures per patient ranges between 2 and 597 with a median of 101.5. Total
follow-up times range between 0.1 and 31.5 years with a median of 10.5. Of the 476 patients, 233
(48.9%) are female, 20 (4.2%) have pancreatic sufficiency and 14 (2.9%) have diabetes. Baseline
ages range between 5.0 and 48.1 years with a median of 7.0 years. Cohort numbers are 7 (1.5%),
42 (8.8%), 109 (22.9%), 105 (22.1%)), 141 (29.6%) and 72 (15.1%) for birth cohorts of 1948-1957,
1958-1967, ..., 1998-2007 respectively. Baseline %FEV1 values range between 10.4 and 140.3
with a mean of 78.5. Fig. 4 shows traces for six patients, chosen to illustrate a range of total
follow-up times and patterns of the outcome variable %FEV1.

Fitting a model to these data serves two purposes. The first is to characterize the mean
response profile of lung function in cystic fibrosis patients, adjusted for relevant covariates. The
second is to quantify the extent to which a subject’s early results are predictive of their long-term
prognosis.

We consider %FEV1 as the outcome Y and specify mixed effects models that fall within the
general framework of equation (9). Specifically, we consider

YijzxiTjﬂ‘i‘Ui‘i‘Wi(lij)vLZij, 21)

where each x;; contains a number of explanatory variables, as listed in Table 3. We model W; ()
as the solution to the stochastic differential equation (k% —d? /dtz) W;(t) =dL;(t), which implies
that W;(¢) has a Matérn covariance function with smoothness parameter % We also considered
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Table 3. Estimates of the fixed effects for the normal and NIG models¥

Results for the normal model Results for the NIG model

Estimate  Standard error  p-value  Estimate  Standard error  p-value

Intercept 68.23 2.07 <0.001 72.98 2.06 <0.001
Diabetes —3.05 0.52 <0.001 —1.76 0.44 <0.001
Years after pseudomonas —0.46 0.08 <0.001 —0.45 0.07 <0.001
infection
Age —0.25 0.08 0.002 —0.47 0.07 <0.001
cohort 1948 1.71 10.09 0.865 2.83 9.54 0.767
cohort 1958 —4.05 3.97 0.308 —8.12 3.82 0.034
cohort 1978 18.21 293 <0.001 14.5 2.87 <0.001
cohort 1988 26.37 2.84 <0.001 22.52 2.74 <0.001
cohort 1998 28.95 3.59 <0.001 23.28 3.34 <0.001
Pancreatic sufficiency 0.98 6.26 0.876 4.26 5.71 0.456
Age x cohort 1948 —0.08 0.19 0.674 —0.06 0.17 0.724
Age xcohort 1958 0.09 0.08 0.261 0.28 0.07 <0.001
Age xcohort 1978 —0.83 0.09 <0.001 —0.71 0.09 <0.001
Age x cohort 1988 —0.79 0.15 <0.001 —0.81 0.14 <0.001
Age = cohort 1998 0.49 0.54 0.364 0.35 0.43 0.416
Age * pancreatic sufficiency 1.12 0.3 <0.001 0.81 0.27 0.003

tAge is centred at 5. Cohort 1968, absence of diabetes and absence of pancreatic sufficiency are the reference
categories.

a model with an exponential covariance function, as in Taylor-Robinson et al. (2012), but this
gave a worse fit to the data.

In this example, cohort effects are substantial, reflecting general improvements in the treat-
ments that are available to cystic fibrosis patients over the time period that is concerned. This,
coupled with the small numbers of patients in some cohorts (e.g. seven patients in 1948-1957),
explains why the grouped subsampler that was described in Section 4.4 is needed.

To illustrate the effect of the subsampling using the proposed grouped subsampler, we first fit
a Gaussian model, i.e. assuming Gaussian distributions for U;, W;(#) and Z;;, with and without
subsampling. In the former case, we subsample 20% of the patients, i.e. 96 out of 476. The
resulting parameter tracks of the optimizer (for six of the model parameters) can be seen in
Fig. 3. In this example, there are k =7 subsampling groups, with an average group size of eight
subjects, and we sampled two groups at each iteration. The running time for each iteration scales
linearly with M, the number of patients who are subsampled at each iteration. Thus, subsampling
reduces computing time per iteration by a factor of almost 5 in this case. However, since 17000
iterations were needed to meet the convergence criteria with subsampling, compared with 6000
iterations without, the total computation time was reduced by a factor of 1.75. The variances
of the subsampled estimates are slightly larger, but the final parameter estimates are almost
identical. For applications with data for many more subjects, e.g. as in the renal case-study to
be presented in the next section, the computational gain by subsampling would be larger.

To assess the suitability of the Gaussian distributional assumption, we inspected Q—Q-plots
of the standardized marginal residuals, Y;; — x,.T/ﬂ. Fig. 5 suggests some departure from the

Gaussian distribution but, as each marginal residual is composed of U;, W;(-) and Z;}, the 0—0-

plot cannot detect the source of the departure. We therefore also look at the Q—Q-plots for the
various model components, as explained in Section 5. The results for the Gaussian model can

be seen in Figs 6(a)-6(c). The normality assumption seems to be valid for the random effects
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Fig. 5. Q-Q-plot of standardized residuals under the Gaussian assumption for the cystic fibrosis example

U;, but both the process W;(-) and the errors Z;; seem to have departures from the normal
distribution. On the basis of these, we fitted a model with the NIG assumption for W;(-) and

Z;; and normal distribution assumption for U;. The corresponding Q—Q-plots for this model
form Figs 6(a)-6(f). All three components now fit fairly well, although the random effects for

the data seem to have a slightly skewed distribution. Thus, as a final model we fitted a model

with an NIG assumption for each of the three model components. Figs 6(g)-6(i) show the O—

O-plots for this model. The NIG assumption for the random effects improves the fit that the
distributional assumptions are now reasonably good for all three components. We conclude

that the NIG assumption for all three stochastic components is the most appropriate model for
these data.

The estimates of the fixed effect parameters 3 for the normal and NIG models are shown in
Table 3. Standard error estimates, obtained by using the observed Fisher matrix, are generally
lower under the NIG than under the Gaussian assumption. With regard to statistical signifi-
cance, p-values indicate the same judgement on significance, except for pancreatic sufficiency,
main effect of cohort 1958-1967 and its interaction with age. Note that both pancreatic suffi-
ciency and cohort 1958-1967 are highly unbalanced with only 20 positive out of 476 and only
42 subjects in the 1958-1967 cohort.

In Section 7.1, we report the results from a simulation study to validate these findings. Two
important conclusions based on the simulation study are that
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Fig. 6. Q-Q-plots for the components of the models in Section 6.1 for the cystic fibrosis example, based
on 100 simulated data sets from each model: for the model with Gaussian ( b) U; and (c) W;(t); for

the model with (d) NIG-distributed Z;;, ( ) Gaussian U; and (f) NIG- dlstrlbuted W t for the model with NIG
distributions for (g) Z;;, (h) U; and (i) W;(?)

(a) it is important to include a random-process term W;(¢) in the model to obtain reliable
inferences for the fixed effects and

(b) a Gaussian assumption for W;(¢) may still deliver reliable inferences regarding fixed effects,
when the data show signs of non-Gaussianity.

6.2. Progression towards end stage renal failure

Our second application uses clinical data on kidney function of primary care patients from the
northern English city of Salford who are in high-risk groups for chronic kidney disease. The
outcome variable is eGFR (estimated glomerular filtration rate, in millilitres per minute per
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Fig. 7. eGFR-measurements (on a log-scale) against follow-up time (in years) in the background as a
scatter plot: data on eight patients are highlighted by black lines connecting successive measurements

1.73 metres squared of body surface area): a proxy measurement for the patient’s renal function
calculated as

SCr\ 1154
eGFR = 175(884) age—O.ZOS X 0.742[(female)/ X1 ‘211(black)/’ 22)
where SCr stands for serum creatinine measured in micromoles per litre (Levey et al., 1999).

The data, which were previously analysed by Diggle ef al. (2015), contain a total of 392870
measurements on 22910 patients, for whom the total follow-up time ranged from 0 (i.e. only
baseline data are available) to 10.0 years, whereas the number of measurements of eGFR ranged
from 1to 305. Among the 22910 patients, 11833 (51.7%) were male. Baseline ages ranged between
13.7 and 102.1 with a mean of 65.4.

Fig. 7 shows traces for eight patients, chosen to illustrate some particularly challenging fea-
tures of the data. The unusually high degree of irregularity in the follow-up times reflects the
fact that the data derive from routine clinical practice. In particular, some patients provided
many repeated measurements over a relatively short time period, probably during episodes of
intercurrent illness.

Clinical care guidelines in the UK include a recommendation that any person in primary care
who appears to be losing kidney function at a relative rate of at least 5% per year should be
considered for referral to specialist secondary care. Our primary objective in analysing these
data is therefore to develop a method for identifying, for each subject and in realtime, when this
criterion is first met.

As in Diggle et al. (2015), we use a log-transformed outcome variable ¥ =log(eGFR) and
specify a model of the form

Yij=x58+ Ui+ Witij) + Zij. (23)
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In model (23), each x;; includes sex, baseline age, follow-up time #;; and a piecewise linear
function of age with a slope change at age 56.5 years. The processes W;(¢) are integrated random
walks as in Diggle et al. (2015).

As for the previous example, we first fit the model under Gaussian assumptions for the U;-,
W;()- and Z; j-components. The Q0—Q-plot for the standardized residuals that are shown as Fig.
5 of Diggle et al. (2015) clearly indicates longer-than-Gaussian tails. As for the cystic fibrosis
case-study, we compute the Q—Q-plots for each model component (Fig. 8), which suggest that
the Gaussian assumption is not valid for any of the model components. Therefore, we proceed
by assuming NIG distributions for each of the three stochastic components. The fit is much
improved, albeit with some discrepancy between the data and model in the lower tail of the U;
and the upper tail of the W;(z).

Fig. 9 shows, for two patients, their observed data and the concurrent (‘nowcasting’) prob-
abilities of meeting the clinical guideline for referral to specialist care. Results are shown for
the Gaussian and NIG models. As would be expected, for each patient the general pattern of
the predictive probabilities is similar under both modelling assumptions, but there are some
substantial quantitative differences and the ranking of each pair of predictive probabilities is
not consistent. The two sets of model-based predictions reflect different partitionings of the
intrapatient variation into signal and noise components, and the balance between the two
is affected in subtle ways by the pattern of follow-up times and their associated measure-
ments.

To put these differences in context, in Section 7.2 we report the results of a simulation study,
where we find that the distributional assumptions have a strong effect on the predictive perfor-
mance.

7. Simulation studies

7.1. Fixed effects estimation

We conduct a simulation study to investigate the extent to which distributional assumptions
affect the validity and/or efficiency of estimators for 3. We focused on evaluating the bias and
coverage properties of the estimators by using the models for the cystic fibrosis patients that
were presented in Section 6.1, but with a reduction in size to 256 patients covering the cohorts
between 1958 and 1978 to reduce computation time.

We consider two simulation models, denoted normal and NIG. In the first, all three stochastic
components are Gaussian, with parameters set at the estimates that were obtained from the cystic
fibrosis data, whereas in the second all three stochastic components are NIG distributed, again
with parameters set at their estimates from the cystic fibrosis data; see Table 3 for 3 and Table 4
for the parameters of U;, W;(¢) and Z;;. We generate 250 replicate data sets from each of the two
simulation models. For each data set we fit both simulation models and three additional ‘wrong’
Gaussian models: a standard multiple linear regression model, a random-intercept-only model
and a random-intercept and random-slope model. In each case, we evaluate the empirical bias
of each parameter estimator and the coverage of nominal 90% confidence intervals over the 250
replicates. The confidence intervals are computed as explained in Section 4.3. The results are
presented in Tables 5 and 6. Important findings are as follows.

(a) For both the normal and the NIG simulation models, the linear regression model and
the two random-effects models give very poor coverages, indicating that inclusion of
the process component W;(¢) is crucial for making correct inferences about the fixed
effects.
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Fig. 9. (a) follow-up time (in years) versus log(eGFR) for two patients and (b) probabilities of meeting the
clinical guideline for the patients ( , hormal distribution; — — —, NIG distribution)

Table 4. Parameters for U;, W;(t) and Z;; used in the simulation study

Model »v uv U oz ue vz T K uW vV

Normal  341.59 6.76 0.10 1.22
NIG 29436 —4724 1926 6.59 -—1.16 052 0.08 121 —0.08 0.34

(b) For the normal simulation model, the performances of the NIG model and the normal
model are similar, indicating that the NIG model gives reliable estimates even if the data
are Gaussian.

(c) For the NIG simulation model, the confidence intervals for the normal model have almost
the correct coverage. The NIG model has similar coverage and bias to those for the normal
model. However, the standard deviations of the estimates for the NIG model are smaller
in the case of NIG data, which makes the confidence intervals tighter and thus indicates
that we obtain a higher efficiency when using the NIG model when the data are non-
Gaussian.

The overall conclusion from this small simulation study is that it is important to include a
random process in the model to obtain reliable inference of the fixed effects but that, for this
purpose, a Gaussian model can give reliable inferences even if the data show signs of being
non-Gaussian.

7.2. Prediction accuracy
To study the importance of the distributional assumptions on prediction, we perform a simula-
tion study based on the renal failure application, presented in Section 6.2. We simulate new data
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Table 5. Results for the simulation study on fixed effects estimationt

Results for Results for Results for Results for Results for
the linear the random the random- the normal the NIG
model model slope model model model

Bi C Se Bi C Se Bi C Se Bi C Se Bi C Se

Intercept -1 15 028 -1 8 189 —1 8 199 —1 90 2.04 —1 85 199
Diabetes -4 8 027 -1 30 022 -1 24 027 2 9 058 2 88 0.58
Years after pseudomonas 2 11 0.02 1 25 0.02 1 77 008 0 90 0.08 —1 88 0.08
infection
Age -3 14 0.02 -2 25 002 -1 27 003 0 92 008 1 92 0.08
cohort 1958 -7 16 0.62 6 82 3.56 9 73 3.7 4 8 391 3 86 3.79
cohort 1978 2 16 047 2 85 2.67 279 277 2 8 289 2 8 279
Pancreatic sufficiency —-17 17 291 —-13 65 692 —10 67 7.16 -3 93 1043 -3 93 10.42
Age = cohort 1958 —14 16 0.03 8 20 0.02 13 33 0.05 S5 8 0.08 S5 88 0.08
Age xcohort 1978 1 19 0.03 0 30 0.02 0 29 004 0 95 009 0 9 0.09
Age * pancreatic sufficiency 2 20 0.16 3 36 0.16 3 34 016 2 94 042 2 92 043

1250 data sets are generated from the normal model. Bi, percentage relative bias (the bias divided by the true
parameter times 100); C, percentages of the 90% confidence intervals that cover the true value; Se, standard
deviations of the estimates.

Table 6. Results for the simulation study on fixed effects estimationt

Results for Results for Results for Results for Results for
the linear the random the random- the normal the NIG
model model slope model model model

Bi C Se Bi C Se Bi C Se Bi C Se Bi C Se

Intercept 0 10 0.31 0 8 208 0 8 222 0 92 226 0 9 216
Diabetes -1 8 03 -3 24 024 -9 27 03 -1 8 062 0 9 047
Years after pseudomonas 2 7 002 -3 27 002 -2 73 009 -1 92 0.09 0 8 0.07

infection
Age —
cohort 1958
cohort 1978
Pancreatic sufficiency -1
Age % cohort 1958
Age xcohort 1978
Age x PS

13 002 3 25 002 2 32 0.03 1 90 0.09 1 8 0.07
13 068 -2 84 391 -2 71 41 -2 88 434 -2 87 399
13 0.52 1 83 294 2 82 307 2 8 32 2 88 296
21 321 16 61 762 15 62 798 11 8 1175 9 86 10.25
14 0.03 1 22 002 -2 27 006 —-1 9% 0.09 -1 9 0.07
27 004 0 27 0.02 1 24 004 0 87 0. 1 8 0.08
17 0.18 -3 35 0.18 -3 32 017 -2 8 049 -1 9 04

W= =00 O N

1250 data sets are generated from the NIG model. For the explanations, see the caption of Table 5.

from the fitted NIG model, for the two patients who are shown in Fig. 9. For each simulated se-
quence Y;; =log(eGFR) at follow-up times #;;, we then use the fitted NIG and Gaussian models
that were reported in Section 6.2 to obtain the nowcasting predictions. Table 7 shows the results
based on 100 simulated data sets, using four summaries of predictive performance: the mean ab-
solute error MAE; root-mean-squared error RMSE; mean coverage of 95% prediction intervals,
COV, and the average width of these prediction intervals, Width. For the two models, we also
look at the model-based predictive probabilities of meeting the clinical guideline for referral to
specialist care, and we compare these with the corresponding known values of log-transformed
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Table 7. Results for the simulation study for predictiont

Model

MAE (x100) RMSE (x100) COV  Width AUC

Normal
NIG

9.122 2.705 0912  0.402  0.959
5.849 0.838 0935 0.283  0.995

1The results

are based on 100 simulated data sets for the two patients for

whom results are presented in Fig. 9.
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Fig. 10. Receiver operating characteristic curves:
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GFR. This comparison is summarized by using the receiver operating characteristic curves in
Fig. 10 and the area under the curve, AUC, which ideally should be 1. There is a substantial
increase in predictive power, according to all measures of accuracy, when the correct model, the

NIG model, is used.

8. Software

We have implemented the

methodology that is presented in this paper in the R package ngme. A
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development version of the package is available from ht tps: / /bitbucket.org/davidbol
in/ngme. The package includes functions for parameter estimation and for subject level pre-
diction using the class of models defined by expression (9), with the following features.

(a) Any linear model can be specified for the regression term XTB and for the subject level
random effect dT Ui, using the standard R model formula syntax

(b) The random- effects distribution can be chosen as normal or NIG.

(c) The covariance structure of the W;(f) can be specified as a stationary, exponentially corre-
lated process (the fully asymmetric version), as a symmetric or asymmetric Matérn model
with smoothness 1.5, or as a non-stationary integrated random walk or omitted altogether
to give non-Gaussian versions of the Laird—Ware model. The distribution for the process
can be specified as normal, NIG, GAL or Cauchy.

(d) The distribution of the measurement error terms can be specified as normal, NIG or 7.

(e) Subject level predictions can be obtained either through nowcasting (conditioning on
a subject’s past and current measurement data), smoothing (conditioning on all of a
subject’s data) or forecasting (conditioning on all of a subject’s past data).

The generic R functions, print, summary, plot, fitted and residuals are available
for the estimation and prediction functions, and the renal data set is included. We plan to extend
the package’s functionality to a wider range of models for the stochastic process component
W; (1), including a general Matérn correlation structure. The package also has support for esti-
mation of non-Gaussian models for spatial data as we discuss further in the next section.

9. Discussion

The Gaussian version of the linear mixed model (9) represents the standard approach to
analysing real-valued repeated measurement data. Typically, the simplified version without the
Gaussian process term W;(¢) suffices when the number of follow-up times per subjects is small,
whereas the version with the W;(f) term, often in conjunction with a simple random intercept
U; in place of the general term dT ;Ui, usually gives a better fit to data with long follow-up se-
quences. Concerns have often been raised about the legitimacy of the Gaussian assumption, and
in particular about the consequences of fitting Gaussian models when elements of the underly-
ing process have longer-than-Gaussian tails or skewness. This has led to an extensive literature,
which we reviewed in Section 2. However, to the best of our knowledge the current paper is the
first to provide a flexible implementation in which departure from Gaussianity can be assessed
independently for each of the three stochastic components of model (9).

In our reanalysis of the cystic fibrosis data, inferences on fixed effects showed only small
changes when non-Gaussian behaviour is taken into account. Our reanalysis of the renal data
also finds evidence of non-Gaussian behaviour, which in this case matters more, because it has
a material effect on predictive inference, and hence on the point at which an individual patient
in primary care would be considered for referral to secondary care.

We have emphasized the importance of building a computationally efficient algorithm for
routine maximization of the likelihood. This is especially useful for data sets containing many
subjects. Arguably, computational efficiency is of secondary importance in confirmatory anal-
ysis. Once the statistical analysis protocol has been determined, it matters little whether it takes
minutes, hours or days of computing time to analyse a data set that typically will have taken
weeks, months or years to collect. However, during the iterative model building cycle that char-
acterizes exploratory data analysis, an inability to fit and compare different models in realtime
is a severe impediment.
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The applications that were described in Section 6 show that the subsampling scheme that was
introduced in Section 4.4 can perform very well. One topic of future research is a more thorough
investigation of how to optimize the subsampling.

Generalized linear mixed models provide a framework for handling non-Gaussian sampling
distributions. This form of non-Gaussian behaviour is complementary to the kind of non-
Gaussian process behaviour that we have addressed in this paper. A natural extension to our
proposed models would be to generalized linear mixed models for binary or count data with non-
Gaussian random effects. However, non-Gaussian behaviour will naturally be more difficult to
detect from count or binary data than from measurement data. Binary data in particular can be
considered as a heavily censored version of measurement data. For example, a logistic regression
model can be interpreted as a linear regression model for a real-valued response Y in which only
the sign of Y is observed.

Clinical repeated measurement data are often coupled with time-to-event outcomes, e.g. death.
So-called joint models for repeated measurement and time-to-event outcomes have been widely
studied; for a recent book length account, see Rizopoulos (2012). However, essentially all of
this literature assumes that any random-effect components are Gaussian. A natural way of ex-
tending the methodology that is presented in this paper to joint modelling problems, by analogy
with much of the current literature on Gaussian joint models, would be to combine the linear
mixed model (9) with a log-linear Cox process model for the time-to-event outcome, in which
the stochastic process W;(#) in the repeated measurement submodel is correlated with a second
stochastic process, W;* (7) say, such that exp{ W* ()} constitutes a time-dependent frailty for the
ith subject.

Another possible extension of the methodology that is presented in this paper would be to
multivariate settings, in which more than one repeated biomarker measurement is collected
for each patient, sometimes with different follow-up schedules for different biomarkers. Such
models could be constructed similarly to the multivariate random fields in Bolin and Wallin
(2020). The models of Bolin and Wallin (2020) are not considered in a longitudinal setting but
can naturally be extended to this case. This could then be viewed as an extension of the models
that are considered in this work, where the temporal stochastic process is replaced by a random
field. The ngme package has support for such spatial and multivariate models, both for the
longitudinal setting and for the classical geostatistical setting.
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Appendix A: Details on the parameter estimation and sampling

A.1. Gibbs sampling

In this section we derive the two conditional distributions that are required for the Gibbs sampler. The
first of these is the distribution of X; = (U;, W,) given Y; and V; = (VZ, V¥, V}¥), and the second is the
distribution of V; given X; and Y;. Using the specification of the hierarchical model from Section 4.1 we
have that X;|V; ~ N(b;, Q,-’l), where

b = _HU+IJ'UV1'
i K_l(—l-’-VlW),LLW 5
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Qi— T 1
0 K dlag(V—iW)K

We introduce Y; =Y; — x! B + i — u?VZ and G, = (df,ANHT. We then have Y,|X;,V;~ N{G;X,
o?diag(VZ#)} and straightforyvard calculations using properties of the multivariate normal distributions
give that X;|Y;, V;~ N(b;, Q; ), where

o 1 o - 1
b=Q (Q;lb,- 4o 2GT diag(w) Yi), Q,=Q+02GT diag(w) G..

To compute the distribution of V; given X; and Y;, we use the following proposition regarding the con-
volution between a GIG variable and a Gaussian variable.

Proposition 1. Let V~GIG(p,a,b) and Y|V ~ N(B+ pv, vX) where Y € R". Then
VIY ~GIG{v; p—0.5n,a+ "= 4, b+ (Y- B) 'S (Y-9)}.

The proofis straightforward and hence has been omitted. Now, note that the density of V;|X,, Yi factorizes
as f(VilX;,Y;) = f(VZ[Xi, Y) AV |U; )f(VWIW ). If VY ~GIG(pY,a",bY), V7~ GIG(p”,a”,b%), and
VY ~GIG(pY,a" bW) then the proposition gives that the three 1ndependent distributions are

dU
VY |U; ~GIG {pU - 7,61” +@HTE b + (U + ) TSN, +u”)},

zZ\ 2 2

. Y —X:: U — AW

VﬁlX,,Y,NGIG{pZ—OS,aZ—I—(H) ’bz+( ij Xz]ﬂ"‘d”Uz ,,Wl) ),
; ag

o2

VYW, ~GIG{p" —0.5,a" + (u")*, b" + (KW; +hu")7}.

A.2. The gradient of the likelihood

In this section we derive the gradient that is needed for estimating the parameters in the model from
Section 4.1. We shall use the notation from Appendix A.1 and also assume that E[VV]=1, E[V#]=1and
E[VZ]=h;, which was previously assumed for parameter identifiability. Recall that the goal is to evaluate
the gradient in equation (18), which can be written as a sum over Vg L;(®;Y;), which we approximate by
using MC integration as

1 e 0
VeLi(g;Yi)%NiMC Z VolLi(©:;Y;,V;")
j=1

where V(’> are samples from V;|Y; obtained by using the Gibbs samPler above. Thus, what we must derive
herelsV@L (©:;Y;, VY. Todo this ,weshalluse that Vg L;(©; Y, VY )=Ex,[VeLi(O; Y., X, V)Y, V.

To simplify the notation, we let L;(®;X;, V;,Y;) denote the complete log likelihood for the ith patient
seen as a function of the parameters ®, and similarly let L; ((-)|V,, Y;) denote the log-likelihood conditioned
on the variance components. To derive the gradients, we also need the following notation from matrix
calculus. The vec operator transforms a matrix into a vector by stacking its columns. The vech operator
also transforms an n x n matrix into a vector but removes all the subdiagonal elements. Finally, the
duplication matrix D, is such that, for any symmetric matrix A, D, vech(A) =vec(A).

We start by deriving the gradients for the fixed effect and the asymmetric parameters. Let (3, u) =
B, u¥, %, 1"y and B = (x;,d; (=1 + VY), (=1 4+ VZ), A K~ (—h; + V}")). Using the model definition from
Section 4.1, we have that

1 1 -
Li{(ﬁaH),U;XiaviaYi}:_T‘_z(Yi_Bi(,@au) GX) dlag(v )(Yz B;(3, n) — GiX)),

2
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where X; = X; — b;. Thus the gradient with respect to (8, ) equals

1 . 1 -
Vig,Li(®:;Y;, V., X)) = ;B,—T diag (W) i —Bi(B, ) — GX)).

1

Using that the expected value of X; given V; and Y; is b; (see Appendix A.1) we obtain that

1 . 1 -
Ve.wLi(@®;Y;, V)= ;B,T dlag(w) (yi —Bi(B, ) — Gi(b; —b))).

i

The gradient for noise variance o2, of the complete log-likelihood, equals

i1 1\"
Valog{Li(G);YiaXi,Vi)}Z—m;+ (eiw) €,

3
g i

where m; is the number observations of patient i and e; =y, — B;(3, u) — G;X;. We could compute
V,log{L;(®;y;, V:)} by taking the expectation with respect to X;, but in our implementation we simply
use the values of X; from the Gibbs sampler to approximate this expected value by using MC integration,
the reason being that the estimation of ¢ is so simple compared with the other parameters that it was not
worth the additional effort to implement the analytical gradient for this parameter.

To derive the gradient with respect to the covariance matrix of the random effects, we first note that

1
2vY

1
Li(Z: Y Xi, Vi) =—2 log(13)) — U+ =vHu) TS U + A =v)Hp?)

1 v 1 ~U
= W(U‘ )TE I(U,' )a

where fJ,U =UY+ (1 - VvYuv. Denoting M; = (le.U)(fIf/)T, K,; the communication matrix and D, the
duplication matrix (Magnus and Neudecker (2007), pages 389-390), the gradient for the variance matrix
3is

1 T —1 —1 Mi
Vvech(z)Li(@;Y,—,X,-,V,-)zEDd(E ®2 )VCC W_z .

i

Defining 3 = Q_I and b=Db;, the expected value equals

V-U

i

~ . T
1 Yia1:a +braby,
Vi Li(©: Y, V) = 5D (5! eazl)vec("‘“'d+ Lt _ 2).

For a generic parameter 6 of the differential operator that is used to define the process, we have that
Li(0: Y1, X, Vi) =log(IK|) — 5 (KW, + (h— V")u"™) T diag(V}") ™ (KW, + (h = V) ™).

Thus, defining (Ky);; =dK;;/d6, the gradient equals
Volog{L;(®)} =tr(K,K™") = WIK] diag(V)") "' (KW, + (h— V") .").

What remains is to compute the gradient with respect to the variance mixing parameters. For these
parameters the complete log-likelihood is entirely determined by the specified distribution of the vari-
ance mixing variables. Thus there is no generic form; instead we present the three main distributions
that we have considered and their resulting gradients. The three distributions are the gamma distri-
bution with density f(v; p, b) =T'(p)~'a?v’~! exp(—av), the inverse Gaussian distribution with density
fv;a,b) =b"?Q2n)2v32 exp{—av/2 — b/2v + /(ab)}, and the inverse gamma distribution with den-
sity f(v; p,a) =T(p)~'a?v""'exp(—b/v). The resulting gradients for the noise parameters are given in
Table 8, the random-effect parameters in Table 9 and the processes parameters in Table 10. In Tables 8-10,
1) is the digamma function and ¢; is the trigamma function. Note that we use a non-standard form of the
t-distribution where v is half of the degrees of freedom and the parameterization is chosen so that a sym-
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Table 8. Distribution, gradient and observed Fisher information for the mixing variable of the noise

Distribution  Distribution of vZ VLi(v;Y;i, Vi) E[VZL,'(V,'Yi,Vi)]
v m; 7 1 1
t 1Gam(v,v —1) m[{log(u—l)-l,-m_/,/,(y)}— gjllog(vij)—ﬁ mi{m—wl(’/)}
NIG G Lomp1- 55 1 \j/; 1 J i
w,v) (= L gz V- 37
m; 1
GAL Gam(\, \) m;log(\) +m; —mip(\) + 21 1og(vl.§) - Vg mj {X —wl(A)}
j=

Table 9. Distribution, gradient and observed Fisher information for the mixing variable of the random
effect

Distribution  Distribution of VU VLi(v;Yi, Vi) E[V2L;(v;Y;,Vi)]
v U 1 1
t IGam(v,v—1) loglv — 1)+ —— —¢@) —log(V;”) — - —— =Y (v)
v—1 ! v v—1
1 1
[ () S U U _ _
NIG 1G(v,v) 7 (1/ ViU +V; 1) 27
1
GAL Gam(\, \) log(\) + —¢(\) + log(ViU) — ViZ X 1 ()

Table 10. Distribution, gradient and observed Fisher information for the mixing variable for the processest

Distribution  Distribution of vZ VLi(v;Yi, Vi) E[VzLi(V,'Yi,Vi)]
NIG 1G (v, vh?,) _d S Y S
v,V ij P=) 3 14 VI-‘;V ij ij 21/2
n; ni 1
GAL Gam(hijAN) 3 hij{log(N) + 1} — (X +hijlog(V) = VY 3 hyj {X—wl(h,»j»}
=1 j=1

tHere h; is the integral of the basis function (see Appendix B).

metric version has variance 1. For v < 2 this is not possible (since the variance is unbounded) and one can
then instead use the parameterization IGam(v/2, v/2+ 1) which puts the mode of the IGam density at 1.

A.2.1.  Joint Fisher information for mixed effects parameters

When computing Wald-type confidence intervals based on the Fisher information matrix, one should
ideally compute it from the joint Hessian for all parameters. A simpler alternative which we make is to
compute the joint Fisher information matrix only for the mixed effect parameters, which means that we do
not take the uncertainty of the other parameters into account. This simplifies the implementation greatly
and should in most scenarios have little effect since the other parameters converge much faster than the
mixed effect parameters. The reason for this is that the random effects vary between individuals, so one
individual can be seen as an observation whereas the other parameters receive information also from all
longitudinal observations for each patient.

Let ®,, = (3, u, vech(32), v) be the vector of all parameters for a model with NIG-distributed mixed
effects and let L;(®,,) denote the complete likelihood L;(®,,;Y;,V;,X;). The negative Hessian of the
likelihood for patient i (the observed Fisher information is the Hessian at the mode) for these parameters
can be expressed as

—H;=— Ev,[Ex[Vg, Li(©,)IY:, VillY.] - Ev[Ex,[Ve, Li(©.)Ve, Li(©,) Y Vi]|Y]
+ Ev,[Ex,[Ve, Li(©,)Yi, VIIY]Evy,[Ex,[Ve, Li(©,)|Y:;, VIIY]".

m
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We shall now derive the inner expectations with respect to X (the outer are computed through MCMC
sampling). We shall utilize the distribution derived for the Gibbs sampling in Appendix A.l, but for
simplicity drop the index of the mean and covariance: X~ N(b+b,Q )=N(b ,X); going further we
shall always work with the ith patient and therefore drop the index in the notation.

For the derivations, we shall need the following lemma.

X4 © Yaa Xap
X: ~ N = A 2 =
()= (i) == (3 )
be a d-dimensional normal distribution where A and B are subsets of {1,2,...,d} such that AUB=
{1,2,...,d}. Then

Lemma 1. Let

E[vec(X,XDXE]=E[X4 ® X, @ X}]

T T (24)
=pp Qs Qs+, @B ap+Iap@ py+vec(Xg a) g
Proof. From corollary 2.2.7.2 in Kollo and von Rosen (2006) it follows that
EX@XX'|l=p"@u@pu+pu®@T+3I® p+vec(D)u' (25)

To link this result with equation (24) we define the two matrices, B4 and B, such that X, =B,X, and
X =BX. Now it follows that vec(X4XT) =vec(B,XXTB]) =B, ® B,vec(XXT), and the left-hand side
of equation (24) can be rewritten as

E[vecX,X)XL]=B, ®B,E[X®X® X"|B].

Joining the equation above with equation (25) gives the following three terms from which we shall extract
the final result:

Bi®By)(1' @ @By =Bsp) @BAu@Bap=py@p, @,
B,s®B)(L®Z)BL=B,u@B,EBy=p1, ® X5,
(B4 ®B,) (vec(Z) " )By =vec(B,ZB)) Byp) " =vec(Ta 4) . O

Several of the required gradients are straightforward to derive and we therefor omit most details. For
example, some simple second derivatives that are needed are
11

2 _ T
V[g,p]Li(em) - _EWB,' Bi,

1 M, et (M ol
vjech(E)L,.(@m)=_5D§K[,d (2*‘@2*' (W—z)z '+ I(W) ' '> D,,

E[V?

vec!

1
n Li(@m)]= —EDEKW(EA ®=HD,.

Likewise, for the parameter of the mixing component v, the gradient does not depend on X|V and its
expected value is hence easily evaluated from the gradient. See Tables 8, 9 and 10.

We now present the more difficult components to compute. We start with evaluating the expected value
of the outer product of V,..,s L:(0,,) which we split into several parts. The gradient is

M
Vieens) Li(©5) =Hgvee (W) —Hgvec(3),
and thus the outer product is
Vvech(E)Li (G)m)vvech(E)Li(Gm)T = HX (Kl - KZ - K;r + K})H;,

where K; =vec(M,/VV)vec(M/ V)T, K, = vec(M/VV)vec(E)T and K; = vec(E)vec(E)T. To compute the
expectation of the outer product we need the expectation of vec(M) and vec(M)vec(M)T. First
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1 1 1
EX{erc(MNY, V} V—vec(EX[Xl XD = vec{z:l ara+br, b)Y
To derive the expectation of K; we use theorem 4.3 of Magnus and Neudecker (1979):

1 S _ T
EX[(VU)Z VCC(M) VCC(M)TlY V:| X[Xl:dxlzd ®X1:dX1;d|Ya V]

wuy?
= W(I +K) (110 @t 1a + S 1a ®6T:d(l;;k:d)—r
+ l;id(l;id)T ® X1, 1:4)

+ E;{%vec(M)\Y, V] E;{%

T
vec(M)|Y, V} N

i

where K, again denotes the communication matrix.

We continue with the outer product of Vig ,)L;(©,,):
Vig.uLi(©)Vis,Li(©,)" =aa" —aATX" — AXa" + AXX"AT,

where
1
a= - 2Bleag( )(y B3, u])

and
1 r 1
A= % 2B diag vz G.

The expectations of the terms are easily obtained since X ~ N(I;J 33). To compute the expectation we
typically do not compute X but rather solve linear systems using Q.
The final difficulty is to compute the expectation of the outer product:

1 1 M T
Vig.mLi(©) Vyeens) Li(©,)" = BT d1dg< > (Y =B(3, p) — GX; )vec<v——z> HI

- 1 ~ 1
=a (—Vec(Z})T + erc(M[)T) Hg +AX (Vec(E)T — erc(M)T> Hg,
where

- | 1
:a—i—T‘gB dlag(w> Gb.

For most of the terms in this expression we have already calculated the corresponding expectation before.
The only new term is Xvec(M)T, which by lemma 1 is

~ ~ ~% ~% ~
Ex[XvecM)T|Y, V]=b" ® (B,)" ® B1) T+ (b1) T @310+ 510 @ (br) T +b vee(S1 1)

A.3. Similarity between densities
Finding the parameters for the GH distribution is in general difficult, because the full log-likelihood surface
is largely flat, which makes the model parameters almost non-identifiable. A further difficulty is that the
boundary of the parameter space often contains, unique, distributions and hence one cannot expect that
the parameter will be contained in a compact region of the parameter space. This problem is also true
within the subfamilies that were discussed above. For instance, an NIG distribution converges to a Cauchy
distribution as a — 0, and to a Gaussian distribution if @« — co and b — oo at the same rate. Recognizing
these limiting cases is important in practice since it can lead to situations where the parameters do not
converge.

A remedy for this issue within the subfamilies that we are studying is to fix a compact parameter
space and if the parameters converge to the boundary then we re-estimate the parameters in the limiting
distribution. We set these boundaries by examining the total variation (TV) distance between pairs of
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densities. For illustration, to compare a symmetric NIG distribution with fixed a with a symmetric
Cauchy distribution, we calculate

TVnig,cu(ben, a, bNIG)=félin/ |CH(x; 0,0, bcy) — NIG(x; 0,0, a, bnig) |dxx.
'CH

To simplify the calculations that are needed to find the Cauchy distribution CH(0, 0, bcy) that is closest
to the NIG(0, 0, a, bnig) distribution we use the following proposition, which shows that it suffices first to
find the Cauchy distribution that is closest to NIG(0, 0, a, 1), and then to rescale the shape parameter by

bnig.

Proposition 2. Let fi(x) and g,(x) be two distributions with respect to the Lebesgue measure, with
scaling parameters s and h. Then, TV (£, g») =TV (fy/c, gnye) for ¢ > 0.
Proof. First note that

1 .
TV(fs/cagh/c):E/lfs/c(x)_gh/c(x)ldx:%/|fx(cx)_gh(cx)|dx~

Now use integration by substitution with respect to ¢(x) =x/c to give

1
%/|fx(cx)_gh(cx)|dx=5/lfx(x)_gh(x)|dx=TV(fx>gh)-

Fig. 11 shows the TV distances between the NIG and Cauchy, and between the NIG and Gaussian
distributions, as functions of a. One can now translate the difference between the densities to compare
with densities that one is more familiar with. For example, for a =0.001, the TV distance between the
NIG and Cauchy distribution is less than that between two Bernoulli distributions whose probabilities
differ by 0.002. The same applies to the TV distance between the NIG and normal distributions when
a=250.

In ngme we set the boundaries of the NIG parameter space to 0.001 <a < 250, and if the parameter
space is hit it gives a warning. Of course one needs to be a little cautious with using the limiting distribution,

<
o

0.3

TV distance
0.2

0.1

0.0

Fig. 11. TV distance between the NIG and Cauchy (- — —) and between the NIG and normal (
distributions for varying a
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since, although the TV difference decreases, the tails of the distributions remain different. For instance,
the NIG distribution has exponential tails whereas the Cauchy distribution has polynomial tails.

A.4. Pseudocode for the grouped subsampler
Algorithm 1 (Table 11) contains pseudocode describing the group formation of the grouped subsampler.

Appendix B: Discretization

In this section we outline how the stochastic differential equation (13) is discretized. Let { f, g) = [ f(t)g(r)ds
denote the standard inner product on R. Recall that we restrict W(z) to a finite interval, 0 < ¢ < fynax, and
impose boundary conditions on the operator to obtain a well-posed problem. The so-called weak solution
of equation (13) is a function of W(r) that satisfies the equation

(), DW) =(y,dL), (26)

for a specified set of test functions 1 (f). Recall that we use the low rank approximation (14) and now want
to compute the distribution of the weights in this basis expansion. When D = x? — ?/9¢>, we can use a
standard Galerkin finite element discretization; see also Lindgren and Rue (2008). This consists of setting
all the test functions to the basis functions, i.e. 1, = ¢, for all k, and computing the W, by solving the
system of equations that is defined by equation (26), i.e. KW =L, where L; = (¢, dL), and K is a discretized
version of the differential operator D with elements

0 0
K = (Y. Do) = K> (Y, dwr) + <§1/)k, &¢k’> — (Y, O )or- 27)

Table 11. Algorithm 1: group formation for the grouped subsampler

1 procedure Group-formation (X{,...,Xm)
2 Z<{l,....m} m is the total number of subjects to group
3 k<1
4 go <~
5 while |Z| >0 do
6 G < Create-group(Z, Xy, ..., Xm)
7 if rank (g, x,'xl.T) =columns(xy) then columns(xy) is the number of covariates
8 Gk <G
9 T« TI\Gk
10 k<k+1
11 else
12 go «~7
13 <0
14 end if
15 end while
16 return Gy, . .., G
17 end procedure
18 procedure Create-group(Z, Xy, ... ,Xp)
19 ~I
20 T« T\
21 while rank(Eiegx,-xiT) < columns(xy) and |Z| >0 do
22 if rank(xI1 x}l + Eiegxix?) > rank(EiegxixiT) then
23 G < GUT;
24 end if
25 T« 1I\T,
26 end while
27 return G
28  end procedure
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Here the final term vanishes if Dirichlet or Neumann boundary conditions are used.
For the NIG version of the model, we approximate the distribution of L, by

Li=m 8" + " vY + V¥ z,

where Z;~ N(0, 1), hk—w yand Vi~ IG(v, h 21y (Bolin, 2014). It follows that the distribution for the
stochastic weight vector W condition al on Vcan be written as equation (15)

When D =« + d/0t is a first-order operator, we cannot use the Galerkin method. We then instead use a
Petrov—Galerkin method, where the test functions above are replaced by piecewise constant functions:

1, i <t <Sit1,
sn={, 5t <1< Sl

otherwise.

With this change, the distribution of L is the same as above (which is not an approximation in this case),
but the elements of K are

d
K = (b, Dbpr) = k(b drr) + <wk, &¢k’> . (28)

If the operator is an integer power of a first- or second-order operator, the model can be rewritten as a
system of equations. For example D>W(r) =dL () can be formulated as the system

DW(@) =u(),
Du(t) =dL(1).

Both of these equations can then be discretized by using the method above. Combining the two dis-
cretizations yields the following equation for the coefficients, KCKW =L, where C is the mass matrix with
elements Cy = (Yr, ¢r). If the operator is a fractional power of a first- or second-order operator, the
iterative formulation cannot be used. However, the fractional power could probably still be handled by
using the methods in Bolin ef al. (2018) and Bolin and Kirchner (2019).

References

Andrieu, C., Moulines, E. and Priouret, P. (2007) Stability of stochastic approximation under verifiable conditions.
SIAM J. Control Optimizn, 44, 283-312.

Aralleno-Valle, R. B., Bolfarine, H. and Lachos, V. H. (2007) Bayesian inference for skew-Normal linear mixed
models. J. Appl. Statist., 34, 663-682.

Asar, O., Ritchie, J. P, Kalra, P. A. and Diggle, P. J. (2016) Short-term and long-term effects of acute kidney
injury in chronic kidney disease patients: a longitudinal analysis. Biometr. J., 58, 1552—-1566.

Bai, X., Chen, K. and Yao, W. (2016) Mixture of linear mixed models using multivariate ¢ distribution. J. Statist.
Computn Simuln, 86, 771-787.

Barndorff-Nielsen, O. E. (1977) Exponentially decreasing distributions for the logarithm of the particle size. Proc.
R. Soc. A, 353, 401-419.

Barndorff-Nielsen, O. (1997a) Processes of normal inverse Gaussian type. Finan. Stochast., 2, 41-68.

Barndorff-Nielsen, O. (1997b) Normal inverse Gaussian distributions and stochastic volatility modelling. Scand.
J. Statist., 24, 1-13.

Bibby, B. and Serensen, M. (2003) Hyperbolic processes in finance. In Handbook of Heavy Tailed Distributions in
Finance, pp. 319-337. Berlin: Springer.

Bolin, D. (2014) Spatial Matérn fields driven by non-Gaussian noise. Scand. J. Statist., 41, 557-579.

Bolin, D. and Kirchner, K. (2019) The rational SPDE approach for Gaussian random fields with general smooth-
ness. J. Computnl Graph. Statist., to be published.

Bolin, D., Kirchner, K. and Kovacs, M. (2018) Numerical solution of fractional elliptic stochastic PDEs with
spatial white noise. IMA J. Numer. Anal.

Bolin, D. and Wallin, J. (2020) Multivariate type G Matérn stochastic partial differential equation random fields.
J. R Statist. Soc. B, 82, 215-239.

Cabral, C. R., Lachos, V. H. and Madruga, M. R. (2012) Bayesian analysis of skew-Normal independent linear
mixed models with heterogeneity in the random-effects population. J. Statist. Planng Inf., 142, 181-200.

Chang, S.-C. and Zimmerman, D. L. (2016) Skew-Normal antedependence models for skew longitudinal data.
Biometrika, doi 10.1093/biomet/asw006.

Choudhary, P. K., Sengupta, D. and Cassey, P. (2014) A general skew-r mixed model that allows different degrees
of freedom for random effects and error distribution. J. Statist. Planng Inf., 147, 235-247.



Linear Mixed Effects Models 37

Davies, J. C. and Alton, E. W. (2009) Monitoring respiratory disease severity in cystic fibrosis. Resp. Med., 54,
606-617.

Davidian, M. and Gallant, A. R. (1993) The nonlinear mixed effects models with a smooth random effects density.
Biometrika, 80, 475-488.

De la Cruz, R. (2014) Bayesian analysis for nonlinear mixed-effects models under heavy-tailed distributions.
Pharmceut. Statist., 13, 81-93.

Dempster, A. P, Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM
algorithm (with discussion). J. R. Statist. Soc. B, 39, 1-38.

Diggle, P. J. (1988) An approach to the analysis of repeated measurements. Biometrics, 44, 959-971.

Diggle, P. J., Heagerty, P. J., Liang, K.-Y. and Zeger, S. L. (1994) Analysis of Longitudinal Data. Oxford: Oxford
University Press.

Diggle, P. J., Heagerty, P. J., Liang, K.-Y. and Zeger, S. L. (2002) Analysis of Longitudinal Data, 2nd edn. Oxford:
Oxford University Press.

Diggle, P. J., Sousa, 1., and Asar, O. (2015) Real-time monitoring of progression towards renal failure in primary
care patients. Biostatistics, 16, 522-536.

Eberlein, E. (2001) Application of generalized hyperbolic Lévy motions to finance. In Lévy Processes: Theory and
Applications, pp. 319-337.

Fitzmaurice, G. M., Laird, N. M., and Ware, J. H. (2011) Applied Longitudinal Analysis, 2nd edn. Hoboken: Wiley.

Ghidey, W., Lesaffre, E. and Eilers, P. (2004) Smooth random effects distribution in a linear mixed model.
Biometrics, 60, 945-953.

Henderson, R., Diggle, P. and Dobson, A. (2000) Joint modelling of longitudinal measurements and event time
data. Biostatistics, 1, 465-480.

Ho, H. L. and Lin, T.-I. (2010) Robust linear mixed models using the skew ¢ distribution with application to
schizophrenia data. Statist. Med., 52, 449-469.

Jara, A., Quintana, F. and Martin, E. S. (2008) Linear mixed models with skew-elliptical distributions: a Bayesian
approach. Computnl Statist. Data Anal., 52, 5033-5045.

Jennrich, R. I. and Schluchter, M. D. (1986) Unbalanced repeated-measures models with structured covariance
matrices. Biometrics, 42, 805-820.

Jorgensen, B. (1982) Statistical Properties of the Generalized Inverse Gaussian Distribution, pp. 401-419. Berlin:
Springer.

Kay, S. R., Fiszbein, A. and Opler, L. A. (1987) The Positive and Negative Syndrome Scale (PANSS) for
schizophrenia. Schiz. Bull., 13, 261-276.

Kazemi, I., Mahdiyeh, Z., Mansourian, M. and Park, J. J. (2013) Bayesian analysis of multivariate mixed models
for a prospective cohort study using skew-elliptical distributions. Biometr. J., 55, 495-508.

Kleinman, K. P. and Ibrahim, J. G. (1998) A semiparametric Bayesian approach to the random effects model.
Biometrics, 54, 921-938.

Koller, M. (2016) robustlmm: an R package for robust estimation of linear mixed-effects models. J. Statist. Softwr.,
1-24.

Koller, M. and Stahel, W. A. (2016) Nonsingular subsampling for regression S estimators with categorical pre-
dictors. Computnl Statist., 1-16.

Kollo, T. and von Rosen, D. (2006) Advanced multivariate statistics with matrices. In Mathematics and Its Appli-
cations. Springer.

Kushner, H. and Yin, G. (2003) Stochastic Approximation and Recursive Algorithms and Applications. Berlin:
Springer.

Lachos, V. H., Castro, L. M. and Dey, D. K. (2013) Bayesian inference in nonlinear mixed-effects models using
Normal independent distributions. Computnl Statist. Data Anal., 64, 237-252.

Lachos, V. H., Bandyopadhyay, D. and Dey, D. K. (2011) Linear and nonlinear mixed-effects models for censored
HIV viral loads using Normal/independent distributions. Biometrics, 67, 1594-1604.

Lachos, V. H., Cabral, C. R. B. and Abanto-Valle, C. A. (2012) A non-iterative sampling Bayesian method for
linear mixed models with Normal independent distributions. J. Appl. Statist., 39, 531-549.

Lachos, V. H., Dey, D. K. and Cancho, V. G. (2009) Robust linear mixed models with skew-Normal independent
distributions from a Bayesian perspective. J. Statist. Planng Inf., 139, 4098-4110.

Lachos, V. H., Ghosh, P. and Arellano-Valle, R. B. (2010) Likelihood based inference for skew-Normal indepen-
dent linear mixed models. Statist. Sin., 20, 302-322.

Laird, N. M. and Ware, J. H. (1982) Random-effects models for longitudinal data. Biometrics, 38, 963-974.

Lange, K. (1995) A gradient algorithm locally equivalent to the EM algorithm. J. R. Statist. Soc. B, 57, 425-437.

Lange, K. L., Little, R. J. A. and Taylor, J. M. G. (1989) Robust statistical modeling using the ¢ distribution. J.
Am. Statist. Ass., 84, 881-896.

Lange, K. and Sinsheimer, J. S. (1993) Normal/independent distributions and their applications in robust regres-
sion. J. Computnl Graph. Statist., 2, 175-198.

Levey, A. S., Bosch, J. P, Lewis, J. B., Greene, T., Rogers, N. and Roth, D. (1999) A more accurate method to
estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann. Intern. Med., 130,
461-470.



38 O. Asar, D. Bolin, P. J. Diggle and J. Wallin

Liang, K.-Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73,
13-22.

Lin, T. I. and Lee, J. C. (2007) Bayesian analysis of hierarchical linear mixed modeling using the multivariate t
distribution. J. Statist. Planng Inf., 137, 484-495.

Lin, T. I. and Lee, J. C. (2008) Estimation and prediction in linear mixed models with skew-Normal random
effects for longitudinal data. Statist. Med., 27, 1490-1507.

Lin, T.-1. and Wang, W. L. (2011) Bayesian inference in joint modelling of location and scale parameters of the ¢
distribution for longitudinal data. J. Statist. Planng Inf., 141, 1543-1553.

Lin, T.-I1. and Wang, W. L. (2013) Multivariate skew-Normal linear mixed models for multi-outcome longitudinal
data. Statist. Modling, 13, 199-221.

Lindgren, F. and Rue, H. (2008) On the second-order random walk model for irregular locations. Scand. J. Statist.,
35, 691-700.

Lindgren, F., Rue, H. and Lindstrém, J. (2011) An explicit link between Gaussian fields and Gaussian Markov
random fields: the stochastic partial differential equation approach (with discussion). J. R. Statist. Soc. B, 73,
423-498.

Liu, C. and Rubin, D. B. (1995) ML estimation of the ¢ distribution using EM and its extensions, ECM and
ECME. Statist. Sin., 5, 19-39.

Louis, T. A. (1982) Finding the observed information matrix when using the EM algorithm. J. R. Statist. Soc. B,
44, 226-233.

Lu, Z. and Zhang, Z. (2014) Robust growth mixture models with non-ignorable missingness: models, estimation,
selection, and application. Computnl Statist. Data Anal., 71, 220-240.

Magnus, J. R. and Neudecker, H. (1979) The commutation matrix: some properties and applications. Ann. Statist.,
7, 381-394.

Magnus, J. R. and Neudecker, H. (2007) Matrix Differential Calculus with Applications in Statistics and Econo-
metrics, 3rd edn. Chichester: Wiley.

Matérn, B. (1960) Spatial Variation. Stockholm: Statens Skogsforsningsinstitut.

Matheson, J. and Winkler, R. (1976) Scoring rules for continuous probability distributions. Mangmnt Sci., 22,
1087-1096.

Matos, L. A., Prates, M. O., Chen, M.-H. and Lachos, V. H. (2013) Likelihood-based inference for mixed-effects
models with censored response using the multivariate-t distribution. J. Computnl Graph. Statist., 10, 249-276.

Meza, C., Osorio, F. and De la Cruz, R. (2012) Estimation in nonlinear mixed-effects models using heavy-tailed
distributions. Statist. Comput., 22, 121-139.

Molenberghs, G. and Verbeke, G. (2005) Models for Discrete Longitudinal Data. New York: Springer.

Osorio, F. (2016) heavy: robust estimation using heavy-tailed distributions. R Package Version (.3. (Available from
http://cran.r-project.org/package=heavy.)

Papaspiliopoulos, O., Roberts, G., and Skold, M. (2007) A general framework for the parametrization of hierar-
chical models. Statist. Sci., 1, 59-73.

Pinheiro, J. C., Liu, C. and Wu, Y. N. (2001) Efficient algorithms for robust estimation in linear mixed-effects
models using the multivariate t distribution. J Computnl Graph. Statist., 10, 249-276.

Podgorski, K. and Wallin, J. (2016) Convolution-invariant subclasses of generalized hyperbolic distributions.
Communs Statist. Theory Meth., 45, 98-103.

Riquelme, M., Bolfarine, H. and Galea, M. (2015) Robust linear functional model. J Multiv. Anal., 134,
82-98.

Rizopoulos, D. (2012) Joint Models for Longitudinal and Time-to-event Data: with Applications in R. Boca Raton:
Chapman and Hall-CRC.

Rosa, G. J. M., Gianola, D. and Padovani, C. R. (2004) Bayesian longitudinal data analysis with mixed models
and thick-tailed distributions using MCMC. J. Appl. Statist., 31, 855-873.

Rosa, G. J. M., Padovani, C. R. and Gianola, D. (2003) Robust linear mixed models with Normal/independent
distributions and Bayesian MCMC implementation. Biometr. J., 45, 573-590.

Smith, D. M. and Diggle, P. J. (1998) Compliance in an anti-hypertension trial: a latent process model for binary
longitudinal data. Statist. Med., 17, 357-370.

Song, P. X.-K., Zhang, P. and Qu, A. (2007) Maximum likelihood inference in robust linear mixed-effects linear
mixed effects models using multivariate t distributions. Statist. Sin., 17, 929-943.

Stirrup, O. T., Babiker, A. G., Carpenter, J. R. and Copas, A. J. (2015) Fractional Brownian motion and
multivariate-t models for longitudinal biomedical data, with application to CD4 counts in HIV-patients. Statist.
Med., doi: 10.1002/sim.6788.

Subtil, F. and Rabilloud, M. (2010) Robust non-linear mixed modelling of longitudinal PSA levels after prostate
cancer treatment. Statist. Med., 29, 573-587.

Sun, J., Frees, E. W. and Rosenberg, M. A. (2008) Heavy-tailed longitudinal modeling using copulas. Insur. Math.
Econ., 42, 817-830.

Tankov, P. (2003) Financial Modelling with Jump Processes. Boca Raton: Chapman and Hall-CRC.

Tao, H., Palta, M., Yandell, B. S. and Newton, M. A. (2004) An estimation method for the semiparametric mixed
effects model. Biometrics, 55, 102-110.



Linear Mixed Effects Models 39

Taylor, J. M. G., Cumberland, W. G. and Sy, J. P. (1994) A stochastic process model for analysis of longitudinal
AIDS data. J Am. Statist. Ass., 89, 727-736.

Taylor-Robinson, D., Whitehead, M., Diderichsen, F., Olesen, H. V., Pressler, T., Smyth, R. L. and Diggle, P. J.
(2012) Understanding the natural progression in %FEV decline in patients with cystic fibrosis: a longitudinal
study. Thorax, 67, 860-866.

Tian, G.-L., Ng, K. W. and Tan, M. (2008) EM-type algorithms for computing restricted MLEs in multivariate
Normal distributions and multivariate ¢-distributions. Computnl Statist. Data Anal., 52, 4768-4778.

Verbeke, G. and Lesaftre, E. (1996) A linear mixed-effects model with heterogeneity in the random-effects popu-
lation. J. Am. Statist. Ass., 91, 217-221.

Verbeke, G. and Molenberghs, G. (2001) Linear Mixed Models for Longitudinal Data. New York: Springer.

Vilca, F., Balakrishnan, N. and Zeller, C. B. (2014) Multivariate skew-Normal generalized hyperbolic distribution
and its properties. J. Multiv. Anal., 128, 74-85.

Vock, D. M., Davidian, M. and Tsiatis, A. A. (2012) Mixed model analysis of censored longitudinal data with
flexible random-effects density. Biostatistics, 13, 61-73.

Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial Mathematics.

Wallin, J. and Bolin, D. (2015) Geostatistical modelling using non-Gaussian Matérn fields. Scand. J. Statist., 42,
872-890.

Wang, W.-L. and Fan, T.-H. (2011) Estimation in multivariate ¢ linear mixed models for multiple longitudinal
data. Statist. Sin., 21, 1857-1880.

Wang, W.-L. and Fan, T.-H. (2012) Bayesian analysis of multivariate ¢ linear mixed models using a combination
of IBF and Gibbs sampler. J. Multiv. Anal., 105, 300-310.

Wang, W.-L., Lin, T.-I. and Lachos, V. H. (2015) Extending multivariate-t linear mixed models for multiple longi-
tudinal data with censored responses and heavy tails. Statist. Meth. Med. Res., doi, 10.1177/0962280215620229.

Yavuz, F. G. and Arslan, O. (2016) Linear mixed model with Laplace distribution (LLMM). Statist. Pap., doi
10.1007/s00362-016-0763-x.

Zeller, C. B., Labra, F. V,, Lachos, V. H. and Balakrishnan, N. (2010) Influence analyses of skew-
Normal/independent linear mixed models. Computnl Statist. Data Anal., 54, 1266-1280.

Zhang, D. and Davidian, M. (2001) Linear mixed models with flexible distributions of random effects for longi-
tudinal data. Biometrics, 57, 795-802.

Zhang, Z., Lai, K., Lu, Z. and Tong, X. (2003) Bayesian inference and application of robust growth curve models
using Student’s t distribution. Struct. Equn Modlng, 20, 47-78.

Zhang, P, Qui, Z., Fu, Y. and Song, P. X.-K. (2009) Robust transformation mixed-effects models for longitudinal
continuous proportional data. Can. J. Statist., 37, 266-281.

Zhang, J., Yu, B., Zhang, L., Roskos, L., Richman, L. and Yang, H. (2015) Non-Normal random effects models
for immunogenicity assay cut point determination. J. Biopharm. Statist., 25, 295-306.

Zhu, B. and Dunson, D. B. (2017) Bayesian functional data modeling for heterogeneous volatility. Baysn Anal.,
12, 335-350.

Zhu, B., Song, P. X.-K. and Taylor, J. M. G. (2011a) Stochastic functional data analysis: a diffusion model-based
approach. Biometrics, 67, 1295-1304.

Zhu, B., Taylor, J. M. G. and Song, P. X.-K. (2011b) Semiparametric stochastic modeling of the rate function in
longitudinal studies. J. Am. Statist. Ass., 106, 1485-1495.





